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Study of the Laminar Free-Convection Wake 
Above an Isothermal Vertical Plate 
The steady, laminar, two-dimensional wake above a thin vertical isothermal heated plate 
cooled by free convection was investigated theoretically and experimentally. The system 
of partial differential equations governing the fluid motion and heat transfer in the vicin
ity of the plate and in the near wake region was formulated and solved using finite dif
ference techniques. Using air, the temperature and velocity profiles in the wake region 
were measured experimentally using a laser holographic interferometer and a constant 
temperature hot wire anemometer. 

Introduction 

L I ECHNIQUES for evaluating free convection effects 
caused by arranging heated vertical plates in combinations of 
rows and columns are of importance to the electronics industry. 
For example, in many cases microelectronic components are 
mounted on substrates (or plates) that dissipate the energy they 
generate primarily by free convection. Electrical and space re
quirements dictate that these substrates be stacked close to
gether leading to significant thermal interactions between them. 
When heated vertical plates are stacked in columns the wake of a 
plate interacts with the boundary layer of the plate above it. 
Such interaction could produce results significantly different 
from those obtained using the common, simplifying assumption 
of a continuous vertical wall (and neglecting the gap between top 
and bottom plates). Therefore, before a general analysis can be 
formulated for columns of plates, a sound theoretical and ex
perimental understanding of the natural convection wake behind 
an isolated vertical plate is necessary. 

The only work that could be found in the literature concerning 
the wake of a plate cooled by free convection was a paper by 
Yang [ l ] 1 in which the velocity and temperature profiles in the 
immediate neighborhood of the trailing edge were found using an 
asymptotic series expansion and were continued into the wake 
region by an integral technique. For the case of laminar forced 
convection wakes behind flat plates (Blasius type conditions) 
without heat transfer, the classical solutions of Goldstein [2] and 
Tollmein [3] have been followed by the studies of Kuo [4], Imai 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division and presented at the 

Winter Annual Meeting, New York, N. Y., November 26-30, 1972, 
of T H E AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript 
received by the Heat Transfer Division August 15, 1972; revised 
manuscript received November 10, 1972. Paper No. 72-WA/HT-41. 

[5], and Stewartson [6], and more recently Plotkin and Flugge-
Lotz using numerical methods [7]. 

Engle [8], who used an integral method to analyze the natural 
convection in vertical channels subject to prescribed wall heat 
fluxes, extended his work to include boundary layer inter
actions between rows of staggered plates. Experimental work 
using the same configuration was reported by Sobel [9]. 

The objective of this investigation was to study the steady 
state laminar flow and heat transfer behavior in the near wake 
region behind a vertical isothermal plate cooled by free convec
tion. The numerical and experimental results which have been 
obtained are presented in this paper. 

Formulation of the Equations 
In the usual natural convection analysis the general Navier-

Stokes and energy equations are reduced to so-called "boundary 
layer" equations by means of order of magnitude arguments. 
For the case of the fluid properties adhering to the Boussinesq 
approximations having the basic assumptions that p = po/[l + 
p(T — T„)} and that p(2'„ — Ta) « 1, these equations are 
written: 

du du 

dx dy 
= ppg(T - T„) 

dp dhi 
\- jii 

dx dy2 

peP 

du dv 
h — = 0 

dx dy 

dT dT\ Tr d2T 
u h v — I = K — 

dx dy / dy2 

(1) 

(2) 

(3) 

However in the wake problem, because of the presence of large 
x derivatives as well as y derivatives in the vicinity of the trailing 
edge, such simplifications are not valid. The equations which 
must be solved in this case are the following: 
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( bv bv\ 

U ^ + Vby) 

/3pg(T - T . ) 
dp' (b*u bhi\ 

bx \bx2 by2 J 

bj/ 

by 

(&v_ bV\ 
+ ** \bx* + by*) 

bu bv 
+ 0 

bx by 

pcp 

I bT bT\ _ /b*T 

\ bx by ) \bx* 

b*T\ 
+ by*) 

(4) 

(5) 

(6) 

(7) 

Note that equations (4), (5), and (7) are of the elliptic form 
and their solution requires that boundary conditions be specified 
on a closed boundary surrounding the region of interest. Equa
tions (4) to (7) were solved in the "elliptic equation region" 
(see Fig. 1) which included the top portion of the plate to permit 
any influences of the wake to propagate upstream to the trailing 
edge. The boundary conditions for the elliptic equation region 
were generated by solving the parabolic set ( l ) - (3) over the entire 
plate-wake region. A similar procedure had been used [7] for a 
forced convection wake without heat transfer. 

The upstream boundary of the elliptic region was located in a 
region of the plate that was far enough upstream of the trailing 
edge so that it was uninfluenced by the wake flow. Similarly the 
downstream boundary of the elliptic region was located far 
enough downstream of the trailing edge so that asymptotic wake 
conditions were reached. 

Method of Solution 
Equation sets (l)-(3) and (4)-(7) were both solved numerically 

using finite difference procedures. To accomplish this the fluid 
region was subdivided into a grid with each space point O'AX, 
kAY) simply identified as a grid point (j, k). 

Solution of lhe Parabolic Equations. Along the plate the finite dif
ference forms of equations ( l ) - (3) were solved using the Liebmann 
(or Gauss-Seidel iteration) method subject to the boundary con
ditions listed in Fig. 1. This scheme was not suitable for extend
ing the solution into the wake region. Therefore a wake solution 
for the finite difference form of the parabolic equations was ob
tained by starting at the top of the plate and marching in the 
downstream direction one row at a time. The formulations used 
here are described in detail in reference [10]. 

The resulting solutions for the plate and the wake were used to 
provide an initial iteration base for the subsequent solution of the 

> 

"ASYMPTOTIC 
WAKE REGION" 

T\ 

\ 1T-T. 

(WAKE PORTION] 

L \ 

u-0 
VO 
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M !.Lr;."\ 
* l IT-TJ 
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EQUATION" 
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. ELLIPTIC 
' EQUATION" 
REGION 

u-0 
v O 
T-0 

Fig. 1 Mathematical regions for natural convection f low 

elliptic region equations and to provide the necessary boundary 
conditions. 

Solution of the Elliptic Region Equations. To facilitate the solution 
of the elliptic region equations, equation set (4)-(7) was rewritten 
in the conservative and unsteady form in terms of vorticity and 
stream function variables as shown in the following: 

bQ d(UU) b(VQ) 

br + bX bY 

d 2 * d 2 * 

b*tt b*tt bd 

bX* + bY* + bY 

dZ ; + bY1 = 0 

b6 _ b(ue) uye) 
br + bX bY 

1_ 

Pr 

(b*e b*e\ 
\bX* + bY*) 

(8) 

(9) 

(10) 

These changes were made so that the Dufort-Frankel method 
of solution [11-13] could be used. This scheme involves three 
time levels and results in truncation errors of second order in 
both time and space derivatives. Because the second differen
tials can be written in terms of three time levels the solution is 
stable for central differencing. The resulting finite difference 
equations are: 

-Nomenclature-

cp = constant pressure specific heat 
g = acceleration of gravity 

Gr = Grashof number, g/3V(T - TJ/v* 
j , k = grid point indices along X and 

F-direction, respectively 
K = thermal conductivity 

I = height of vertical plate 
n = number of time steps 
p = pressure 

p' = pressure perturbation (p — p„) 
Pr = Prandtl number, p.cp/K 
T = temperature 
u = x component of velocity 

L7 = nondimensional x velocity (ul/v) 
U* = Z7-'(4^)-1A 

v = y component of velocity 
V = nondimensional y velocity (vl/v) 

x = length coordinate measured paral
lel to the plate 

X = nondimensional length coordinate 
(x/l) 

y = length coordinate measured perpen
dicular to the plate 

Y = nondimensional length coordinate 

(y/D 
Y* = (2 / /ZMV4) 1 / 1 

(3 = fluid expansion coefficient 
oV = time-step 

e = emittance 
6 = nondimensional temperature (g/313-

(T - TJ/v*) 
ew = nondimensional plate temperature 

{gPl\Ta - TJ/u*) 
ix = dynamic viscosity 
v = kinematic viscosity 

p = fluid density 
T = time 

,J> = nondimensional stream function 

bXj 
Q, = nondimensional vorticity variable 

bU 

(U = ™ V = - ^) 
\ bY' bXj 

al vortic 

_ ̂ Z\ 
bx) 

Subscripts 

j — node index in the X-direction 
k = node index in the F-direction 
r = reference 

w = plate 
x = ^-direction 
y = ^-direction 

co = ambient conditions 
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* y . i 
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(AY)2 
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(2 + 2S?) 
(12) 

/ 2-5r 2-5r \ „ Sr 
9n+1^V + (AxTPr + (AW;j " "-1" + AX«"'-*»"'-' 

- j/-y+i.*e-/+i.*) + ^ ( T / , w 

2-6V 

Pr - (AX) ' 
•(0"y+i,* + 

+ 
l-8r 

Pr-(AY) : ( 0 » M + I + <?". 

^ . t + i - ^ y . t + i ) 

=-i - 0*~ls.i.) (13) 

Since a first order time-dependent term is now included, these 
equations are now considered parabolic with respect to the time 
coordinates. However, because the solution is iterated until 
steady state is reached vising the steady-state boundary condi
tions, the elliptic characteristics in the spatial variables are re
tained in the solution. 

Convergence to steady state conditions required about 400-500 
time steps in most cases. For a 50 X 20 grid this required ap
proximately 90 min of computer time. (Splitting the grid size 
used to one-half the size had an insignificant effect on the re
sults.) 

The downstream boundary conditions as imposed by the nu
merical solution will not accurately reflect the conditions desired 
if they are applied before asymptotic conditions are reached. 
Therefore several computer runs were made in which the point of 
application was varied to see the effects. The downstream 
boundary was then positioned far enough downstream that the 
variables in the wake region of interest had negligible change 
when this position was moved further downstream. 

Numerical Results 
The velocity profiles obtained by solving the parabolic equa

tions along the plate are considered first. These are plotted in 
Pig. 2 as the nondimensional x component of velocity versus the 
nondimensional distance Y at distances along the plate of x/l — 
0.25, 0.5, and 1.0. (X = x/l = 0 corresponds to the leading edge 
of the plate and X = 1.0 to the trailing edge). The squares 
represent velocities taken from Ostrach's similarity solution [14] 
for x/l = 0.5. 

Since the interim wake extension solutions suffer from infinite 
plate characteristics of the parabolic equations, the final wake 
solutions for the elliptic region are obtained using equation set 
(11)—(13). The nondimensional velocity profiles for six locations 
in the wake are given in Pig. 2. These curves indicate an abrupt 
change in the velocity in the vicinity of the trailing edge. The 
velocity along plate center line can be seen to increase from zero 

to a value greater than the velocity at any point parallel to the 
plate within one-tenth of the plate height into the wake. The 
reason for the rapid changes is the continuing presence of the 
buoyancy forces in conjunction with a free shear layer replacing 
the restrictive wall shear stresses that precede this region. Also 
included in Fig. 2 are the results of Yang's asymptotic series ex
pansion and integral analyses for two locations in the wake. (All 
curves are for Gr = 3.07 X 106 and Pr = 0.72.) 

The corresponding nondimensional temperature profiles in the 
wake and at the top of the plate are shown in Fig. 3. Again the 
solutions of Yang for two wake locations have been included. 

The forms of the temperature and velocity profiles are different 
a t different locations in the wake and universal solutions are not 
possible. However, some insight into how the velocity and tem
perature profiles vary with Grashof number can be gained by 
plotting the computed results in terms of the similarity variables 
taken from the standard plate boundary layer solutions [1, 14, 
15]. The curves for the wake velocity profiles at X = 1.05 and 
1.2 are shown in Fig. 4 for a range of Grashof numbers from 106 to 
10s. The corresponding temperature profiles plotted versus the 
plate solution similarity variable are shown in Fig. 5. 

Experimental Investigation 
The velocity and temperature profiles were checked experi

mentally to confirm the predicted flow and heat transfer patterns. 
A laser holographic interferometer was set up at Allentown Bell 
Laboratories to study the thermal wake development. This 
system was augmented by a DISA2 constant temperature hot 
wire anemometer for measuring the velocity profiles in the wake 
and plate boundary layer. 

Test Specimen. The isothermal plate used in the experiments 
consisted of a glass-insulated nichrome heater wire sandwiched 
between two 0.010 in. thick copper plates (see Fig. 6). Layers of 
nickel (50,u in. thick) and gold (140/* in. thick) were electroplated 
onto the copper plates. The outside gold layer was introduced to 
minimize thermal radiation (e < 0.02) and to prevent oxidation. 
The intermediate layer of nickel served as a barrier to the dif
fusion of copper into the porous gold layer. Temperature aging 
tests have shown that this metallizing system will not discolor 
after extended periods at 300 deg C. 

The heater wire was imbedded in a Sylgard resin3 approxi
mately 0.020 in. thick that was pliable enough to compensate 

2 DISA Elektronik A/S, Herlev, Denmark. 
3 Sylgard No. 182 potting and encapsulating resin, Dow Corning 

Corp., Midland, Mich. 
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Fig. 4 Velocity profiles for a range of Grashof numbers plotted in terms 
of plate solution similarity variables 

for thermal expansion at elevated temperatures without forming 
voids or warping excessively. An additional layer of Dow Cor
ning RTV silicon rubber (~0.0025 in. thick) was applied to the 
inside of each plate to ensure adherence of the Sylgard resin to 
the plate and consequently to give good thermal contact to the 
gold plating layer. Small thermocouple wires (0.003 in. dia) 
were peened to the inside plate surface to monitor the plate tem
perature as well as to check the temperature variations over the 
plate. The thermocouples indicated that no significant tempera
ture variations were present during test runs. 

The plate was held by two thin plexiglass supports (1/8 in. 
wide) in a plexiglass shroud which was constructed to protect the 
convection flows from stray room currents. 

Temperature Profiles. The isotherms in the boundary layer were 
obtained using the laser holographic interferometer system [10]. 
The principal difference between holographic interferometry and 
conventional interferometry is tha t the interference is between 
light beams which have occurred at different times instead of be
tween two beams existing at the same time [16]. This is possible 
because the hologram plate positioned where the beams intersect 
is a diffraction grating that has the capability of reconstructing 
one of the laser beams when it is illuminated by the other beam 
[10, 16, 17]. 
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Fig. 5 Temperature profiles for a range of Grashof numbers plotted in 
terms of plate solution similarity variables 
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Fig. 6 Plate structure used for isothermal test specimen 

Experimental data points taken from a 4 in. high plate with a 
temperature difference of 50 deg F (27.8 deg C) between the plate 
and the ambient air (this corresponds to Gr = 3.07 X 106) are 
plotted in Fig. 7 along with the corresponding theoretical tem
perature profiles. The values obtained from the interferogram 
indicate that the measured temperatures are higher than pre
dicted in the outer portions of the wake. In this region the tem
peratures seem to increase with distance in the downstream direc
tion. This trend is in contrast to Yang's integral solutions [1] 
(plotted in Fig. 3) which show the temperature reaching ambient 
conditions at Y ^ 0.10 for X = 1.20 and in addition which predict 
temperatures greater than ambient at Y = 0.10 and X = 1.0428. 

Measurement of Velocity Profiles. The velocity profiles were mea
sured using a constant temperature hot wire anemometer system. 
To account for the affect of temperature variations in the flow 
field on the output of the anemometer and to calibrate the sensor 
for the low air velocities to be measured, an elaborate procedure 
was developed for direct calibration (see reference [10]). For 
Gr = 3.07 X 106, the theoretical velocity profiles for the wake 
region are plotted in Fig. 8 along with the velocity profiles ob
tained using the hot wire anemometer. 

Shown in Fig. 9 are plots of the measured and computed veloci
ties along plate center line as functions of x for Gr = 3.07 X 106-
The experimental scatter in the velocity measurements at dis
tances greater than X = 1.6 is attributed to the difficulty in 
alignment with the plate center line as well as to the larger veloc
ity fluctuations that occurred in this region. 
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Another important characteristic of the trailing edge flow is 
seen by comparing the theoretical velocity profiles at the top of 
the plate obtained from the parabolic boundary layer equations 
(solid curve in Fig. 10) to those obtained from the elliptic equa
tions (dashed curve in Fig. 10). The abrupt change to the free 
shear situation at the beginning of the wake has an upstream in
fluence causing the velocity to increase in the vicinity of the plate 
near the trailing edge. To verify this experimentally, ane
mometer measurements (see data points in Fig. 10) were made 
using two plates of different heights. 

Summary and Conclusions 
The system of partial differential equations governing fluid 

motion and heat transfer along an isothermal vertical plate and 
in the wake above it was formulated in terms of finite difference 
equations and solved numerically. Numerical results were ob
tained for a Prandtl number of 0.72 and five different values of 
Grashof number ranging from 106 to 108. 

The theoretical and experimental results show a rapid transi
tion from the free convection velocity and temperature profiles 
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normally encountered along a plate to fully-developed wake con
ditions. The results also indicate that the influence of the wake 
is felt along the plate upstream of the trailing edge causing the 
velocity profiles near the top of the plate to be different from those 
usually obtained from the conventional parabolic boundary layer 
equations. Buoyancy forces in the wake cause the center-line 
velocity to continue to increase for significant distances down
stream of the trailing edge. 

The solutions obtained in this study are in a form amenable to 
coupling between the wake and boundary layers of neighboring 
plates. Therefore it forms the basis for a general solution that 
can be used to examine free convection from systems of vertical 
isothermal plates. 
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Fig. 8 Comparison between wake velocity profiles measured with hot 
wire anemometer and analytical results 
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Stability of Buoyant Boundary Layers and 
Plumes, Taking Account of Nonparallelism 
of the Basic Flows 
Consideration is given to the linear stability of buoyant boundary layers and plumes 
which belong to the class of flows for which (a) the streamwise velocity vanishes in the 
free stream and (b) the transverse velocity is inward-directed and has a finite value in 
the free stream. Disturbance equations for such flows are derived taking account of the 
fact that the basic flows depend upon the streamwise coordinate. The formulation is 
specialized to the case of the natural convection plume generated by a horizontal line 
source of heat. The existence of the so-called bottling effect is demonstrated, wherein the 
disturbance vorticity and temperature are contained within the boundary layer of the 
flow. The neutral stability curve exhibits both a minimum Grashof number and a lower 
branch, in contrast to the neutral curve for the conventional stability analysis, which does 
not exhibit these features. Consideration is given to the amplification of disturbances 
and to the frequencies which are the most amplified. Results are also presented for the 
limiting case of inviscid instability. 

Introduction 

LINEAR STABILITY ANALYSIS for flows of the bound

ary-layer type is usually based on the Orr-Sommerfeld (O-S) 
equation which is strictly valid for parallel flows. The fact that 
the basic flows depend upon the streamwise x coordinate is pre
sumably accounted for by nondimensionalizing the disturbance 
equation by local values of a characteristic velocity and the 
boundary-layer thickness. 

Pretsch [ l ] 1 derived a more complete disturbance equation 
that, in addition to the terms found in the O-S equation, con
tained terms that take into account the ^-dependence of the 
basic flow and that allow the disturbance amplitude to vary with 
x. Pretsch studied the class of flows in which the streamwise 
velocity has a given finite value in the free stream. By use of 
asymptotic analysis for large values of the wave number-
Reynolds number product, he was able to show that for such flows 
the extra terms in the disturbance equation have a small effect 
on the stability characteristics and can, therefore, be neglected. 

Recently, Haaland [2] investigated the linear stability of the 
class of flows in which (o) the streamwise velocity vanishes in the 
free stream and (6) the transverse velocity is inward-directed and 
has a finite value in the free stream. Such flows will hereafter be 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (with

out presentation) in the JOURNAL or HEAT TBANSFEB. Manuscript 
received by the Heat Transfer Division September 6, 1972. Paper 
No.73-HT-G. 

designated as class A flows. He showed that the usual approxi
mation implied by the parallel-flow assumption, i.e., the neglect 
of the transverse convection of disturbance vorticity compared 
with the streamwise convection, is a nonuniform approximation 
for class A flows. I t was also demonstrated that this transverse 
velocity term gives rise to the so-called bottling effect. That is, 
inclusion of this term results in the containment of the dis
turbance vorticity and temperature within the boundary layer. 
This means that class A stability problems which were previously 
defined on an unbounded domain can now be defined on a 
bounded domain. Moreover, for this class of flows, the wave 
number-Reynolds number product usually becomes so small 
tha t all the terms arising from the z-dependence of the basic flow 
have to be retained. By including these terms, while retaining 
the assumption of disturbances in the form of local plane waves, 
modified O-S equations (including temperature disturbances) 
were obtained. The modified O-S equations were solved for 
several flows, i.e., the similarity jet, the shear layer, and natural 
convection on inclined plates. In all cases it was found that the 
retention of the terms associated with the ^-dependence of the 
basic flow had a strong effect on the neutral stability curve. See 
also Haaland [3] for further discussion of the stability analysis of 
class A flows. 

In the present investigation, modified disturbance equations 
(including terms taking account of the ̂ -dependence of the basic 
flow) will first be derived for buoyant boundary layers and plumes. 
These will then be specialized to the natural convection plume gen
erated by a horizontal line source of heat, which belongs to class 
A flows. Since this flow is very unstable, it is a good example of 
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a case where the ^-dependence of the basic flow is expected to 
have a large influence on the stability characteristics. For ex
ample, the neutral stability curve of Pera and Gebhart [4], based 
on the conventional linear stability model, does not exhibit a 
minimum Grashof number or a lower branch. On the other hand, 
the neutral curve corresponding to the more complete formulation 
displays both a minimum Grashof number and a lower branch. 

The aforementioned bottling effect will be demonstrated for the 
plume. Among the numerical results, we will be concerned not 
only with neutral stability but also with amplification of dis
turbances and with those frequencies which are most greatly 
amplified. A computation is made of the degree of amplification 
experienced by a disturbance as it moves downstream. The 
numerical results to be presented here are primarily for a Prandtl 
number of 0.7, tha t is, for gases. The neutral curve for a 
Prandtl number of 6.7 (liquid water) has also been evaluated 
for purposes of comparison. 

For very large Reynolds (or Grashof) numbers, the viscous 
terms in the disturbance equations become negligible. For 
the inviscid model, the disturbance equations for the velocity 
and temperature fields uncouple, and the terms resulting from the 
^-dependence of the basic flow drop out. Stability results for the 
inviscid case will be obtained and presented. 

The only prior investigation of the linear stability of a plume 
that is known to the authors is that of Pera and Gebhart [4]. 
Further reference to their work will be made during the course of 
this paper. 

Stability Analysis for Buoyant Boundary Layers 
In this section, the disturbance equations for buoyant bound-

aiy-layer flows in general will be formulated, with account being 
taken of the terms which arise from the ^-dependence of the basic 
flow. The formulation follows that of Haaland [2]. Let us 
consider flows for which the Boussinesq equations are valid (Lan
dau and Lifshitz [5]) 

^ + V , V V = - - Vp 
bt p 

r(T - Ta) + vV2V, (1) 

bt 

v - v = o, 

+ V - V T = aV2T, 

(2) 

(3) 

in which V is the velocity vector, p the reduced pressure (static 
pressure minus hydrostatic pressure), T the temperature, Ta the 
ambient fluid temperature (a constant), and g the gravity vector. 
The thermophysical properties, density p, thermal expansion co
efficient PT, kinematic viscosity v, and thermal diffusivity a, are 
taken to be constants. 

By taking the curl of (1), denoting the vorticity by £2 = 
V X V, ! and using the continuity equation (2), one obtains the 
vorticity equation 

bQ 

bt 
V-VS2 - i i -VV rs X VT + vV2£l. (4) 

In the case of two-dimensional flows (x = streamwise coordinate, 
y = transverse coordinate), V = (U, V, 0), £1 = (0, 0, fi), T = 
T, and g = (gx, gy, 0), and with these, equation (4) reduces to 

SO „ dO „ btt 

bt ox by 

bT 

by 

bT 

dx 
+ vV2tt. (5) 

Next, let (U, V, 0), (0, 0, fl), and T denote the basic flow solu
tion which depends on x and y. Correspondingly, (u, v, 0), (0, 0, 
w), and r denote two-dimensional disturbances which depend on 
x, y, I. When the sum of the basic flow and the disturbances are 
introduced into equation (.5), there follows, after neglecting non
linear terms in the disturbance quantities and subtracting out the 
vorticity equation for the basic flow, 

boi „ Sco — + U — 
bt bx 

bco dO bQ 
V — + u h J -

by bx oy 

= PT 
br 

by 
+ vV2w. (6) 

Consistent with the boundary-layer model for the basic flow 
0 = —bU/dy, so that, by using the continuity equation, bQ/bx 
= d2F/&j/2. In addition, the continuity equation for the dis
turbance velocities is satisfied by a stream function tp defined by 
u = bip/by, v = — bip/bx. With the foregoing, equation (6) be
comes 

doj do) b2U b\p bo> 

bt bx by" bx by 

where 

VVbip 

by2 by 

dr dr 

by ~ * bx) + " ^ ( ? ) 

b2\b b2ib —- + -—-
bx2 by2 (8) 

Furthermore, by starting with the energy equation (3) and pro
ceeding along similar lines, the governing equation for the dis
turbance temperature can be derived as 

br br _ bT bjp 

bt bx by bx by bx by 
ZV2T. (9) 

Equations (7), (8), and (9) comprise a sixth-order system for the 
variables ip, w, and T. The vorticity a) can easily be eliminated 
from these equations, but this step will not be taken since oi has 
greater physical significance thaf do the higher order derivatives 
o f f . 

Attention will now be directed to the last two terms that 
appear respectively on the left-hand sides of equations (7) and (9). 
These terms are due to the ^-dependence of the basic flow and are 
commonly omitted in linear stability analyses by invoking the 
parallel-flow assumption. As seen from the continuity equation, 

V = — I (bU/bx)dy + constant; thus, the presence of a --r 
non-zero transverse velocity is a consequence of the x-de-
pendence of the streamwise velocity. The terms V(boi/by) in (7) 
and V(br/by) in (9) are transverse convection terms of dis
turbance vorticity and temperature, respectively. The term 
(b2V/by2)(btp/by) can be traced back to u(bU/bx), so this term 
represents streamwise convection of basic flow vorticity. The 
term (bT/bx)(b\fr/by) is due to streamwise convection of the basic 
temperature field. 

The disturbances are assumed to be locally of the plane-wave 
type, that is 

= {*>(»), «(y),T(y)}e*(»«- (30 (10) 

in which a is the wave number and /3 is the circular frequency. 
Equation (10) is then substituted into the disturbance equations 
(7)-(9), but before stating the outcome, dimensionless variables 
and parameters will be introduced. The scales for the nondimen-
sionalization are motivated by an examination of the form of the 
solution for the basic flow. 

For boundary-layer flows which admit similarity solutions, one 
can, in general, write 

U*(x) -
U = U*(x)U(v), V = - ^ 7 W , 

R(x) 

T = Ta + [T*{x) - TJTM, ( H ) 

with 

r, = y/h(x), R(x) = U*h/v. (12) 
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In the foregoing, R can be identified as a local Reynolds number 
based on the characteristic velocity U* and the characteristic 
length h (proportional to the boundary-layer thickness); T* is a 
characteristic temperature and r\ is the similarity variable. In 
cases where a global similarity solution does not exist, tha t is, 
where U, V, and T depend on R, equations ( I I ) can still be em
ployed locally provided tha t local similarity prevails. 

Other nondimensional parameters that are pertinent to the 
analysis are the dimensionless wave number a, the Strouhal num
ber S, and the Grashof number G based on the length h. These 
ore 

a = ah, S = fih/U*, G = gPT(T* - TJh'/v*. (13) 

In addition, the dimensionless counterparts of the disturbance 
amplitude functions <p, co, r are defined as 

!p = <p/(U*h), co = w/(U*/k), f = r/(T* - TJ. (14) 

Then, upon introducing equations (10) into (7)-(9) and subse
quently forming dimensionless variables and parameters by using 
U* as the velocity scale, h as the length scale, and the definitions 
contained in (11)—(14), one obtains after dropping the tilde 

co" - a2w = iR[(aU - S)co + aU"<p] + 7co' + V"<p' 

- (G/R)[ (Wf/ ) r ' - i(gv/g)ar], (15) 

<p" — a V = -co, (16) 

T" - a.H = i f t R[(aU - S)r - aT'<p] 

+ Pr [TV + (a/r + a^T'to'], (17) 

in which Pr = v/a is the Prandtl number, 

R/i d(T* - r „ ) ^ dh 

<* = wzry^ — j x — a> = - R ji w 
and the primes represent derivatives with respect to r). 

Equations (15)—(17) represent the disturbance equations (for 
local plane-wave disturbances)for boundary-layer flows involving 
buoyancy. These equations take account of the explicit .-c-de-
pendence of the basic flow and, therefore, constitute a modifica
tion of the traditional formulation which leads to the Orr-Som-
merfeld equation. Subsequently, these equations will be special
ized to the plume. 

I t is appropriate at this point to comment on the choice of space 
or time amplification for the disturbances (see also Haaland [3]). 
From the standpoint of experiment, space amplification appears 
more appropriate for boundary-layer flows (see, for example, 
Betchov and Criminale [6]). Therefore, the circular frequency /? 
and its dimensionless counterpart, the Strouhal number S, are 
taken to be real, whereas the wave number a is taken as complex. 
On the neutral curve, both S and a are real and no choice has to be 
made about the type of amplification. 

Governing Equations for the Plane Plume 
The genera] formulation developed in the preceding section oi 

the paper will now be specialized to the plume generated by a 
horizontal line source of heat. The coordinates are selected so 
that the streamwise coordinate x is vertically upward and the 
transverse coordinate y is horizontal. The basic flow solution for 
the plume is outlined in the Appendix, so that tJ, V, T and their 
derivatives as required in the disturbance equations (15)-(17) are 
available (the tilde has been dropped in (15)-(17)). 

For the aforementioned orientation of the coordinates, gx/g = 
— 1 and gy/g = 0. Furthermore, according to equation (A6), 
R = G. In addition, use of the relationships given in the Ap
pendix reduces equation (18) to ai = —12/5, a% = —8/5. As a 
result of these findings, the disturbance equations (15)~(17) 
become 

co" - a2co = iR[(aU - S)co + aU"<p] 

+ T ' + Vu' + V"<p', (19) 

<p" - a V = - w , (20) 

T " - a 2 r = i Pr R[(aU - S)r - aT'<p] 

. + PvVr'- Pr[(12/5)T + (8/5)nT']<p'. (21) 

The Reynolds number R arid Strouhal number S can be special
ized to the plume by introducing U* and h from the Appendix 
into the defining equations (12) and (13). In addition, the com
monly employed Grashof number Gr (based on x) is related to R 
by equation (A7). 

From an examination of equations (19)-(21), and noting that 
U, V, and T are, respectively, even, odd, and even functions of t\, 
it is seen that solutions are possible in which (d)<p and co are even 
and T is odd, (6) <p and co are odd and r is even. Of these two 
solution modes, the more interesting is that which is least stable. 
This ought to be the mode with the least constraint on the de
pendent variables, tha t is, when <p and co are even and r is odd. 
Accordingly, the boundary conditions are taken as 

cp'(0) = co'(0) = T ( 0 ) = 0, <p(co) =<p'(co) = r ( c o ) = 0 . (22) 

The system consisting of equations (19)-(22) is homogeneous, 
so that <p = cos^T = Oisa possible solution. In order to obtain 
a non-trivial solution, it is necessary to impose a normalizing con
dition. Since this fixes only the scale of the solution, any choice 
will suffice, for example 

co(0) = 1. (23) 

Equations (22) and (23) represent 14 real conditions on the 
twelfth-order real system (19)—(21). Therefore, two of the four 
real parameters cer, a,, R, and S have to be eigenvalues. Since in 
the subsequent presentation of results we shall be interested in 
curves parameterized by ait the solutions will be carried out for 
fixed values of a (i.e., a, and a,) taking R and S to be the eigen
values. 

I t is appropriate to examine the in viscid limit of the disturbance 
equations (19)-(21). As R approaches infinity, these equations 
reduce to 

<p" = [a2 + aU"/(aU - S)]<p, (24) 

co = -aU"<p/(aU - S), (25) 

r = aT'<p/(aU - S). (26) 

The formerly coupled system is now decoupled, and in addition 
the terms related to the ^-dependence of the basic flow have 
dropped out. Once ip has been determined from equation (24), 
co and T follow directly from (25) and (26), respectively. As be
fore, the even solution for <p is expected to be the least stable, so 
that the boundary conditions are chosen as 

<p'(0) = </>(«,) = 0, <p(0) = 1, (27) 

where the last member of (27) is a normalizing condition. Equa
tion (24) is a fourth-order real system, for which six real condi
tions are specified by equation (27). Therefore, two of the three 
real parameters a,, a,, and S have to be eigenvalues. For the 
solutions^ fixed values will be assigned to S, and ar, at will be the 
eigenvalues. 

The solution method to be employed here uses an analytical 
solution for large r] in conjunction with numerical integration for 
intermediate and small ??. The large-)? solutions will be de
veloped in the next section, where they will also be applied in 
demonstrating the bottling effect. 

The Large-?? Solutions and the Bottling Effect 
As a first step in obtaining the large-77 solutions of equations 

(19)-(21), it is necessary to have expressions for U, V, T and their 
derivatives tha t are valid for large values of r]. On the basis of 
equations (A4), (A14), and (A15), one can write F = F^ + Fi, 
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H •• Hi, and 

U = Vi = Fi', 

7 = vm + Vi --

T = Ti = Hh 

(28a) 

[(8/5)??i<V - (12/5)F,] (28b) 

(28c) 

where Fx and fli are the first terms of exponentially decreasing 
expansions which involve known constants which depend on the 
Prandtl number, and V„ = - (12 /5 ) iC 

Large-?; solutions for <p, co, and r can now be sought in a series 
of decreasing functions (i.e., successive approximations) 

<P = 4 1 + ^ 2 + . to = Bi -(- i?2 

T = Ci + C2 + (29) 

After substitution of (28) and (29) into (19)-(21), terms of like 
order are collected. To the first order, one gets 

LAi = - B i , MBi = &', NCi = 0, (30) 

and to the second order 

LA2 = -Bh (31o) 

MB2 = d' + iaHUi"Ai + Vi"Ai' + iaKUiBi + ViB/ (31b) 

NCz = -iaR Pr Ti'Ai - Pr [(12/5)r i + (8/5)^']Ai' 

+ iaR Pr Z7iCi + Pr ViCi', (31c) 

where the operators are defined by 

L = Z>2 - a2, M = £ 2 - F„£> - (a2 - i S R), (32) 

j\T = D2 - Pr FmI> - ( a ' - i S R Pr), Z> = b/bri, (33) 

There are three independent solutions of equations (30) and 
(31) that vanish at infinity. These are designated by subscripts 
1, 2, and 3. For the first set of solutions 

<pi = e-<"> + e-«•>() [max ( e H ^ N e - ^ ^ l i ) ] , 

to, = (bi + fe2^)e-(« + n/»l)'! + (b3 + biV)e-^ + vr\v<°0i, 

Ti = (h + fee^e-^ + Pr iy j )^ 

for the second set 

(34) 

ipi = J 
Y 7 2 - a2 

and for the third set 

a>2 = e-™, T2 = 0[e-( ' i '+P r lT '»IH], (35) 

<P3 
[X/(X2 - a 2 ) ]e~ x " 

(MVc | - i S R)(Pr 

- X e - ^ 

1) 

co3 = 
0\va i S R ) ( P r - 1) 

T3 ; — ' * ' ) , 

in which 

7 = |F„|/2 + V~VJ/4 + a2 - i S R, 

X = |7„| Pr/2 + VVJJV/4~+ a2 - i STRPT. 

(36) 

(37) 

(38) 

The second and third sets of solutions and the leading term of ipx 

come from equations (30), whereas the other terms of the first 
set come from equations (31). The foregoing solutions degen
erate for Pr = 1, and special solutions are required for this case. 
The 6i, . . ., b6 of equations (34) are abbreviations for rather 
lengthy expressions which contain the A , \Vj\, Pr, a, R, and S. 
I t can be shown that the A„+1/Aa, Bn+i/Bn, Cn+l/C„ of equation 
(29) decrease exponentially as ?? approaches infinity. 

Consideration may now be given to a comparison of the relative 
rates at which the disturbance flow and the basic flow decay at 
large JJ. For the velocity and temperature fields of the basic flow 

Q, ( e - l ^ h e - P r | y „ | , ) ; -Pr|7„|„ (39) 
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whereas the large-?? solutions for the disturbance flow are given by 
equations (34), (35), and (36). With respect to the exponents 
appearing in these equations, it is relevant to note that the real 
part of X > Pr I V„\ and the real part of 7 > \V„\, provided that 
the real part of a2 is positive (Haaland [2]). The comparison of 
decay rates has to be made separately for Pr > 1 and Pr < l.2 

When Pr > 1, exp (-\Va\v) > exp ( - P r \Va\v)- Then, as 

co max (e 
— r^j ~-

0 

1 e_?"> e -~(a + lF»l''>) 
-\V„\r, •0, 

max (e -x., , e 
-(a + Pr lTcl)^ g-CT + Prl^ooDl) 

D-Pr|K„h 

(40a) 

-0. (406) 

0) 
— 
u 

or <° -~*0, 
T 

T 
— 
it 

or 
T 
--"0, 
T 

Equations (40a) and (40b) indicate that the disturbance vor
ticity co decays faster than the basic flow vorticity and that the 
disturbance temperature r decays faster than the basic flow tem
perature. Tha t is, the disturbances are "bottled in" or con
tained within the respective boundary layers of the basic flow. 
I t is readily shown that it is the transverse velocity terms V{bu/ 
by) and V(br/by) which are responsible for the bottling effect. 
If these terms were omitted, the bottling effect would not be 
exhibited by the solution. 

When Pr < 1, exp ( —Pr |F„,|TJ) > exp (— |P̂ o<.|i7). By proceed
ing as above, one finds 

(41) 

so that the disturbances are, once again, bottled in by the inward-
directed transverse velocity. 

Solution of the Eigenvalue Problem 
As was noted earlier, the solution method involves the use of the 

large-?? solutions for ip, co, and T in conjunction with numerical 
integration of equations (19)-(21) at small and intermediate 
values of ??. The details of the solution method are described by 
Haaland [2, 3], and therefore only an outline will be presented 
here. 

The large-?? solutions furnish the starting values for the nu
merical integration of (19)-(21), which proceeds inward from 
some large value of t) (=??*) toward the centerline of the plume 
(?? = 0). Examination of the large-?? solutions, equations (34)-
(36), indicates that for given values of Pr, a, R, and S, numerical 
values of <p, co, and r can be obtained at ij*. With <pi(ri*), coi(?j*), 
and TI(IJ*) (and their derivatives) as starting values, equations 
(19),-(21) are numerically integrated inward to 77 = 0. Then the 
integration is repeated using <p2(??*), co2(??*), and 7-2(??*) as the 
starting values. Next the integration is carried out once again 
starting with ip3(??*), co3(??*), andr3(??*). 

The three solutions that are generated in this way are summed 
up, with each solution being multiplied by a constant. These 
constants are determined by applying equation (23) and two of 
the three boundary conditions at rj = 0 as stated in equation 
(22). The remaining boundary condition in (22) is satisfied only 
when R and S are eigenvalues. The initial guesses for R and S 
are refined iteratively by applying the Newton-Raphson 
method to the unsatisfied boundary condition. Variational 
equations with respect to R and S are found by differentiation of 
(19)-(21). The solution of the variational equations with ap
propriate boundary conditions provides the values for the coef
ficients in the equations for the increments AR and AS. 

Results and Discussion 
The numerical solutions for the plume were, in the main, car

ried out for a Prandtl number of 0.7. This is the Prandtl number 

2 The Pr = 1 case yields the same general conclusions as the other 
cases. 
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Fig. 1 Neutral stability and amplification contours; wave number-
Reynolds number diagram (Pr = 0.7) 

of air and other gases. For comparison, some additional solu
tions were obtained for Pr = 6.7, which corresponds to liquid 
water. The primary presentation of results will be for Pr = 
0.7, and the comparison of the results for the two Prandtl num
bers will be made at the end. 

The neutral stability curve and several amplification curves are 
presented in Fig. 1. In the figure, a.,, which is the real par t of the 
wave number, is plotted against the Reynolds number R. The 
curves are parameterized by ait the imaginary part of the wave 
number, where at = 0 corresponds to neutral stability and in
creasingly negative values of a , correspond to greater amplifica
tion of the disturbance. In addition to the solid lines, which de
pict the present results, there is a dashed line which represents 
the neutral stability curve computed by Pera and Gebhart [4] on 
the basis of the conventional formulation in which terms due to 
the ^-dependence of the basic flow are omitted. The abscissa 
variable R is related to the commonly encountered Grashof 
number Gr by 

Gr = gPT(T* - T^x3/?* = RV64, (42) 

where T* = T*{x) is the temperature at the centerline of the 
plume. 

Examination of the figure shows that the present neutral sta
bility curve exhibits both upper and lower branches and a 
minimum (i.e., critical) Reynolds number R = 12 (Gr = 324).3 

On the other hand, the neutral stability curve from the analysis 
which omits the terms due to the ^-dependent basic flow exhibits 
neither a minimum value nor a lower branch. Clearly, the 
accounting of the ^-dependence of the basic flow has a profound 
effect on the neutral stability characteristics. Amplification 
curves are not presented by Pera and Gebhart, so that no ap
praisal can be made as to how the .r-dependence affects the 
amplification characteristics. 

Further examination of Fig. 1 indicates that the upper branches 
of all the curves tend to rise with increasing Reynolds number. 
The results of the inviscid solution, to be described later, show 
that for each a, there is a limiting value of ar as R approaches 
infinity. Therefore, if Fig. 1 were to be extended to larger 
Reynolds numbers, the upper branches of all the curves would 
tend to level off. 

Although the ctr, R diagram is the most common vehicle for 
presentation of stability results, it has the drawback that a, is 
not a readily measurable quantity. Furthermore, the ar, R 
diagram gives no indication as to which disturbance frequencies 
are most strongly amplified. In recent papers, stability informa
tion has sometimes been presented using a dimensionless fre-

Fig. 2 Neutral stability and amplification contours; Strouhal number-
Reynolds number diagram (Pr = 0.7) 

quency which is equivalent to the Strouhal number defined by 
equation (13). The neutral curve and the amplification con
tours for the present problem are presented in an S, R diagram 
in Fig. 2. These curves are generally similar in shape to those of 
the just-discussed ar, R diagram. 

At the right-hand margin of Fig. 2 is an array of dash-line seg
ments. These lines represent the R -*• °° limits for the upper 
branches of the S versus R curves and are obtained from the in-
viscid solutions. The «j parameterization of the dash-line seg
ments is in the same order as the parameterization of the S versus 
R curves. I t is seen that at the largest R value of the figure, 
the upper branches are still substantially below their respective 
limits for R —»• co. 

Although the Strouhal number contains the circular frequency 
jS of the disturbances, it also contains the a:-dependent quantities 
U* and h. Consequently, the Strouhal number corresponding to 
a disturbance of fixed frequency /3 varies as the disturbance 
moves in the streamwise direction. I t can easily be shown with 
the aid of equation (13) and of the Appendix that S ~ a;1/' or that 
S ~ R1/3. Correspondingly, in Fig. 2, the path of a disturbance 
of fixed frequency moving in the streamwise direction would be a 
line S ~ R'/». 

To facilitate a more informative examination of the role of fre
quency, it is advantageous to devise a presentation where the 
path of a disturbance of fixed frequency is more easily followed. 
To this end, we introduce a characteristic time t* defined as 

t* 
\9PT Q J 

!A 
(43) 

where Q is the energy per unit time and unit length imparted to 
the fluid by the horizontal line source of heat. I is an integral 
defined by equation (A5), the value of which depends on the 
Prandtl number (e.g., for Pr = 0.7, / = 1.245). From equation 
(43) it is seen tha t t* is a constant for a particular experiment. 
With the definition of t*, it is readily shown that 

fit* = S/R'/J. (44) 

3 At the low Grashof numbers in the neighborhood of the critical 
point, the basic flow boundary-layer model may be somewhat 
inaccurate. 

This equation enables the S, R diagram to be rephrased as a 
diagram of fit* versus R, the end result being shown in Fig. 3. 

In this figure, the path of a disturbance of fixed frequency 
which moves in the streamwise direction is a horizontal line. 
The extent to which a disturbance is amplified can be gauged by 
examining the amplification curves that are cut by the horizontal 
line that corresponds to the frequency of the disturbance; the 
more negative the at, the greater is the amplification. On this 
basis, it is expected that the most amplified frequencies would lie 
in the range/ft* = 0.02 to 0.03. 

The dashed lines shown in the figure correspond to frequencies / 
(=j3/2w) tha t pertain to the experimental conditions of Pera and 
Gebhart [4]. The experiments were performed in air at a heat
ing rate Q of 58.6 Btu/hr-ft. These authors found that greatest 
amplification occurred at disturbance frequencies around 3 Hz, 
and as seen in Fig. 3, this is in excellent accord with the present 
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Fig. 3 Neutral stability and amplification contours; frequency-Reynolds 
number diagram (Pr — 0.7) 

100 -

Fig. 4 Amplification of a disturbance of fixed frequency, fit* — 0 .025 
(Pr = 0.7) 

results. For frequencies greater than 12 Hz, Pera and Gebhart 
indicated that they were unable to detect amplified disturbances. 
Although Fig. 3 indicates that disturbances between 12 Hz and 
14.3 Hz may be amplified, the extent of the amplification is so 
small tha t detection may not have been possible. 

I t is of interest to estimate the amplification experienced by a 
disturbance of fixed frequency as it moves in the streamwise 
direction. In view of the fact that the disturbance may en
counter a range of a , values, a logical generalization of the .-r-de-
pendent factor in equation (10) is 

exp I i I adx ] = exp I i I a,dx I exp I — I o;, •dx 

(45) 

where xi is the streamwise location at which amplification begins. 
The second exponential term on the right-hand side of equation 
(45) can be regarded as the x-dependent amplitude A of the dis
turbance (for example, Dring and Gebhart [7]; Jaffe, Okamura, 
and Smith [8]). In terms of the dimensionless variables relevant 
to the plume problem 

A = exp - ( 5 / 1 2 ) CR 

I atdR 
J Ri 

(46) 

The amplification factor A has been evaluated as a function of 
the Reynolds number R for the disturbance frequency I3t* = 
0.025. As is seen in Fig. 3, this frequency lies in the band of most 
amplified frequencies. The variation of A with R (r^x3^) is 
plotted in Fig. 4. The figure shows that the disturbance ampli
fies rather slowly at first, but then increases extremely rapidly. 
For example, at II = 100 (Gr = 1.6 X 106), the disturbance 
amplitude is about 300 times its initial amplitude. 

The inviscid model represents the limit of the disturbance 
equations as R approaches infinity. Numerical results for the 
inviscid case were obtained by solving equation (24) for Pr = 0.7 
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Fig. 6 Neutral stability curves for Pr = 0.7 and 6.7 

and are shown in Fig. 5 as solid lines. The figure contains curves 
of a, and a,, respectively referred to the left- and right-hand 
ordinates, plotted as a function of the Strouhal number. The 
curve of a, vs. S gives the R —»• <» limits of the «; contours of Fig. 
2, with the portion to the left of the maximum corresponding to 
the lower branches and the portion to the right of the maximum 
corresponding to the upper branches. The largest value of — at 

is about 0.2. 

In addition to the ar results from the inviscid solution, Fig. 5 also 
contains the ar versus S variation along the neutral curve. The 

two otr curves are coincident at S = 0 and S = 0.605, where the 
lower and upper branches of the neutral stability curve approach 
R = co. However, the spread between the ar curves is not large 
at most other S values, even though the local Reynolds number on 
the neutral curve may be small. From the ar vs. S curve, one 
may evaluate the dimensionless wave speed c = &/ar. 

All of the results thus far presented have been for Pr = 0.7. 
In Fig. 6, a comparison is made of the neutral curves for Pr = 0.7 
and Pr = 6.7. These Prandtl numbers correspond respectively 
to gases (in particular, air) and to liquid water. Both curves 
have the same general shape. In particular, each exhibits a 
minimum Reynolds number and a lower branch, thereby indicat
ing that the findings of Fig. 1 are not confined to a specific Prandtl 
number. Although the upper branches of the two neutral curves 
are substantially different, the minimum Reynolds number and 
the lower branches are nearly coincident. 
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A P P E N D I X 

The Basic Flow Solution for the Plane Plume 
The velocity and temperature fields for the plume can be ex

pressed in the forms indicated in equations (11) and (12). In 
particular (for example, see Gebhart, Pera, and Schorr [9]), 

2 V 2 Gr1/" = R = G, (A7) 

U*(x) -• 

T*(x) - T„ 

h(x) 

v \pcpI/ 

\J&v*gPT \pcplj 

~ Igpr \Q ) 

(Al) 

(A2) 

(A3) 

ti(n) = F' V(V) = [ ( 8 / 5 ) ^ ' - (12/5)*] f(V) = H (A4) 

in which F and H are functions of r). In the foregoing, Q is the 
energy per unit time and unit length imparted to the fluid by the 
horizontal line source and 

7 = 2 J F'Hdrj. 
o 

(A5) 

The quantity T*(x) is the temperature at the centerline of the 
plume. 

From an evaluation of the defining equations (12) and (13) for 
R and G using (A 1)- (A3), it f oliows that 

R = G. (A6) 

Furthermore, it is easily shown that the conventional Grashof 
number Gr is related to G and R by 

where 

Gr 3T(T* - Tm)x3/v2 

(A8) 

The velocity and temperature functions F and H are obtained 
by solving the coupled system 

F'" + (12/5)FF" - (4/5)2?'• + H = 0, (A9) 

H> + (12/5) Pr FH = 0. (AlO) 

subject to the boundary conditions 

F(Q) = F"(0) = 0, ff(0) = 1, * • ' ( „ ) = 0. (Al l ) 

The conditions H'(0) = 0 and ff(°=) = 0 are automatically 
satisfied by the solution. Once a solution of equations (A9) 
and (AlO) is obtained, then the quantity I of equation (A5) can 
be evaluated. 

For the numerical solutions, the condition F' — 0 at infinity is 
usually applied at a finite value of ij = rj*. A more accurate 
condition which is equivalent to a first-order asymptotic solution 
of (A9) and (AlO) can be derived as follows (Haaland [2]). 
From (AlO), to first order 

H = - f f ' / [ ( 1 2 / 5 ) P r F J . (A12) 

Substitution of this into the first-order equivalent of (A9) gives 

F'" + (12/5)FJF" - #71 (12 /5 ) Pr F„] = 0, (A13) 

which, after integration and substitution of the local value F 
instead of Fa, becomes 

F" + (12/5)FF' - jy/[(12/5) Pr F] = 0. (Al3o) 

This condition can be applied at a smaller value of ij* than the 
more inaccurate condition F'(T)*) = 0. Use of equation (Al3a) 
permitted the use of the Newton-Raphson method (with full 
second-order convergence) in finding the missing starting value 
at r\ = 0. 

Asymptotic solutions valid at large values of r) can be de
veloped as follows: 

F(v) = F„ + A exp [-(12/5)F„rj] 

+ A exp [ - (12/5) Pr F^], (A14) 

H = D3 exp [ - (12/5) Pr TO?], (A15) 

where 

A = [ ( 1 2 / 5 ) P r F „ ] 3 ( l - l / P r ) A . (A16) 

The constants Fm, D\, Di, and Dz were evaluated by employing 
the numerical solutions of equations (A9) and (AlO). 
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Conductance of Packed Spheres in Vacuum 
An analytical study is presented for the heat transfer through the solid phase of a packed 
bed of spheres bounded by two infinite plane surfaces of different temperatures. The 
prediction of the conductance is based on the constriction resistance for spheres in con
tact. Both exact and approximate equations are derived for solid, hollow, and coated 
spheres and for several regular packing patterns of different void fractions. Compari
sons with the available experimental data indicate that the theory is satisfactory over a 
wide range of applied load and system parameters. 

Introduction 

L I HEHMAL INSULATION has long been a subject of 
great importance in cryogenic applications [1, 2] . 1 Evacuated 
multilayer insulation systems [3], though most effective ther
mally, have certain limitations in application. Besides the dif
ficulty of installation around bodies of complex geometry and 
the highly anisotropic thermal behavior near penetrations, the 
thermal performance of such a system is extremely sensitive to 
compressive load. These factors result in a low predictability of 
the thermal performance of the multilayer insulation. 

A new concept for high-performance insulation involves the 
use of packed hollow dielectric microspheres (20 to 200 fi in 
diameter) coated with low-emittance metallic films (about 400 A 
thick). The space inside a microsphere is commonly filled with 
some residual gas at reduced pressures (microspheres supplied by 
3M Co., Minneapolis, Minn., contain S0 2 at approximately 0.3 
atm), but for all practical purposes it can be regarded as a 
vacuum. Packed spheres provide good mechanical strength to 
stand compressive loads as well as high constriction resistance 
against heat conduction. The use of hollow spheres reduces, in 
addition to weight, the system heat capacity, so that it consumes 
less cryogen and time in the coo'ldown process. The low-emit
tance coating shields against radiative transfer. Preliminary 
thermal tests [4] show that this new type of insulation is com
petitive thermally with multilayers; in addition, it is lightweight 
and easy to install and possesses many other advantages. 

The major heat transfer mechanisms in packed spheres or 
powder insulation under the evacuated condition consist of the 
surface radiation transfer across the voids and the constricted 
conduction through the contact surface of packed particles. Ex
tensive experimental results on heat transfer in powder insula-

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division of THE AMERICAN 

SOCIETY or MECHANICAL ENGINEERS and presented at the ASME-
AIChE Heat Transfer Conference, Atlanta, Ga., August 5-8, 1973. 
Manuscript received by the Heat Transfer Division September 21, 
1972. Paper No. 73-HT-l 

tions have been accumulated, and formulas for correlations and 
predictions have been proposed [1, 5-7]. These formulas are, 
however, mostly empirical in nature, due to complex geometry 
and radiation-conduction coupling. As part of a general funda
mental research program on heat transfer through microsphere 
insulation, the present investigation is concerned with a theoreti
cal analysis of conduction contributions. The specific objective 
is to establish an explicit functional relationship between the 
thermal conductance of packed spheres and fundamental system 
parameters such as the imposed thermal and load conditions, the 
geometric parameters (e.g., sphere diameter, shell thickness, 
packing configuration, etc.), and the thermal as well as mechani
cal properties of the constituent particles. 

Analysis 
Physical Model. Under the present considerations, heat can be 

conducted from one sphere to the other only through the contact 
interface. Thus from one sphere to another the conduction 
process is characterized by three series-connected thermal re
sistances, namely the macroscopic constriction resistance due to 
the contraction of conduction passages, the microscopic constric
tion resistance due to surface roughness at the contact area, and 
the film resistance due to surface contamination. In general, for 
spherical contact, the macroscopic constriction resistance is the 
predominant one, but the other two may become appreciable 
when the surface is rough and heavily oxidized. In the present 
analysis, only the macroscopic constriction resistance is considered. 

Previous analysis [8] on macroscopic constriction resistance 
across spheres involves the replacement of the sphere by a con
ductor of infinite extent between two parallel planes with certain 
appropriate boundary conditions. The approximate analysis 
would not hold well for a hollow or coated sphere, especially when 
the thickness of the shell is of the same order of magnitude as the 
radius of the contact. A more fundamental analysis is presented 
here for the constriction resistance of spherical contacts involving 
three different types of spheres, namely solid, hollow, and com
posite (e.g., metal-coated). 

Two basic assumptions are made in the present analysis. 
First, the radius of the circular contact area is given by the 
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INSULATED 

Hertz relation for elastic contact of two smooth spheres of radius 
T„ pressed against each other under collinear force F: 

rc = [i^'-r ( i ) 

where [J, and E are Poisson's ratio and Young's modulus of the 
material, respectively. The relation is valid as long as the solids 
remain linearly elastic and rc <?; r0, ra being the radius of the 
sphere. A similar analysis for hollow or coated spheres has not 
been developed, but for thick-walled spheres the above relation 
should be a good approximation. The second assumption is that 
the contact surface has a uniform heat flux and the rest of the 
surface is insulated. The reasons for assuming a uniform heat 
flux instead of a uniform temperature are: either condition 
represents only an idealization of the actual situation; the result 
for thermal-constriction resistance should be rather insensitive to 
either condition (more discussion on this later); and the uniform-
heat-flux condition results in a much simpler analysis. 

Constriction Resistance of a Single Sphere. T h e physical sy s t em 
under consideration is shown in Fig. 1. The temperature field 
inside the sphere must satisfy the steady-state heat conduction 
equation 

/ 5 T \ 1 5 / 5 T \ 
[ r 1 " ) + ~„ —„ I sin 0 —- I = 0 (2) 
\ i>r J sin 8 50 \ 50 J 

as well as the boundary conditions at r = r0 

h [ ~ \ = qo (0 < 8 < 80) o„-
= 0 (0„ < 6 < IT - do) 

= -q„ (IT - Bo < 6 < TT) 

(3) 

where 80 = s i n - 1 (re/r0). 
For hollow spheres, an additional boundary condition must be 

imposed at the inner surface (r = r<). Since at cryogenic tem
peratures the radiant energy transfer within the inner space of 
the hollow sphere is much smaller than the conduction contribu
tion, the inner surface can be regarded as adiabatic: 

h 
\*r)rt 

(8 everywhere) (4) 

For composite spheres, 1\ (for 0 < r < r.) and T0 (for r> < r < 
r0) must satisfy 

/ 52'A 1 5 / „i>TA 
(?'2 — ) + ~n —n ( sin 8 - i I = 0 
\ dr ) sin 8 dB \ 50 / 

-(f) 
(i = i, o) (5) 

= 9» 

= 0 

(o < 0 < e„) 

To 

(Bo < 8 < TT - 80) 

= -q„ (TT - 80 < 0 < TT) 

Ti (r = n, 6 everywhere) 

/di\\ / a r A • 
K,o I —— I = ksi I —— I (0 everywhere) 

\ Sr )n \ 5r / r>. 

(6) 

(7) 

(8) 

-Nomenclature-

A,A' 

n-l, Bl, 

Co 

D 
E 
F 

F„ 
0,0' 

k 
h 
L 

defined after equations 
(29). and (30), respec
tively 

contact area 
defined after equations 

(27) and (28), respec
tively 

arbitrary constant 
constants, equations (12), 

(13), and (14), respec-
. tively 

sphere diameter 
Young's modulus 
contact force 
vertical force 
defined after equations 

(32) and (33), respec
tively 

conductance 
solid conductivity 

bed thickness 
number of particles per 

unit area 
number of particles per 

unit length 

p 

Pi 

Q-
Q 

r 
To 

Ti 

r0 

R 
R' 

SR, SF, SJ, ) 
SP, SN ) 

t 
T 
T 

AT 

Vs 

~ 

= 

= 
= 

= 
= 
= 
= 
= 
= 

= 
= 
= 

= 

externally applied pres
sure 

Legendre polynomial of 
degree i 

heat flux 
total amount of heat 

through a sphere 
radial coordinate 
contact radius 
inner radius 
outer radius 
constriction resistance 
modified constriction re

sistance 

parameters, equations 
(20), (48), (49), (51), 
and (56), respectively 

wall thickness 
temperature 

mean temperature 
temperature difference 

between the heat sup
ply and removal re
gions 

sphere volume 

w 
X 

Xa 

<X2n-l, P271-1 

Subscripts 

a, a';) 
b b';> = 

c, c' \ 
i, ij = 

ss B 
Bo 
X 
M 

p s 

= sphere weight 
= cos 0 
= COS do 

= defined after equations 
(31) and (34), respec
tively 

= solid fraction 
= polar angle 
= s in - 1 (rc/r„) 
=1 /Cso//Cgi 

= Poisson's ratio 
= mass density 

pairs of heat supply and re

moval regions 

indices referring to the type of 

l = 

0 — 

sphere and the packings; i — 
1 for solid, 2 for hollow, and 
3 for composite spheiej j = 1 
for simple cubic, 2 for body-
centered cubic, and 3 for 
face-centered cubic packing 

inner 
outer 
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By the method of separation of variables, solutions for the tem
perature in the solid, hollow, and composite spheres, respectively, 
are obtained as 

Ti(r, 0) = C„ + XI C^PnCcos 0) (0 < r < r„) (9) 
n = l 

T2(r, 0) = C*„ + 

T3(r, 0) = C„ + 

P„(cos 0) 

(n < r < r„) (10) 

ra + X(ra + 

X P„(cos 0) {n < r < r0) (11) 

where X = hao/k,i, Pi is the Legendre polynomial of degree i, Co 
is an arbitrary constant, and C\, C2, and Cs are constants deter
mined by the outer boundary condition and the orthogonal prop
erties of Legendre polynomials. These constants are zero when 
n is an even integer, but when n is odd, they are given as 

Ci = 
2n + 1 WH LPn (x)dx 

2n + 1 (~*—\ T -
1) W 

(12) 

(13) 

(X - l)(n + 

n + \(n -f-

(x)dx (14) 

where x0 = cos 0O. Equations (12)-(14) can be put into a more 
computable form when the following relation 

1/ Xo 

Pn{x)dx 
1 

2n + 1 
ft-lfc) - Prt+lfe)] (15) 

is used for the integral term. 
By definition, the thermal resistance of the sphere is given by 

R = {Ta~ Ta'VQ (16) 

where Ta and 2V are the respective mean temperatures of the 
two contact regions where heat is supplied and removed across the 
contact area Ac 

T j T{r0,d)dA f 
J Ac I J A, 

dA (17) 

Q is the total amount of heat passing through the sphere, and for 
rc/r0 « 1 

qairr0' (18) 

When the packing pattern of spheres is not simply cubic, there 
exist more than a pair of diametrically opposed contact regions. 
The calculation of mean temperatures is not simple, and a modi
fied thermal resistance B' is introduced as 

R' = [T(r0,Q) - T(r„,T))/Q (19) 

The two thermal resistances can be related by a numerical factor 
SR 

It = SnR' (20) 

where SR depends on the contact radius and the wall thickness. 
From the solutions given in equations (9), (10), and (11), 

closed-form expressions of R and R' can be established as in the 
following: 

for solid spheres: 

304 / A U G U S T 1 9 7 3 

Ri = A 2_, Btn-i 

7 1 = 1 

for hollow spheres: 

CO 

Ri = A X -Bjn_1a2n-i 
n = l 

R2' = A' X Bin-i'am-i 
n = l 

for coated spheres: 

Rz ~ G 2_j -02n-lP2n-l 

B = l 

t o 

PV — G' 2_i ^i»-i'ft»-i 
n = l 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

where 

Bin-l — 
(2w - l)(4n - 1) 

[Pm-i{x0) - PUxo)]2 (27) 

Bzn-l — 
1 

In - 1 
[P2n-2(x„) - PUx,)] (28) 

A = 
2r„ 

Trksrc
2(l — s0) 

2r„ 
A' = 

irfarc
2 

« 2 n - l 
1 + [(2w - l)/2n](ri/r0y

n-i 

G = 

(? 

l - (n-Ao)4"-1 

2r„ 

7r/cSorc
2(l — »„) 

2r0 

7r/Cso?'o 

P2B-I — 
1 + [(X - l)(2w - l)/(2re - 1 + 2raX)](nA.)4"-1 

1 - [(X - l)(2w)/(2n - 1 + 2nX)](ri/r„)4»-1 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

Conductance of Packed Spheres. The conductance of packed 
spheres depends on the packing pattern. For spheres of uniform 
size, the three basic regular arrangements are simple cubic, face-
centered cubic, and body-centered cubic, Fig. 2. The void frac
tion of an actual bed (i.e., randomly packed spheres) is normally 
less than that of the simple cubic but greater than that of the 
other two close packing patterns. The regular packing patterns 
provide convenient physical models for analysis of the conduction 
transport in packed spheres. The analysis would illustrate the 
importance of various parameters in the actual bed, such as the 
porosity, the contact pattern, the applied load, and the physical 
properties of the sphere material. For a regular packing, each 
layer of the arrangement is isothermal normal to the direction of 
the heat flow, and each particle has an identical contact pattern 
with its neighboring particles, Fig. 2. Therefore the constriction 
resistance for each particle should be the same. The thermal re
sistance of a regular packed arrangement can thus be considered 
as a group of parallel resistances, each composed of a series of the 
resistances of a single particle. Hence the conductance of 
the medium is, by definition, 

ha — 
Na J _ 
N, Rij 

(35) 

where Ra is the constriction resistance of a single particle. The 
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Fig. 2 Regularly packed spheres under compressive loads 
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DA/3 
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D/2 

D 

BODY-CENTERED CUBIC FACE-CENTERED CUBIC 

Fig. 3 Thermal-contact patterns of different regularly packed spheres 

first subscript refers to the type of sphere (i = 1 for solid, i = 2 
for hollow, and i = 3 for composite sphere), while the second sub
script refers to the packing pattern (j = 1 for simple cubic, j = 2 
for body-centered cubic, and j = 3 for face-centered cubic). Nt 
and Na are the number of particles per unit length and per unit 
area, respectively. 

Of all the physical contact points of a single particle, only those 
in contact with other particles of a layer above and below are of 
interest to the thermal analysis, because each layer of a regular 
arrangement is isothermal, Fig. 2. These thermal-contact re
gions can be grouped into pairs. Each pair is composed of a heat 
supply region on the upper hemisphere and a heat removal region 
on the lower hemisphere. These two regions are diametrically 
opposite to each other. For the simple cubic arrangement, 
there is only one pair of such contact areas. In this case R;L is 
the same as Ri. In the. case of face-centered cubic arrangement, 
by symmetry, the six thermal contact areas on a sphere can be 
grouped into three pairs: a-a', 6-6', and c-c', Fig. 3. The tem
perature difference and the heat flux will be the same for each 
pair. For simplification, Rij' is to be determined. The tem
perature difference at each pair due to the total heat flux of all the 
pairs can be obtained from the result of a single pair by the 
method of superposition. For instance, in the case of a solid 
sphere, the temperature difference at 6-6' and c-c' due to the heat 
flux at a-a' alone is the same and is equal to 

(AT)u- = ( A n v = 2 f ; C W P „ ( 7 2 ) (36) 
n = l 

The temperature difference at each pair due to the heat flux of all 
the pairs is 

(AT) = 2 jh Cl}y[P„(l) + 2P„(V*)] (37) 
7 1 = 1 

Hence for solid spheres 

flia' = VsA' Y ft»-i'[l + 2P„„_1(V2)] (38) 
T I = 1 

for hollow spheres 

& ' = VaA' Y, Bm^'atn-Al + 2P2B_1(1A)] (39) 
7 1 = 1 

for coated spheres 

Bm' = l/S' Y £2»-i'ft»-i[l + 2P2n_I(
1A)] (40) 

71 = 1 

In the case of the body-centered cubic arrangement, there are 
four pairs of thermal contacts, Fig. 3. The corresponding equa
tions for Ri2 for solid, hollow, and coated spheres are, respectively 

"Rn = 'AA' Y, B*,-i'[l + JWViOJ (41) 

R22' = lAA' Y, £2»-i'a2„_i[l + Pto-d1/,)] (42) 

R32' = '/£' Y 5 2 » - i 7 W l + ?2„-i(Va)] (43) 
7 1 = 1 

Results and Discussion 
For dielectric spheres with metal coating, the metal conduc

tivity is three orders of magnitude higher than that of the dielec
tric. The expressions for R3 and R3' are reduced to those for 
hollow spheres. When the wall thickness t of a hollow sphere is 
small in comparison with its outer radius )'„, the two parameters 
re/r„ and t/r„ in equations (23) and (24) can be decoupled 
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Bin-l 

In 
(44) 

(45) 

10* 

Predicted values of the constriction resistance of a hollow 
sphere from equations (44) and (23) as well as the modified con
striction resistance from equations (45) and (24) are shown in 
Figs. 4 and 5. The curve t/r0 = 1 corresponds to the case of a 
solid sphere. I t should be noted tha t a thick-walled sphere 
(t/r0 > 0.1) has about the same resistance as a solid sphere. At 
reduced wall thickness, the resistance is inversely pr-oportional to 
t, as indicated by equations (44) and (45). The result for t/r„ = 1 

also reveals that the series (1 - x„)-1 J^ B*-i and 2 ^ .B21.-1' 
7 1 = 1 

in equation (21) and (22) can be treated as a linear function of 
To/to, so the constriction resistance of a solid sphere can be ex
pressed in the following explicit form: 

0 53 
Ri = — - (re/r„ < 0.11 

K„rc 

Bi' 
0.64 

(rc/r„ < 0.1) 

(46) 

(47) 

If the constriction resistance of the sphere can be considered 
as twice the resistance of the circular contact area on a semi-
infinite body [7, 8], then it is equal to l/JcBrc for an isothermal 
contact area and is equal to 0.54//csr„ when the heat flow on the 
area is constant. The resistances obtained with these two dif
ferent boundary conditions for spherical particles differ by less 
than 20 percent, depending on the contact radius. However, for 
small rc/r0, as in most practical cases, the difference is much 
smaller [7]. The agreement between the present and the pre
vious analysis is consistent with the assumption that the re
sistance of a solid sphere is insensitive to the precise details of the 
boundary conditions for small contact area. 

For the special case of a thin-shell sphere, the heat flow can be 
considered to be one-dimensional, having two isothermal contact 
regions diametrically opposite to each other. I t can easily be 
derived that in this ease R = (l/irtk3) In [1/tan (0„/2)]. A com
parison between this simplified solution and the result of the two-
dimensional constant-flux boundary analysis indicates that their 
difference is less than 5 percent for (t/r„) = 1 0 - 3 and rc/r0 ranging 
from 10~3 to 10~2. This agreement further confirms the validity 
of the constant-flux boundary assumption for hollow spheres. 

I t is of interest to see how the present analysis can predict the 

10 "i r "1 TT" 

Fig. 4 Constriction resistance of a sphere 
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"i r 

8 9 | 0 -2 

Fig. 5 Modified constriction resistance of a sphere 

conductance of packed spheres from the fundamental system 
parameters. Two limiting cases of compressive forces are to be 
considered: (a) the system is under an externally applied load 
such that the contact force is independent of the force due to 
sphere weight and (b) the system is under no externally applied 
load so the contact force is mainly due to the sphere weight. For 
different packing patterns, the contact force F can be related to 
the vertical force Fv by a numerical factor SF that expresses Fv in 
the direction of F. This vertical force can be the external load 
in case (a) or the weight of the spheres above the contact in case 
(b). Hence, for case (a) 

F = SF Na 
(48) 

To obtain an explicit form for the conductance of packed solid 
spheres, certain simplifications must be made for the constituent 
resistances Ra' and Rls'. Actual calculation of the resistance has 

shown that the second term 

Pta-iCVa) 

2 £ i ^ - i ' f t n - i O A ) or J ] 52„_,' 
. n = 1 n = 1 

in equation (38) or (41) is of the order of (rc/r„)2, while 

the first term is of the order of rc/r0. Thus for small rc/r„, 

Bu = SRSJR,' (49) 

where R / is given by equation (47). Sj is equal to 1, 1/i, and 1 /3 

iox j equal to 1, 2, and 3, respectively. Values of SR for solid and 
hollow sphere are presented in Table 1. From equation (35), 
there follows 

K\i — Op/C; •(W (50) 

where Sp is a constant depending on the packing pattern only 

1 *i6 
Sp = - ^ - (Na/Nt)(0.75SFro/Nay/* (51) 

Values of iV0l Nt, the solid fraction 8s, Sj, SF, SP, and SN (de-

Table 1 Values of SR for hollow and solid spheres 

tin 0.001 0.005 0.01 0.05 0.1 0.2 1 

0.001 0.9384 0.8726 0.8479 0.8230 0.8201 0.8191 0.8252 
0.002 0.9549 0.8955 0.8569 0.8071 0.8030 0.7984 0.8193 
0.004 0.9582 0.9263 0.8831 0.8171 0.8489 0.8447 0.8207 
0.006 0.9569 0.9380 0.9081 0.8664 0.8532 0.8236 0.8334 
0.008 0.9554 0.9431 0.9192 0.8732 0.8339 0.8395 0.8280 
0.01 0.9538 0.9453 0.9256 0.8588 0.8372 0.8415 0.8331 
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Table 2 Basic parameters for different packing patterns 

Simple cubic Body-centered cubic Face-centered cubic 

Nt 

N„ 

s, 
Si 

SF 

SP 

SN 

1 
2r0 

1 
4r„2 

0.524 
1 

1 

1.36 
0.452 

V3 
2r„ 

3 
16>-„2 

0.680 

V« 
V3 
4 

1.96 
0.713 

2V3>0
2 

0.74 

V. 
_ 1 _ 
VS 
2.72 
1.02 

fined later) for the three regular packing patterns are presented 
in Table 2. 

Closed-form expressions such as equation (50) for hollow 
spheres are not available. However, the conductance can easily 
be obtained by realizing that it is related to the constriction re
sistance and thus to the contact radius rc, which is expressed in 
terms of P and other system parameters, Fig. 6. 

Sample calculations are carried out for aluminized and un-
coated borosilicate glass spheres. Poisson's ratio and Young's 
modulus for glass are 0.22 and 5.51 X 1010 N/m 2 , respectively. 
The thermal conductivity for aluminum at 200 deg K is 2.37 
w/cm-deg K and the corresponding value for glass is 9.51 X 
10~3 w/cm-deg K. The large difference between the two con
ductivities suggests that a composite sphere, for example an 
aluminum-coated (500-A film) glass sphere of 100 /j, dia can 
be treated as a hollow aluminum sphere with t/r0 = 0.001. 
The predicted values of the conductance of three different packed 
spheres under compressive load, as well as the experimental data 
of Cunnington and Tien [4] for a 50 percent (by weight) mixture 
of 44- to 135-yU aluminized spheres and uncoated spheres, are 
shown in Fig. 7. The conductance of the mixture is expected to 
be between the predicted values of the aluminized and the un
coated spheres. In view of the variations in sizes and the uncer
tainties of the porosity and the wall thickness of the spheres in the 
test, the predictions of the present analysis did correlate well with 
the experimental data. 

For the case of zero external load, the force on each contact is 
equal to the weight of the spheres above it. The contact resist
ance decreases with increasing depth from the uppermost surface. 
If the weight of each sphere is w, the series resistance of a bed 
of thickness L is 

R» 
l.OftSj I 4r„2ff \ 

\3(1 - fi^Spw) 

/ i LNi 
'/. (52) 

The summation term can effectively be approximated by an in
tegral, especially where LN t is large. Considering Na resistance 
in parallel, the conductance of the bed is 

where 

(53) 

(54) 

Although equation (53) has been derived assuming solid spheres, 
it can be applied for thick-walled spheres. The conductance for 
thin-walled spheres can also be predicted by following similar pro
cedures as used in the case of compressive loading. The conduc
tance of thick-walled borosilicate glass spheres predicted from 
equation (53) is shown in Fig. 8. An order-of-magnitude com-
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Fig. 7 Conductance of aluminized and uncoated glass spheres under 
compressive loads 
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Fig. 6 Contact radius of borosilicate spheres under compressive loads 
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Fig. 8 Conductance of packed spheres under no external load 
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parison between the predicted values and the experimental data 
of aluminized spheres further establishes the reliability of the 
analysis. 

Concluding Remarks 
A method has been proposed to predict the conductance of dif

ferent spheres in terms of the fundamental system parameters. 
I t has been shown that the present proposal agrees well with 
available experimental data for the two extreme loading condi
tions. Two important points should be noted: first, the con
ductance in both loading cases depends on the thickness ratio 
t/r„, but not on the sphere diameter; secondly, it is directly pro
portional to the conductivity of the material. Finally, it should 
be pointed out that the conductance derived in this paper will be 
a fundamental parameter for a complete analysis of heat transfer 
through evacuated microsphere insulation when both conduction 
and radiation are important. 
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Transient Heat Conduction in 
Laminated Composites 
The layers are stacked parallel to the On the half-space x Jj 0 there is applied, 
at x = 0, a boundary temperature of y-periodicity conforming to the periodicity of the 
layered composite. The response is determined in the form of a normal mode expansion. 
A complex eigenvalue problem must be solved first, then the Fourier coefficients are de
termined from a biorthogonal expansion formula. The series converges to both the real 
and the imaginary parts of the prescribed input simultaneously. It is found that at low 
frequencies and not too small distances the static equivalent thermal constants kav, (pc)av 

are applicable also in the non-static problem. This ceases to be true at high frequencies. 

A, 
1 Introduction 

RIGOROUS SOLUTION to the problem of determining 

the temperature distribution in a composite (laminated) material 
subject to harmonic boundary excitation, where matrix and filler 
are stacked perpendicularly to the heat flow direction, Fig. 1(a), 
has long been available in the literature, see, e.g., [1, 2].2 The 
solution has the advantage of enabling one to establish equivalent 
thermal properties in terms of which the problem of the laminated 
slab may be solved (in the case of reasonable boundaries3), as for 
a slab of homogeneous material of properties 

/ca + 
1 - / " ] - ' 

hn J 
(Pc)av = f(p0)F + (1 - f)(pc)M 

" . . = kav/(pc)ay ( la) 

Here k, (pc), and K denote conductivity, heat capacity, and dif-
fusivi ty; / / ( l — / ) represents the volumetric ratio of the F (filler) 
material to the M (matrix) material. The dual problem, Fig. 
1(6), where the layers are lined up parallel to the heat propaga
tion direction, does not seem to have been similarly considered. 
In the present paper we plan to make up for the deficiency. We 
determine the thermal mode structure of the temperature diffusion 
problem where the boundary temperature excitation is harmonic, 
of frequency o> (Dirichlet's problem). We again establish 
equivalent thermal parameters. In fact, we shall demonstrate 

1 Presently with the Corporate Research and Development Center, 
General Electric Co., Schenectady, N. Y. 

2 Numbers in brackets designate References at end of paper. 
3 An unreasonable boundary would be one, for example, that en

compasses a long narrow strip containing two layers of F and one 
layer of M material. 

Contributed by the Heat Transfer Division for publication (without 
presentation) in the JOURNAL OP HEAT TRANSFER. Manuscript re
ceived by the Heat Transfer Division March 8, 1972. Paper No. 73-
HT-R. 
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Fig. 1 Laminated material stacked (a) perpendicularly and (b) parallel to 
the direction of heat flow 

tha t the appropriate low-frequency formulas are the familiar 
static (w = 0) formulas4 (when higher mode shapes don't domi
nate the boundary temperature distribution6 

fkF + (1 - f)kM (pc)nv = f(pc)F + (1 - f)(pc)M 

Xav = fcav/(pc)av (16) 

In Fig. 1 and in the sequel we use, for convenieace, a length scale 
whereby the stacking distance is assigned the value 27T. The 
problem presented by Fig. 1(6) is inherently more difficult than 
that presented by Fig. 1(a) (where invariably it is assumed tha t 
the boundary excitation has no ^-variation). Fig. 1(a) repre
sents a one-dimensional problem, whereas Fig. 1(6) represents a 
truly two-dimensional problem. 

Referring to Fig. 1(6), we seek the solution 

T = 
TM 0 <: y 5C (1 - /)TT 

TV (1 - /)rr «C y $ iv 

(2a) 

(26) 

4 The question of the range of validity of equivalent constants is 
raised with respect to elastic wave propagation in a layered medium, 
as in Fig. 1(6), in [3]. 

5 When higher modes dominate, then the additional restriction to 
large distances must also be made. 
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Fig. 2(a) Moduli R and phase angles 8 of the roots zn, zi of the eigen
value equation (11) for f = i/^l a ~ 1 / 2 , b — 5; dashed lines: by 
power-series expansion to vl terms (linear approximation); full lines: 
by numerical solution of eigenvalue equation; curves go wi th scale on 
left side unless otherwise indicated 

TM(x, y, t) = e-iaiWM(x, y) TF(x, y, i) = e~iatwF{x, y) 

(2c) 

of the temperature problem 

y = 0, TT: bT/dy = 0 

y = (1 - f)ir: TM = 2V 

x = OD: T = 0 x = 0 : 

(3o, 6) 

kMM'M/dy = kFbTF/dy (3c, d) 

T = e~iutX(v) &e,f) 

(we assume that temperature boundary conditions are prescribed 
at x = 0; x(y) represents the ^-distribution of this boundary 
temperature), governed by the equation 

A 5 X 
xj 3 4 / 

T = 0 j = M,F (4) 

or, equivalently, by 

(V2 + ipj)wj = 0 pj = CO/XJ 

since we restrict ourselves to harmonic excitation. 
In Section 2 we set up the complex eigenvalue equation (11). 

In Section 3 we establish the biorthogonal expansion formula 
(20). In Section 4 we relate our results for the zero-frequency 
case to the solution of Concus [4, 5]. In Section 5 we outline 
the solution of the eigenvalue equation (29) by Newton's iteration 
method in a form immediately adaptable to a digital computer. 

In Sections 6 and 7 we establish a normal mode solution of the 
temperature distribution in the composite, expanded in powers 
of the frequency, and verify that on retaining only up to first-
power terms in co we may indeed use the static equivalent con
stants (16) to describe the temperature behavior of the com
posite. But for higher frequencies this equivalence is no longer 
admissible. 

In Section 8 we give some numerical examples and results. In 
Section 9 we summarize the mathematical highlights of the 
analysis and also comment on some practical uses that can be 
made of the results. 

2 Complex Eigenvalue Equation 
We seek solution of (5) in the form of product functions6 

WMk = e~^-x(pt(y) wFk = e~XkXipk{y) \ = \r + i\i 

(6a, 6, c) 

Placing (6) into (5) gives (prime denotes ?y-diff erentiation) 
8 This is not the only way, of course, to approach the problem. 

One may, for instance, seek a solution in the form of a Fourier integral 
and then convert this into a normal mode expansion, as is done in [6] 
in a clifferent context. See also [10]. 
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-
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Fig. 2(b) Modul i R and phase angles 8 of the roots zn, zi of the eigen
value equation (11) for f = 1/a, a = 1 / 2 , b = 5; dashed lines: by I 
power-series expansion to v' terms (linear approximation); full lines; 
by numerical solution of eigenvalue equation; curves go with scale on': 
left side unless otherwise indicated 

<Pk" + ( ^ 2 + iVM)<Pk = 0 \j,k" + (\h* + ipF)\pk = 0 (7a, 6) 

subject by (3) to the boundary conditions 

y = 0 : <p' = 0 y = IT: \j/' = 0 (8a, 6) 

y = (1 — f)ir: <p = "A kM<p' = kF\j/' (8c, d) 

Solution of (7) subject to (8a, 6) is 

<Pk = Ctfc COS 
Zk 

1 - / 
V ij/k = <S,k c o s 

1 - / 
(TT - y) (9) 

where 

X*2 = 
Zk' 

(1 - If 
VpM ~ 

Zk 

(1 - / ) 2 tpF 
(10) 

Consistency with (8c, d) requires that the determinant of the co
efficients ffi, 63 vanish:7 

(5a, 6) o = 

cos az'ir 

1 - / 
kF 

1 - / 

cos zir cos az'ir} A (11a) 

Here 

A = az tan zir + bz' tan (az'ir) 

= i r - 1 (of tan f + 6f' tan a f ' ) 

a = / / ( l — / ) 6 = akF/kM f = zir f' 

Furthermore 

(B = cos f /cos af ' 

and we may relate Zk to z* by (10), through the formula 

(12a) 

(126) 

Z'-K (13a) 

(136) 

Zk z^ + iv v = (1 - j)\pF - pM) (14a, 6) 

v is a new frequency parameter. For convenience, it also will be 
referred to as frequency. 

I t is readily noted that if 2* and Zk satisfy the eigenvalue equa
tion (11a), then so also do — zu, ~zk', but not the conjugates. 
Zk and zk' satisfy the conjugate problem whereby in (7) ip,- is re
placed by ~ipj.s 

•> We omit subscript h in (11)-(13), (23), (26), (28)-(35), (47)-(48), 
(56), and (69) for the sake of simpler writing, and place ft* = 1. 

8 This comment will be amplified in Section 9. Note that there is 
really only one independent set of eigenvalues, viz., Zk. But it is 
convenient to refer to Zk', related to Zk via (14a), also as an eigenvalue, 
and so also to ft, ft ' related to the former via (13a), perhaps even to 
\k related to zk, Zk' via (10). 
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Fig. 3(a) Modul i R' and phase angles 8' of the roofs zo', z / of the 
eigenvalue equation (11) for f = 1/z, a = 1A» b = 5; dashed lines: 
by linear approximation; full lines: by numerical solution of eigen
value equation 

In the limit of vanishing frequency the roots Zk, Zk coalesce 
and become real, and so do the decay parameters A*,:9 

v = 0: Xj, = Xi Zk (15) 

Since decay exists, Zk must be positive in the v = 0 limit. By 
continuity, Zk, Zk must be chosen with a positive real part also for 
w y^ 0. From Figs. 2 and 3 it will be noted that the appropriate 
roots Zk are in the fourth quadrant; the roots Zk are in the first 
quadrant. 

We may rewrite the eigenvalue equation (Ho) in the form 

7rA = of tan f + 6 f tan o f = 0 (116) 

Observe that the vanishing of the factors cos f cos o f in expres
sion (Ha) does not contribute eigenvalues, because they are 
offset by the corresponding denominators of tan f tan o f in 
(12). Indeed, suppose that cos f vanishes while cos o f does not. 
Then f = (n + ^)TT (n = integer) and sin f = 1. Hence, 
omitting the factor km/f, (Ho) becomes 

of cos o f = 0 

which implies f = 0 in contradiction to f = (n + -J)7r. When, 
on the other hand, both cos f and cos a f vanish, then f = (n + 
-J-)7r and af ' = (m + -J-)7r. Consequently, o f — f = (m — n)ir, 
whereas by (14) this difference must contain (for v ^ 0) an imagi
nary part. 

3 Biorthogonal Expansion Formula 
Let Zo, Z\, z%, . . ., be the sequence of fourth-quadrant complex 

eigenvalues of A = 0, arranged according to ascending moduli 
(at v = 0), and {tpo, \po), (<P\, ^ I ) , • • •» t n e boundary temperature 
pairs associated with these eigenvalues. Introduce furthermore 
the boundary flux pairs 

(**, ^k) = {hufk, kF\pk) (16) 

We omitted the irrelevant — XAe ~*>°x factors on both sides of (16). 
Multiplying (7a) by kit<Pi and subtracting the equation tha t re

sults when the k and I indices are interchanged, there results 

kuiipiVk" — <Pk<Pi") + (A*2 — \i2)kM<Pi<pk = 0 

0 ^ y 5$ (1 - /)TT (17a) 

Likewise 

kF(M*" ~ Mt") + (V - WfoM* = 0 
(1 - / > « = V $ T (176) 

9 We shall find it convenient to refer to X as the decay parameter, Xr 

as the decay constant, and X; as a phase-shift constant. 
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I t follows that 

(A*2 - A,2) 
.Jo 

$i<pkd 

J ( l - / ) 7 r 

= ktf{<Pi<ph' — <PkVi')y=a — kr\tyityh — ipkipi'} v-r 

- {kM{<Pl<Pk' - <Pkfl') - fci'M'rV - ^*<rV)}»-(W>ir (18) 

But the boundary terms vanish in the light of the boundary 
conditions (8). Hence, for the case of non-equality of. eigen
values Ajt, X;, biorthogonality of the function pairs follows: 

k ?L I: ifPk, ypk) 1 ($(, * i ) (19) 

The expansion formula for w(x, y), where w(0, y) is specified as 
x(y)> thus becomes 

, , A „ _X l X \<Pk(y) 0 ^ y $ (1 - f)w 
w(x, y) = V Cke

 XtX , (20a) 

where 

Ck 
i (W)» 

J ( 1 - / ) T 

X(y)$k(y)dy + I x(y)^h{y)dy 
' ( i - / ) * 

Jo 

a-/)* <Pk(y)$k{y)dy 
J a 

>Pk{y)fyk{y)dy 
' ( W H 

For the particular case of 

w(0, 2/) = X(>/) = 1 

(206) 

(21) 

with which we shall be mainly concerned, one finds, noting tha t 
by (9) and (13) 

cos ft «4'(ir - y) 
\f/k = ~^-^r, cos — — (22) <Pk = cos 

the expression 

Zky 

1 - / COS Of J;' 1 - / 

ch = 
J" 
J" 
Jo 

J ( l (23a) 

• ( I - / ) T 

'o J (!-/)» 

/few | ^2d2/ + fe J <rV*/ 
0 « / ( 1 - / ) T 

AM sin f + AF — — <$> sin o f 
z z_ i 

kM
 l-™ [2f + sin 2 f + kF

l~^r &{2at' + sin 2 a f ] 
4z •iz' 

Aiv sin f 

(236) 

(23c) 
iv sin 2f + 2 ( f f VTT2)(1 + 6 cos2 f/cos2 o f ) 

In the last step we have also used (136), (14), and (116). 
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4 Concus' Zero-Frequency Solution 
We write10 

tk = Zkir = fa + iyk)r = Xk + iYu = RtfitBH-

tk' = zu'ir = (Xk' + hjk'> = Xk' + iYh' = Rk'e^'ir 

At the frequency v = 0 all roots of the eigenvalue equation (116) 
are real; the equation A = 0 then acquires the form 

Alternately, starting out with 

z' = 2' + «' 

(24) we find 

: 2 + e'S'/z -A/waz'D(z, 2') 

(34a) 

(346) 

v = 0: a tan XT + b tan axir — 0 (25) 

This equation has been studied by Concus and Olander [4], and 
the roots have been tabulated by Concus [5] for a ranging from 
0.001 to 1.000 and 6 ranging from 0.001 to 1000. If in any given 
problem a is assigned a value greater than one, we merely inter
change the roles of F and M, and a is brought back into the 0 ^ 
a ^ 1 range. 

Of particular interest is the limiting case 

/ = -I- a = 1 (26a) 

where the roots 

xk = k/2 k = 0,1,2, . . . (266) 

are seen, by [4], to be independent of 6. The solution (266) of 

a = 1: tan XT + b tan xw = 0 (26c) 

by 

2xk = k = odd integer (27a) 

is riot a contradiction, by virtue of the fact that the functional ex
pression 

tan kr/2 = ± oo (276) 

is double-valued. 

5 Solution of the Eigenvalue Equation A = 0 
Let 

2 = $ -f iy = ReiS 2' = x' + iy' = R'efe' (28) 

be a truly approximate (i.e., non-exact) solution pair of 

x sin Ixir — y sirih 2yir + i(y sin 2xir + x sinh 2yir) 
A(z, z ) = a •• 

cos 2xir + cosh 2yir 

In accordance with Newton's method, the process is then iterated. 
Moduli and phases of the roots z0, z</, zi, and z / were calculated 

for low frequencies (v < 0.1) by the series expansion method of 
Section 6 in the linear approximation (i.e., terms up to c1 were 
retained); this is shown in dashed lines in Figs. 2 and 3. The 
curves obtained were extended to the right and provided first 
guesses for roots associated with v > 0.1. The e or 6' scheme 
was used (programs EPS and EPSP, based on polar inputs of 
z, i'), whichever was found to be more promising. (In fact, for 
k = 0 the EPSP scheme turned out to be more favorable; for 
h — 1 usually EPS was preferable.) Invariably it was found that 
Newton's iteration scheme diverged, bu t the printouts gave suc
cessive values for x, y (also x', y') as the iterations progressed. 
By averaging the first two printouts, better initial estimates were 
obtained, and work then continued with programs EPSCAR or 
EPSPCAR using cartesian inputs but otherwise identical with 
EPS and EPSP. After about four or five such averagings, the 
result was within specified accuracy (five decimals for v ^ 0 1 
four for 0.1 < v sj 1.0, three beyond v = 1.0). This was 
mainly the procedure for the z0 root. In calculating zi the ad
ditional difficulty arose that the initial guess z (or 2') had to be 
very accurate (accurate to three or more digits) before a consistent 
divergence scheme could be reached. (Consistent scheme: one* 
where the first iteration gives results in the same quadrant as the ; 
initial guess and is within a factor of two of the initial guess.) 

For high v (v > 100) and also for h > 1 the guessing game be-; 
came quite laborious and further computation work was aban
doned. (It is planned to reconsider the computational aspects 
more thoroughly in a later study, replacing at the same time the \ 
specified surface temperature distribution condition by the condi
tion of specified heat flux [10].) 

On the other hand, one must not expect the present method to 
be usable at very large v, for we cannot with impunity place w = ; 
co in (5), to wit, in 

+ 6 
x' sin 2ax'ir — y' sinh 2ay'T + i(y' sin Zax'ir + x' sinh 2a%j'-w) 

eos 2ax'ir 4- cosh 2ay'ir 
= 0 (29) 

Then the residual 

A = A(2, z') (30) 
— MCjW-1V2«> + 10 = 0 (35) 

does not vanish. But let the departure e fron the true value of z 
be small: 

z = z + e |e/z|2 « 1 (31a) 

Correspondingly, 

z' = [(f + e)2 + iv]lh ~ g' + &l%' (316) 

Placing these into (116), we find the first-order correction 

e = - A / T O 2 D ( 2 , 2') (32) 

tan Z7T • tan az'7r 2 
D(z, z') = h b — 1 + COS 2Z7T 

+ 
26 

1 4- cos 2az'7r 
(33) 

•° The present x, y symbols should not be confused with the symbols 
X, y of the coordinates in Fig. 1 and elsewhere. 

The equation must be properly treated as a singular perturbation 
•problem in order to explore the nature of the solution near co = co. 
I t is also planned to carry out this other study in the near future. 

6 Low-Frequency Estimate of the Roots 
Since the fundamental root X0 of A = 0 (or, in the light of 

X„o = z„V(l - ff - ipu (36) 

the root go of A = 0) dominates the behavior of the thermal wave 
at large distances x (irrespective of co), it is desirable to provide 
an explicit formula for it. This we proceed to do in the low-fre
quency limit. Let 

fo2 = (Z07T)2 = ipTr2<Xi + vVa2 + iv3ir6a3 + vVoti + . • • (37a) 

Then 

fo'2 = (ZO'TT)2 = (z0
2 + w)7r2 = ivir2l3i + vWcti + ivVoc3 + . . . 

jSi = 1 + ai (376) 
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On placing the to2, to'2 expressions into 

7rA/o = f tan f + (6/a)? ' tan af 

= f2 + 6f'2 + | (t4 + &«2f") + ^ (f6 + 6«4f'6) + • 

(38a) 

(386) 

and equating the coefficients of successive v powers to zero,11 one 
obtains, using the notations 

jcM' = (1 — f)kM kF' = fkF kav = ku' + kF' 

kin = fkM kF = (1 - /)&*• fc = kit + kp (39) 

the results 

ai = - 6 / ( 1 + 6) = -kF'/kav ft = 1/(1 + 6) = ku'/k^ 

a2 = 6(6 + a 2) /3( l + 6)s = kF'kMk/ik^ 

a3 = (2/45)6(a2 + 6)[3(1 + 6)(a2 - 6) - 56(a2 - 1 ) ] / ' 

(1 4- 6)' = - ( 2 / 1 5 ) a i a 2 0 

1 

1 + 6 + 3 1 = 5 
1 - 2/ AM 

1 / /cav 

+ 3 (I' -') (40) 

One therefore has, for the fundamental mode, 

X„2 = (Xr + iA,-)2 = Xr
2 - X,-2 + 2i\r\i = - i P A / + z„7(l - / ) 2 

= —ipni + [ivir2ai + c ' l 1 * + i>37r6a3 + . . . ] / ( l — /)27r2-

(41a) 

-iw/Xw (416) 

/<W(pc)a (Pc)av = (1 - / ) (PC) M + / ( P c ) F (42) 

in accordance with (16). Expression (416) is appropriate in the 
v1 approximation.12 Furthermore, because X2 is pure imaginary 
in the vl approximation, also 

Xr = \i = (a>/2xav)'A = | X | / V 2 (43) 

Since <x2 is positive, one obtains in the v2 approximation13 

(Xr/X»)2 > 1 |2XrXi/X2| = 1 (44a, 6) 

while in the Vs approximation the imaginary part of X2 is in
creased (reduced) when a3 ^ 0. Thus 

a3 ^ 0 implies |2XiXr/X2| ^ 1 

By expression (40c) the condition for a3 ^ 0 is 

/ ( l - / ) < 2 kFkM 

" T h e structure of these coefficient equations is 

TTV: II + b}ai + lb} = 0 

(45a) 

(456) 

|1 + 6}«2 + }ai2 = 0 
TT'V3: {1 + b)a3 + ( }atiai + { Ja i 3 = 0 

where { J are real coefficients. I t follows that all at are real. 
Therefore it also follows that, on reversing the sign of v in (37a), one 
obtains the expression of f2. The term y'lr'ao, when incorporated into 
(37), leads to a c° equation {1 + b}ao = 0. Thus era = 0, and may 
be suppressed in (37) ab initio, as we have done. 

12 In the J>2 approximation the equivalent diffusivity assumes a 
form 7coq = *.iv[l rf- iF(o>) ] where the «2C2 correction term gives rise 
to frequency-dependence. 

13 Equation (446) follows from the fact that X2 is now of the form 
^ = iBu + 4 a ! (B = - I / O ; hence iBa = X2/(l - iAu/B) ^ 
X2(l + iAa/B), and therefore \Ba\ = |2Xf\r| ^ |X|2. 

For the root «o2 itself, one has the estimate, to order v\ 

|«o|2 = |<w| = (1 - ff\pF - PM\kF'/kzy ^ \pF - pM\ (46a) 

Therefore 

| z 0 | 2 < 0 . 1 when \pF - pM\ < 0.1 (466) 

This represents a rough estimate of the range of validity of a first-
power approximation. 

For higher roots we write the three-term approximation 

t = zw = (x + ivg, + v2g2)ir = X + ivGi + v2G2 

f' = z V = (x' + ivhi + v2h)ir = A" + ivHi + v2H2 (47a, 6) 

By identifying the second expression with 

(47c) 
2f 8f3 

and using the notation (51), one finds 

X' = X hir. = Hi = Gi + TT 2 / 2X = (oi + l/2z)7r 

h2ir = Hi = Oi + Gnri/2Xi + 7r4/8X3 

= (g2 + gi/2x> + 1/8X3)TT 

tan f = ( + i>(?i(I + i2) + !/2((?2 - ^ 2 ) ( 1 + <2) 

tan af = t' + ivaH^l + i'2) + vHaH2 - I ' aW, ' ) 

X (1 +t") (48) 

Placing these expressions into (38a) and equating the coef
ficients of successive v powers to zero, one obtains (the first of (49) 
is the Concus equation, the roots x are tabulated in [4]): 

[ ]v° = 0: at + W = 0 

T 2 t - Xb(l + t'2) 
0: ft = 

[ }i>* = 0: G2 = 

+ Gi2(l + i2) + bffiHl + i'2) -

2 Z 2 1 + t2 + 6(1 + «'2) 

A' {iGiHl + l2) + baHyH'i.1 + i'2)\ 

GlTT2 

(49a) 

(496) 

Gl7T_2 7T4 \ 

2A'2 + 8A'V 

X { (1 + i'2)6A + - V 
a 

A'{1 + I2 + 6(1 + t'2)\ (49c) 

7 Low-Frequency Expressions of the Expansion Coefficients 
We restrict ourselves to the uniform boundary temperature 

X(y) = 1, as in (21). Then, expanding (23c) in powers" of v up 
to quadratic terms, we find, using (37), 

Co = 1 + ivw2ai 
/ 1 la2 

U + i r 
+ 6 
+ 6 

+ C27T4 

1 

ai + 

+ i + a 
1360 

3 

( — - — 6a2 ) 
\ 6 2 / 

(VS* ) ! 
( a 2 

\ 4 

«2 

1 + 6 
« 3 

1 + 9a2 - 10a4 , 
A , . audi + — a i ? 

4 / 1 12 
(1 - a2)ai2 - (1 + b)a2\ (50) 

For fc ^ 1 we use, in conjunction with expressions (47), the 
notations 

s = sin A c = cos A I = tan X c' = cos aA 

I' = tan aA' S = sin 2A (51) 
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One obtains, to quadratic terms in v (we omit subscript 1 of G, H) 

2ir2s 
ft = X3{1 + ficVc'2 

X [*-{f-fe 2S + X\G + 2ff)(l + 6c2/c'2) + 2X3b(c*/c'*)(aHt' _ Gt) 

X3{ 1 + bc*/cn 

A seeming indeterminacy arises when c/c' — 0/0. This happens 
when 

X = TO7r/2 aX = rnr/2 m and n are odd integers (53a) 

Then one arrives at the value 

(c/c'f = c2(l + t"1) 

8 Examples 

= c 2 [ l + ( f e f , t a n x ) 2 

= c 2 .+ (a/6)2s2 = {kM/kFf (536) 

1 f = Vs, h/kM = 10; a = i / j , fa = S 

Then 

ai = -0 .8333 a2 = 0.0405 a3 = -0 .0102 

9 = - 2 . 2 2 5 

Xi = 0.5290JT = 1.663 = 95.2° 

X, = 1.4710TT = 4.622 = 264.8° X3 = 2TT 

Xi = 2.5290TT = 7.942 = 95.2° 

X6 = 3.4710TT = 10.91 = 264.8° X, = 4TT 

XI = 4.5290TT = 14.24 = 95.2° & = -0 .396 

Hi = 2.573 (54) 

and to second-order terms in v 

Co = 1 - 3 . 7 7 5 M - 8.3945c2 Ci = 3 . 9 2 M + 8.45845c2 

C2 = - 0 . 1 8 4 M - 0.08543c2 

C3 = 0 ft = 0 . 0 3 6 M + 0.00260c2 

ft = - 0 . 0 1 4 0 M - 0.00141^2 ft = 0 
C, = 0.0063ci + 0.00007v2 (55) 

We find that 

Y, C* = 3 . 7 7 4 M + 8.3743c2 (56a) 

which indicates that the departure from one in Co is just cancelled 
out by the higher Ch. Thus 

£ ft ~ 1.0 = X(0) 
o 

(57) 

as it should be.14 In Figs. 2 and 3 we plot, versus c, the linear 
approximation (in c) to 

Rk = 2* = a r g a Rk' — \Zk'\ St' = arg Zk (58) 

in dashed lines and the results based on Section 5 in full lines. 
Where the two curves coincide, full lines are drawn. 

« f = lh, kF/kM = 10; a = 1, 

Then to c1 terms 

10 

hir 

2 
ai = -0 .910 Co = 1 - 4 . 4 9 1 M X* 

(c/c')2 = 1/62 = 0.01 (59a) 

14 Note that Concus' tables are not quite accurate enough for our 
purpose. For instance, if we changed Xi = 0.5290 to Xi = 0.52895, 
then the v2 coefficient in C\ would change to 8.3988. 
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)] (52) 

Hence 

Ck = 0 k = 2, 4, 6, . . . 

Ci = 4 . 6 3 M C3 = - 0 . 1 7 1 M C6 = 0 . 0 3 7 M 

C, = - 0 . 0 1 3 5 M ft = 0 . 0 0 6 3 M (596) 

and, to first-order terms, 

2 Ck = 4 . 4 9 6 M 
I 

(60) 

fll f = y3 , kF.kM = «%; o = 2, fa = «>% 

This example puts us outside of the range of Concus' tables. 
The eigenvalue equation now is 

Let 

Then 

2f tan f + — f' tan 2f' = 0 

f = 2f f' = 2f' 

1 3 
— f' tan f' -\ f tan f /2 = 0 
2 J S T 1 Q ( ) 5 J / 

(61a) 

(616) 

(61c) 

(62) 

Concus' tables are now applied with 

d = 7 2 & = 0.03 X = 1 / 2 

One obtains to c1 terms 

Xt = 1.403 = 80.38° X2 = 1.739 = 99.60° X3 = T 

Xi = 4.55 = 260.8° XB = 4.880 = 279.6° (63) 

and we find to c1 terms 

a i = - 0 . 9 7 0 Co = 1 - 5.06M' CI = 3 . 4 6 M 

ft = 1 .82M C3 = 0 ft = - 0 . 1 1 6 M - ft = 0.0824W 

5 
£ f t = * 1 . 0 (64) 
o 

9 Summary 
Mathematical Features. The salient mathematical feature of the 

two-media thermal wave problem is the biorthogohality of the ex
pansion of a given excitation (be i t real or complex) into complex 
eigenfunctions and the association of the latter with complex 
eigenvalues. In contrast, the seemingly more difficult stress 
problem [3] calls for a real eigenfunction expansion only. Another 
somewhat unexpected feature (if one judges by past experiences) 
is tha t the task of determining the zeroth eigenvalue is non-
trivial and requires effort comparable to that required for the 
higher eigenvalues. A further interesting observation is thai 
the modulus of an eigenvalue Zk does not necessarily increase 
monotonically with the frequency c. For instance, in the range 
0 ^ v ^ 1 the modulus of the first eigenvalue varies from 0.52? 
to 0.500. Beyond c = 1 \zi\ increases again. Still another 
surprising result is that while we labeled the eigenvalues as zoi &•. 
22, . . ., in order of their ascending moduli at very low frequencies, 
this order does not necessarily maintain at higher frequencies. 
For instance, by Fig. 2(a), in the range v ~ 2.7 to v ~ 20 the rod 
21 has a lower modulus than z0. Nevertheless, it is proper to reftf 
to the function pair <po(y), ^o(y) associated with 20 as the fundff 
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Fig- 4 ( ° ) Profile of (he fundamental mode foiy), i/'ufy) for Example I: 

f = 1/3.0 = V s . " = Si" = 0 .10 

y,DEGREES 

Fig. 4(b) Profile of the fundamental mode tpaiy), i/-o(y) for Example I: 
f = Vs . a = V s , » = 5;i - = 1.0 

mental mode over the entire i> range. Indeed, it must be re
membered that the physically important parameter is not Zh, but 
the decay constant \h, (6c). And this, considered further below, 
behaves as expected, see Fig. 5. 

Since in our numerical Example I, to which Figs. 2 and 3 per
tain, ku/kf = 0.1 (our numerical results in this section will all 
refer to Example I), it follows from the definition (146) that 

v = - ( 1 - XM/W)VM(1 ~ ,f)2 (65) 

is a negative quantity when KM/KF < 1, which is the case for 

(pc)M = {pe)F (66a) 

KM/KF = km/kp (666) 

For then 

as we now assume. We may retain all our previous results if in
stead of the temperature distribution (2c) we now contemplate 

T = eiatw(x, y) 

i-e., we reverse the sign of the frequency, 

(67) 

6 0 0 
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Fig. 4(c) Profile of the fundamental mode <po(y), i/-o(y) for Example I: 
f = 1/3, a = V s . b = 5; v = 10 .0 
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Fig. 5 Decay constants of fundamental mode and first mode for Example 
|. f = i / 3 r „ = l / j , h = 5; dashed lines: linear approximation; full 
lines: on basis of rigorous solution in Fig. 2 

n (68a) 

and correspondingly also introduce the frequency parameter 

p = -p = Q/x (686) 

For then 

v = (l - KM/KF)PM{1 - ff (566) 

is a positive quantity.16 

Physical Features. The imposed surface temperature profile 
X(y) (which, in practice, is essentially constant over the width of 
several laminae) gradually distorts, as it propagates down the 
composite, into an assembly of nonuniform normal modes that 
die out at various rates. Fig. 4 plots, for the conditions 
of Example I at v = 0.1, 1.0, and 10.0, the most persistent 
mode, ifoly), ^o(2/)- Of greatest concern is the question: is the 
rate of decay fast enough to prevent occurrence of significant thermal 
stresses due to this nonuniformity and to preclude the risk of 
delamination? This entire aspect of the problem deserves further 

15 Alternatively, by the remark in the paragraph after (14), we 
could retain v as a negative quantity and continue to use Figs. 2 and 3 
drawn for positive v by merely reversing the signs of 8, 6'. 
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exploration. (So also does a correlation with other related work 
in the composite area such as [7, 8].) 

The decay constants Xor, Xir are plotted for the specifics of 
Example I in Fig. 5. Recalling (10), (60), and (65), one may 
write16 

T A 
say, 

(1 - /)(X, + i\i) = W + iPuil ~ / ) 2 ] ' A 

» - y* + i[2xy+ V—r 

\ 1 — KM/KFJ 

[f + ti?],A = KVFTT 2 + ?)/2]'A 

+ ifegn ^)[(VFT72 - f)/2]'A (69) 

In particular, for 

v = 0.1: z0 = 0.209977 - 0.200705i 

= 0.290470 | -43.7067° 

zo' = 0.099939 + 0.078614i = 0.127153 138.1891° (7 0 a ) 

one obtains 

£ + ^ = 0.00381+0.0268? X0 = 0.1865 + 0.1620/ (706, c) 

Had we proceeded in the alternate way suggested by footnote 
15, not adopting (67) but retaining the (2c) expression, and ac
cordingly used 

zo = 0.209977 + 0.200705/ (71a) 

appropriate for a negative v, we would have found 

£ + ir? = 0.00381 - 0.0268i X0 = 0.1865 - 0.1620/ (716) 

This reflects the fact that a switch from to e'n( leaves the 
decay rate unchanged but introduces a phase reversal. 

16 The formula in the second line of (69) is stated on page 17 of [9]. 

Fig. 5 provides another important observation. The low- * 
frequency approximation to X0r (dashed line) is above the rigorous 
value (full line) for v > 0.4. Thus, use of the static values of the 
material properties gives an exaggerated estimate for the rate of decay 
when v is not small enough. 
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Heat, Mass, and Momentum Transfer During 
the Melting of Glacial Ice in Sea Water 
The velocity, temperature, and concentration distributions near a melting surface of 
glacial, or pure, ice in saline water are determined for laminar flow conditions using 
integral techniques. Estimates are made of the relative thicknesses of the momentum, 
thermal, and mass diffusion boundary layers for a variety of the appropriate flow and 
thermal parameters. These findings are applied to the melting of glacial ice in sea 
water, but they also are applicable to other systems in which heat, mass, and momentum 
transfer occur simultaneously with phase transformation. The speed of sound at con
stant pressure in sea water is a function of temperature and salinity, and the variation 
of sound speed with changing environmental conditions plays an important role in 
underwater acoustic propagation. The results of the heat and mass transfer analyses 
are employed to determine the sound speed profiles within the temperature and salinity 
boundary layers near the melting glacial ice for free-stream water temperatures of 5 and 
10 deg C. 

Introduction 

L HE HEAT TRANSFER PROCESS near a melting flat 

surface has been investigated by Yen and Tien [1]1 and more re
cently by Pozvonkov, Shurgalskii, and Akselrod [2] under condi
tions of laminar flow and forced convection. The former study 
is concerned with an extension of the classical Leveque solution 
to the melting process, while the latter is a more refined applica
tion of the Karman-Pohlhausen integral method. I t is instruc
tive to apply the latter energy-balance type of integral solution to 
the transfer processes that simultaneously occur during the melt
ing of an iceberg in sea water, and to estimate the rate of melting 
and the relative thicknesses of the momentum, temperature, and 
salinity boundary layers in a simple model situation. The results 
are applicable to the determination of the changes in sound speed 
near a melting iceberg, since the speed of sound in water at con
stant pressure is influenced by changes in temperature and 
salinity [3]. The present analysis also accounts for the subcool-
ing of the solid below the melting temperature and the effect of 
this subcooling on the heat and mass transfer rates. The 
methods described here are applicable to other physical systems 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division of T H E AMEKICAN 

SOCIETY OF MECHANICAL ENGINEERS and presented at the ASME-
AIChE Heat Transfer Conference, Atlanta, Ga., August 5-8, 1973. 
Manuscript received by the Heat Transfer Division May 15, 1972. 
Paper No. 73-HT-3. 

in which these transport processes occur simultaneously with 
phase transformation. 

Problem Formulation 
The melting problem is formulated by considering the bound

ary-layer equations [4] for simultaneous heat, mass, and momen
tum transfer. The phase transformation is assumed to occur 
under steady-state conditions, so that a coordinate system fixed 
to the melt interface is appropriate. This is a valid approxima
tion for a large body such as an iceberg. The fluid phase is 
further assumed to be of constant density, and the assumption of 
a pure solid phase ensures tha t the results will be applicable to 
the melting of glacial ice. Physical properties that appear in the 
governing equations are considered to be constant for the system 
outlined in Fig. 1. The governing equations in the absence of a 
pressure gradient are: 

continuity 

momentum 

energy 

du 

ox by 

bu du 
u ; h " ; : bx by 

= 0 

1 b2u 

Re by2 

dT bT 
u — + v£ ~-

ox by 

1 d2r 
Re Pr by2 

(1) 

(2) 

(3) 

mass diffusion 
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FREE STREAM TEMPERATURE Too 

UNIFORM CURRENT U 

SALINITY Coo 

T 
MELT GENERATION S0 

VF I 

8, 

"7" / 7 / / / / / / / / / / / / / / / _ / / / / 
PHASE BOUNDARY, TEMPERATURE TF 

SOLID PHASE VELOCITY Vs 

SOLID PHASE TEMPERATURE T 0 

Fig. T Schematic diagram of the flow near the phase boundary between 
ice and flowing sea water, with coordinates fixed to the interface 

dC „ d C 
u : h vt, 

£>2C 

bx by Re Sc by* 
(4) 

The absorption of latent heat during the melting results in a ther
mal energy balance between phases 

by 

M mL KS(TF T0) bTs 

2, = 0 + (T„ - TF) KF KF(T„ - TF) bv v = 0-
(5) 

where m is the rate of melt generation per unit surface area. This 
energy balance along the interface reduces to 

bT 

by y = 0* 
= Pe£ 

( ^ ) 

where the parameter B accounts for the heat conduction into the 
solid after the method of Griffin [5] or Roberts [6] .2 These equa
tions are in nondimensional form and are related to the physical 
system by the transformation 

x 

T 
y = — 

L 

u v 
u = - v = — £ 

U VF 

VF 

u 
T - TF 

T„ - TF 

. CpF(Ta 

A = 

T, = 

- 7>) 

T - T . c 

TF — To 

CPS(TF 

C — Cp 

~ C„ - CF 

- fo) 

M M 

where the Schmidt number is denoted by Sc = v/y, the Prandtl 
number by Pr = v/a, and the Reynolds number by Re = UL/V, 
The Peclet number is denoted by Pe = UL/a. The boundary 
conditions on the system are 

•g = 0 w = 0 » = VF(X) T = TF 

y-> oo u = U T = Ta 

and reduce in the nondimensional coordinates to 

C = CF 

C = C„ 

2 The heat conduction into the solid is determined by assuming 
one-dimensional heat conduction in a medium moving with the 
steady-state velocity f/s. 

•Nomenclature-

o,- = coefficient of i th order appearing 
in the quartic temperature 
profiles 

A = fluid-phase melting parameter, or 
Stefan number, cPF(Tm — 
TF)M~1 

&» = coefficient of i th oi-der appearing 
in the quartic velocity profile 

B = solid-phase subcooling parame
ter, SPS(TF - F o ) ^ - 1 

Cj, = specific heat at constant pressure 
( J - k g ^ d e g C " 1 ) 

c; = coefficient of ith. order appearing 
in the quartic concentration 
profiles 

C, C = salinity or concentration (parts 
per thousand); normalized sal
inity or concentration 

D = parameter defined in Table 1 

F = parameter defined in Table 1 

h = heat transfer coefficient (J-sec - 1 

m~ 2 -degC _ 1 ) 

K = thermal conductivity (J -sec - 1 

m - 1 - d e g C _ I ) 

L = characteristic length scale in the 

streamwise, x, direction (m) 

Le = Lewis number for mass diffusion 

in the fluid phase, ya~l . 

M = latent heat of fusion (J-kg - 1) 

Nu = Nusselt number, hxh ~l 

Pe 

Pr 

Re 

Sc 

S 

T,T 

u, u 

U 
V, V 

V,V 

y 
5,5 

5** 

Al,2 

Peclet number for the fluid phase, 
ULa~l 

Prandtl number for the fluid 
phase, Va~l 

Reynolds number for the fluid 
phase, ULv-1 

Schmidt number for the fluid 
phase, vy~l 

local speed of sound in water (m-
sec - 1 ) 

local temperature (deg C); nor
malized temperature 

local streamwise, x, velocity (m-
sec - 1 ) ; normalized velocity 

free-stream velocity (m-sec - 1) 
local transverse, y, velocity (m-

sec - 1 ) ; normalized velocity 
streamwise coordinate defined in 

Fig. 1 (m); normalized coordi
nate 

transverse coordinate defined in 
Pig. 1 (m); noi-malized coordi
nate 

thermal diffusivity (m2-sec -1) 
diffusion coefficient (m2-sec_1) 
boundary-layer thickness (m); 

normalized boundary-layer 
thickness 

characteristic integral scale de
fined in equations (10a)-(12o) 

ratio of boundary-layer thick
nesses defined by equations 
(13) and (14) 

f = normalized coordinate defined in 
Table 1(c) 

t] ~ normalized coordinate defined in 
Table 1(a) 

v = kinematic viscosity (m2-sec_1) 
03 = normalized coordinate defined in 

Table 1(6) 
£ = normalized rate of mass genera

tion along the melt interface 
p = mass density (kg-m~3) 

Subscripts 

F = fluid properties at the melt inter
face 

S — solid properties at the melt inter
face 

ref = reference quantity defined in the 
text 

0 = conditions in the solid at large dis
tances from the melt interface 

<» = conditions in the fluid phase at 
large distances from the inter
face 

m = subscript relating to the momen
tum boundary layer 

t = subscript relating to the thermal 
boundary layer 

c = subscript relating to the mass dif
fusion boundary layer 

x = local quantity, e.g., R e j = R e •=• 
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= 0 u = 0 

u = 1 

v = 1 | = Sj,/17 T = 0 

T = 1 

C = 0 

C = 1 

The subcooling of the solid is denoted by the temperature dif
ference TF — To, the temperature of the solid phase far from the 
interface being equal to T0. The rate of fluid mass generation at 
the interface is related to the melting rate of the solid by the con
tinuity equation 

VF(X) = I — I V, 
\PF/ 

(*) 

It should be noted that the melting rate w„ is generally a function 
of x, as borne out in the analysis that follows. The results will be 
a useful approximation in that flow regime where the boundary-
layer thicknesses (and the melting rate) vary slowly with dis
placement in the free-stream direction. 

When equations (l)-(4) are integrated over the momentum 
(dm), thermal (St), and mass diffusion (5„) boundary layers, these 
equations become 

{v(x,8m) - 1}£ -f 
Jo 

6"' du 
— i 

dx 

dx f 
J o 

(1 — u)udco\ — £ 

dx\'J0 

H 

l_ bu 
Re dy 

(1 - T»**} - * = RTP; ^ 

dx ) " ./„ f Re Sc dy 

(6) 

(7) 

(8) 

(9) 

when the boundary-layer thicknesses 5 are each normalized by 
the length scale L, The assumptions of zero gradients for tem
perature, velocity, and concentration at the edges of the respective 
boundary layers are made. For the case of ice melting in sea 
water, the inequalities 

Sm > St > de 

are satisfied for large x by virtue of the relative magnitudes of the 
Prandtl and Schmidt numbers for water. These simultaneous 
integral equations can be simplified by making the approximation 
that the momentum, temperature, and concentration boundary 
layers bear a constant ratio to one another, or that the ratios 

S, 
= Ai 

Sm 

= A2 

are independent of x. The integral equations given in the fore
going paragraph then reduce to 

dx Re dy 

dSt 1 dT 
8,** — = 

dx Re Pr dy 
„ dSc 1 dC 
8C** — = 

dx Re Sc dy 

+ a 

+ f 

where 

* = r a -
Jo 

• = f (1 -
Jo 

u)udu> 

T)udn 

Sc** = f (i - cyw% 
Jo 

(10) 

(11) 

(12) 

(10a) 

(11a) 

(12a) 

denote, respectively, the momentum (Sm**), energy (St**), and 
concentration (5C**) thicknesses. Equations (10) and (11) are 
similar in form to those presented by Posvonkov, et al. [2] for 
heat transfer only. The melting rate f, as yet undetermined, 
appears in each of equations (10)-(12). 

These equations are solved by approximating the velocity, 
temperature, and concentration distributions with polynomial 
functions. A Pohlhausen quartic is chosen for each as follows: 

T = an + axr] + a2j/
2 + a3?7

3 + a^4 v = 

u = ba + bid) + 62w
2 + 63co

3 + 64o)4 ai = 

C = c0 + C l f + c2f * + c3f * + c4f
4 f = f-

Oc 

The governing integral equations are each dependent on the melt
ing rate £, and so the unknown coefficients in the three profiles 
are determined from the physical conditions listed in Table 1. 
The method of solution is similar to that of Griffin and Szewezyk 
[8] and Posvonkov, et al. [2], but is extended here to include heat, 
momentum, and mass transfer simultaneously with phase trans
formation in the flow. The temperature profile is dependent only 
on the thermal parameters A and B 

T(V) = ai(V - 3T72 + 3n3 ~ V*) + W - 8?73 + 37)*) 

where 

' ' " A {̂ 1 + 1^-1} 'ai = — S-t/l + — D - 1 > D = 
D \ 1 3 j 1 + B 

as listed in Table 1(a). The heat-balance and momentum equa
tions evaluated at the melt interface lead to a solution for the 
velocity profile 

u(u>) = bi(u - 3co2 + 3oi3 - co4) 

+ (6co2 - 8w3 + 3co4) « = ~ 
Om 

where the matching condition at y = 0 and the solution for the 
unknown parameter 6 are outlined in Table 1(6). 

A similar approach leads to the mass concentration or salinity 
profile 

P(f) = oi(f - 3f2 + 3r3 - f4) 

(6f2 - 8f3 + 3f4) f = 

as shown in Table 1(c). It should be noted that the matching 
conditions at y = 0 in Table l(a-c) are determined by evaluating 
the momentum, energy, and mass diffusion equations (2)-(4) in 
conjunction with the interfacial energy balance (5) at y = 0. 

The parameter Le is the Lewis number for mass diffusion, the 
ratio of Prandtl and Schmidt numbers. The parameters Ax and 
A2 are determined by dividing equations (11) and (12) by equa
tion (10) upon the assumption that Ai and A2 are not functions 
of the space coordinates. The two results of these operations are 

\8t**J A 

- - m 
AMI + D) 

Pr 61 + oyD 

Le Aid + aiDAi 
Pr AA + aiD 

(13) 

(14) 

when the integrals in equations (10a)-(12a) and the unknown oy, 
bj, and cj are evaluated as shown in Table 1. 

The ratios At and A2 follow from equations (13) and (14) for 
specified values of the physical parameters. The thermal-
boundary-layer solution to equation (11) is 
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Table 1 Quarlic polynomials for approximating temperature, velocity, and concentration distributions 

(a) Temperature 
4 

T{x,y) = J2 <»*' 
j = 0 

y 

Conditions 

y 

T 

y 

T 

= 0 

= 0 

= St 

=-- 1 

/ary 

(v = 1) 

Coefficients 

oo 

a i 

D 

at 

a-i 

Qi 

= ° 
3 
D 

A 
W'+J» 

= 1+B 
= 6 

= -
= 3 

— 3a t 

8 + 3oi 

— <Ji 

(b) Velocity 
4 

«(z,2/) = X) bJ'c°J' 

Conditions 

V = 0 

— (S)(S) 
j / = 5m (w = 1) 

1 du d2M 
dj/ d;y2 

Coefficients 

b„ = 0 

61 " 1 + 3F 

hi — 6 — 3&i 

63 = - 8 + 36, 

b4 = 3 - h 

Pr d2it 
~ ~D dy* 

0 

(c) Salinity 
4 

C W J ) = X) Cjf1' 
3 = 0 

f = * • 

Conditions 

2/ = 0 

C = 0 

2/ = «= 

C = 1 

Coefficients 

co = 0 

6tf 

fdT\ fdC\ = L e W 
D by" 

(f = 1) 

dy ~ dy2 = 0 

Cl 

ff = 

1 + 2.H 

2 he Ai 
aiD A2 

C2 = 6 — 3c i 

c3 = - 8 + 3d 

Cj = 3 — Ci 

3; 

2a. (1 + Z))) 'A 

8,** Pe* 
(15) 

after Pozvonkov, et al. [2], and the thicknesses of the momentum 
and mass diffusion boundary layei-s then follow from equations 
(13)—(15). The rate of melting follows from equations (5) and 
(15) and is 

£ VPe. i = chD l2a,(l + D) 

•A 
(16) 

Likewise, the rate of heat transfer at the interface, or Nusselt 
number, is 

Ni l* = — 
KF "I « i 

2(1 + D) 
5 (**Pe, 

'A 
(17) 

The salinity or concentration CF at the phase interface is not 
known a priori, but it can be determined from a mass balance on 
the dissolved species at the irwlt line y = 0. This balance is, in 
general, 

-py 
dC 

dy 
+ Cw(me + m) (18) 

where mc (kg/m2-sec) is the flux of dissolved species at the inter
face; m (kg/m2-sec), the melting rate, is from equation (5); and 
p is the density of the mixture. Since the solid phase is impervi
ous to the dissolved species (mc = 0) during the melting of glacial 
ice, the foregoing equation reduces to 

— Cpm = — py 
dC 

» = o 

or, in the normalized system introduced earlier, 

(I) 
- ( g ) 
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\pFJ W A = 0 \Sc) axD 
(19) 

The concentration of dissolved species CF is the result of a balance 
between the bulk motion and the rate of diffusion and is inde
pendent of space coordinates. 

Solutions for Heat, Mass, and Momentum Transfer 
The equations described in the preceding section were solved on 

a CDC 3800 computer for a range of values of the thermal and 
flow parameters. Computations for the ratio of the thermal and 
momentum boundary layers are illustrated in Fig. 2. These re
sults indicate that the thermal boundary layer increases in thick
ness as the Stefan number A is increased,3 but different subcooling 
conditions in the melting solid phase (B = 0.0, 0.2, and 0.5) have 
little effect on the thermal-boundary-layer thickness for A ^ 
0.40. A practical limit for A at standard conditions for water is 
A g 1.25, which represents T„ — TF = 100 deg C. The ratio of 
the mass-diffusion (salinity) and momentum-boundary-layer 
thicknesses is appreciably affected both by the fluid Stefan num
ber A and the solid Stefan number B. The greater relative 
thickness of Sc with increased A is due to the change in the rates 
of mass and momentum transport in the boundary layer as the 
temperature of the water is increased. The rate of mass trans
port approaches the momentum transport rate in the water as the 
temperature T„ is increased, since the kinematic viscosity V of 
the water drops sharply with rising temperature. 

The change in the boundary-layer thickness ratio A2 with the 
solid Stefan number B can be understood when reference is 
made to Fig. 3. Increased thermal transport to the solid de
creases the rate of melting at the interface (for A constant) with 
a coiTesponding decrease in the thickness of the layer over which 
the dissolved species mix with the pure water generated at the 
boundary between phases. The increased rate of melting that 
accompanies increased Stefan number A (or greater thermal driv
ing force T„ — TF is also evidenced by the results in Fig. 3. The 

3 G. S. H. Lock suggested in his rapport "Heat Transfer With 
Phase Transformation" at the Fourth International Heat Transfer 
Conference that the parameter A be named the Stefan number in 
honor of the scientist who pioneered the study of heat transfer in 
systems undergoing melting and solidification. The parameter B * 
a form of the Stefan number for the solid phase. 
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Fig. 2 The ratio of thermal and momentum boundary-layer thicknesses 
Ai and mass diffusion and momentum boundary-layer thicknesses A2 as 
a function of Stefan number A; three conditions of increased heat con
duction into the solid are denoted by increasing values of the solid 
Stefan number 8 

concentration gradient at the melt interface is plotted in Fig. 4. 
The decreased value of the gradient dC/df|f_0 with increasing 
Stefan number A is a result of the thickening of the mass diffusion 
boundary layer 5C with increased temperature differences Tm — 
TF. Likewise, an increase in the solid Stefan number B results 
in a decrease in Sc together with a corresponding increase in the 
concentration gradient near the melt interface, as indicated by the 
results plotted in Fig. 4. 

Some representative results for heat, mass, and momentum 
transfer are summarized in Table 2. The momentum thickness 
8m** is unaffected by changing thermal conditions, but noticeable 
increases can be seen in both the energy and concentration thick
nesses as the Stefan number A is increased. The lower values of 
dt** and Sc** tha t occur with increased subcooling of the solid 
result from the decreased melting rates that accompany the con
duction of heat into the ice. The heat transfer coefficient at the 
melt interface (denoted by the Nusselt number Nu) is shown in 
relation to the equivalent Nusselt number for flow over a flat sur
face with no melting, 

Nu* (Pr)" • V . 0.332(Re«) *V/' (20) 

The change in the Nusselt number with increasing Stefan number 
A has been described previously by Pozvonkov, et al. [2], for the 
case B = 0.0, and the increased heat transfer coefficient due to 
subcooling of the solid (for fixed A) is shown in Table 2 for the 
conditions given by B = 0.20, 0.50. The results for the Nusselt 
number at B = 0.0 also compare favorably with previous com
putations by Yen and Tien [1], who applied the classical Leveque 
solution for the thin thermal boundary layer to the problem of 
steady-state melting in forced flow. A recent communication by 
Yen and Tien [9] illustrates the good agreement between the two 
methods for B = 0.0. 

Speed of Sound Near Melting Glacial Ice 
Knowledge of the speed of sound as a function of environmental 

conditions is important in underwater acoustics for determining 
the refraction and propagation of sound in the ocean.. I t is 
possible to use the temperature and salinity profiles from the 
foregoing analysis to model the sound speed variation near melt
ing glacial ice in sea water. This model situation offers insight 
into the physical processes that interact to produce changes in 

the sound speed in a polar environment. The speed of sound in 
sea water is a function of temperature, pressure, and salinity. 
Empirical equations have been developed over the years, using a 
mass of experimental data for widely varying conditions and sea-
water samples, to precisely relate the sound speed to those 
parameters that determine its variation in the sea. 

The classical results of Del Grosso [3] are useful for determin
ing the sound speed changes that occur in the thermal and mass 
diffusion boundary layers near melting ice in sea water. When 
pressure changes are absent, the equation for sound speed is 

S = 1448.6 + 4.618f - 5.23 X 10"2f8 + 2.3 X 10-«f3 

+ 1.25(C - 35.0) - 1.1 X 10-3(C - 35.0)f 

+ 2.7 X 10-»(C - 35.0)f* 

X - 2.0 10- ' (C - 35.0)4(1 + 0.577f - 7.2 X l O ^ f 2 ) (21) 

where the sound speed S is in the units of meters per second, the 
temperature T is in degrees Centigrade, and the salinity C is in 

Iff 1 
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Fig. 3 The rate of melting at the phase interface £ v Pex as a function 
of the Stefan number A for three conditions of solid subcooling denoted 
by the Stefan number B 

Fig. 4 The normalized concentration gradient dC/d^|f-=o, or rate of most 
diffusion at the melt interface, as a function of the Stefan number A for 
three conditions of solid-phase subcooling 
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Table 2 Heat and mass transfer results 

B 

0.00 
0.20 
0.50 

0.00 
0.20 
0.50 

0.00 
0.20 
0.50 

0.00 
0.20 
0.50 

a ** 

0.117 
0.117 
0.117 

0.117 
0.117 
0.117 

0.118 
0.118 
0.118 

0.118 
0.118 
0.118 

8,** 

0.0594 
0.0592 
0.0590 

0.0652 
0.0652 
0.0648 

0.0815 
0.0815 
0.0799 

0.1006 
0.1006 
0.0994 

Sc** 

U = 0.10, Pr 
0.0217 
0.0202 
0.0188 

(A = 0.20, Pr 
0.0315 
0.0291 
0.0264 

(A = 0.50, Pr 
0.0557 
0.0519 
0.0474 

(A = 1.00, Pr 
0.0837 
0.0795 
0.0741 

= 10.27) 
0.133 
0.126 
0.120 

= 7.91) 
0.180 
0.169 
0.157 

= 4.30) 
0.309 
0.289 
0.266 

= 2.32) 
0.480 
0.452 
0.419 

8t_ 

0.449 
0.448 
0.447 

0.499 
0.499 
0.493 

0.629 
0.629 
0.620 

0.797 
0.797 
0.781 

Nu£ 
Nu,*ref 

0.938 
0.946 
0.955 

0.890 
0.904 
0.923 

0.782 
0.812 
0.837 

0.650 
0.686 
0.730 

%• (Pe*)V. 

0.0299 
0.0192 
0.0155 

0.0452 
0.0382 
0.0312 

0.109 
0.094 
0:078 

0.200 
0.175 
0.149 

parts per thousand (ppt). More recent correlations are now 
available [10] for sound speed in sea water as a function of tem
perature, pressure, and salinity. 

Some results using equation (21) are plotted in Fig. 5 for water 
temperatures To, of 5 and 10 deg C. For each case the salinity of 
the sea water far from the ice was taken as 35 ppt and the melting 
glacial ice was considered to be at the temperature 0 deg C. The 
ratio CF/C„ was determined from equation (19). The distance 
from the ice-phase boundary is normalized by the thermal 
boundary-layer thickness 5 ( in the figure just mentioned, and the 
thickness ratios 8c/dt and 8t/Sm are noted. When the water tem
perature is 10 deg C, the change in sound speed reaches 80 percent 
of the total change at y = 8C = 0.30 8t. At this point the salinity 
C = 35 ppt, and the temperature is 5.5 deg C. The change in 
sound speed appears to be confined to a layer near the phase inter
face where the temperature and salinity are rapidly changing 
with distance from the region of melting, as might be expected 
from the heat and mass transfer analysis. 

Summary 
Integral methods of solution have been used for the simultane

ous calculation of the momentum, thermal, and mass diffusion 
boundary layers during the steady-state melting of pure (glacial) 
ice in sea water. 

The results show that the principal driving forces for the simul
taneous transport processes are the Stefan numbers for the fluid 
phase A = Cj,i?(r„ — f ^ A f - 1 and solid phase B = CPS{TF — 
T0)M-K 

The momentum, energy, and mass diffusion equations for the 
fluid phase are interdependent due to the appearance of the melt 
velocity at the interface—or the rate of mass generation due to 
phase transformation'—in each of the three equations. The 
mass diffusion equation is used to model the sea-water salinity 
distribution near the melting ice. 

The effect of increased fluid Stefan number A is to increase the 
thermal boundary layer thickness, while the solid phase Stefan 
number B does not greatly affect the thermal boundary layer for 
A < 0.50. The rate of mass generation at the interface and the 
thickness of the mass diffusion boundary layer are both appre
ciably affected by the parameters A and B. The effe ct of larger-
Stefan number A is to increase both the mass diffusion boundary-
layer thickness and the rate of mass generation. Increased sub-
cooling of the solid decreases both the melting rate and the mass 
diffusion boundary-layer thickness when A is constant. 

The results of the calculations have been used to model the 
effects of temperature and salinity on the speed of sound near 
melting ice in sea water. Sound speed profiles are presented for 
water temperatures of 5 and 10 deg C and for a free-stream 

salinity of 35 ppt. The results show that for both cases 80 per
cent of the change in sound speed occurs in the mass diffusion 
boundary layer. 
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Transient Heat Transfer Analysis 
of Alloy Solidification 
Approximate solutions are obtained for the temperature distribution and rate of phase 
change for the transient one-dimensional solidification of a finite slab of a binary alloy. 
The alloy is selected to avoid the eutectic composition so that solidification takes place 
over a range of temperatures. The slab is initially superheated and has a uniform tem
perature distribution. Solidification occurs after one surface is cooled by convection 
while the other surface is insulated. Temperature distributions are determined ana
lytically and experimentally and are in reasonably good i 

Introduction 

L I RANSIBNT heat transfer problems involving phase 
changes occur in areas such as solidification of castings, food 
processing, polymer production, welding, etc. Few exact solu
tions for the temperature distributions have been found for these 
problems due to inherent nonlinearities. An exact solution for 
the temperature distribution and phase change position of a 
melting or solidifying semi-infinite body was reported by Neu
mann [ l ] . 1 The body was initially at a uniform temperature 
and the surface temperature was impulsively changed and held 
at a constant value so tha t a phase change occurred. For this 
problem the phase change position was proportional to the square 
root of time. Several investigators such as Weiner [2] and 
Citron [3] have studied the problem of multiple phase changes 
and obtained solutions similar to those found by Neumann. 

Approximate solutions for this problem were reviewed by 
Muehlbauer and Sunderland [4]. The application of approxi
mate solutions to the solidification of castings was reviewed in an 
excellent paper by Jones [5]. 

- No closed-form exact solutions have been obtained when the 
freezing medium has finite thickness except for the case of zero 
superheat. Thus approximate methods must be used to de
scribe the process analytically. One of the most usefvd tech-

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division of T H E AMERICAN 

SOCIETY OF MECHANICAL ENGINEEBS and presented at the ASME-
AIChE Heat Transfer Conference, Atlanta, Ga., August 5-8, 1973. 
Manuscript received by the Heat Transfer Division January 31, 
1972. Paper No. 73-HT-4. 

niques is the heat-balance integral method developed by Good
man [6, 7, 8]. Tien and Geiger [9] used the heat-balance integral 
method to obtain approximate solutions to the solidification of a 
binary eutectic. They used a time-dependent surface tempera
ture. Cho and Sunderland [10] presented an exact solution for 
the temperature distribution and rate of phase change for a semi-
infinite body where the phase change occurred over a range of 
temperatures. This solution assumed that the surface tempera
ture was instantaneously changed and held at a constant tem
perature different from the phase change temperature range and 
the initial temperature. This exact solution and Goodman's 
integral techniques were used to determine the temperature dis
tribution in a finite slab with a constant temperature at one face 
while the other face was insulated. 

An experimental study for solidification has been presented by 
Bailey and Dula [11]. Their investigation indicated that the 
rate of freezing of finite slabs of water is similar to that found 
using Neumann's solution. Experimental studies related to sol
idification of metals have been reported by Bishop, et al. [12] and 
Bishop and Pellini [13]. No analytical comparisons were pre
sented; however, excellent experimental data were presented for 
several alloys. Simurik [14] presented an experimental method 
for observing the freezing of castings. The method used a wax 
model and the phase change front was optically observed. Hills 
and Moore [15] used Goodman's integral method to study the 
solidification of lead and tin. They obtained good agreement be
tween analytical and experimental results. 

The current work is concerned with the transient one-dimen
sional solidification of a superheated finite slab of a binary alloy 
where the change of phase occurs over a range of temperatures. 
All physical properties of each phase are assumed to remain con
stant but may be different for different phases. One surface of 
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the slab is exposed to convection heat transfer, while the other 
surface is insulated. 

Problem Statement 
During the solidification process the slab may be composed of 

a liquid region of molten metal, a region that is both liquid and 
solid (two-phase or mushy region), and a solid region. These re
gions may exist singularly or simultaneously. Since they do not 
all exist throughout the entire solidification period (from pouring 
until the casting reaches ambient temperature), the solidification 
process is divided into smaller time intervals. If the cooling rate 
is sufficiently low that the two-phase and solidified regions do not 
occur all at the same time, the sequence of events that is likely 
to occur is shown in Fig. 1. In the first time interval or stage the 
surface temperature is lowered by convective cooling. The re
gion of the slab influenced by the heat transfer lies between the 
cooled surface and a plane denoted by P{t). This stage con
tinues until the surface temperature drops to Tb, the liquidus tem
perature, at which time stage 2 is initiated. In stage 2 there 
exists a two-phase region and a liquid region that is only partially 
affected by surface cooling. However, if the cooling rate is very 
low, the entire liquid region may be influenced by surface cooling 
before the two-phase region forms. In such a case, stage 2 will 
not occur and the process will go from stage 1 directly to stage 3 
where there is a two-phase and a liquid region. In stage 4 the 
entire region is two-phase. In stage 5 the solid and two-phase re
gions exist, and the final stage, stage 6, involves cooling of the 
solidified slab. The situation of very rapid cooling tha t would 
yield solid, two-phase, and liquid regions existing simultaneously 
is covered by Muehlbauer [16]. 

The temperature distribution for each stage is determined by 
first changing the variables and then using Goodman's [6] heat 
balance integral techniques. The energy liberated due to solidi
fication in the two-phase region is treated as a pseudo specific 
heat, Cp = A/A27 as suggested by Paschkis [17], where AT is 
the difference between the solidus and liquidus temperatures. 
Similarly, a pseudo thermal diffusivity a can be defined by 

k 

p(Cp + Cp) 

so that the energy equation for the two-phase region becomes 
similar in form to that of the other regions. 

A slab of thickness 2L with convection at the boundaries can 
be divided into a slab of thickness L with convection at one 
boundary and no heat flow at the other boundary because of the 
symmetry of the mathematical problem. The boundary condi
tions are thus 

dT _ T - TA 

dx ~ Ri 

and 

0 

Analytical 
First Time Period. During this period the temperature at po

sition x — 0 is reduced to Tb at time U, when the effect of surface 
cooling has penetrated to a position x = P(k), where P(h) < L. 
This period is graphically represented in Fig. 1. The problem 
statement for the affected liquid region is: 

dt 

&TLl 

£>x2 

x = P 

x = P 

x = 0 

0 < x < P 

TLI = To 

^ = 0 

<>TLI TLI -

bx Ri 

0 < i < k 

TA 

(1) 

(a) 

(b) 

(c) 

0 P = 0 (d) 

Using the heat balance integral technique with an assumed 
temperature profile in the affected liquid region of the form 

TLI = a, + bx + ex2 

the temperature profile is found to be 

(P - xf 
TLI = To — (To — TA) 

P" + 2PRl 

with the effective cooling distance P(t) given by 

P 2 + iPRi - 8#!2 In ( 1 + — ) = 12aLt 
\ 2R1/ 

(2) 

(3) 

(4) 

This period ends when the temperature of the free slab surface 
reaches Tb. The time ti when this occurs is given by 

h 
2RS 

3 « L 

If To - Tb\* I To- Tb\ 

2\Tb - Ta)
 + \Tb - Ta) 

1 + 

n m (5) 

Second Time Period. During the second period there exists a 
mushy region and a liquid region. Part of the liquid region is 
not affected by the surface cooling until time fe, when the effect 
of cooling reaches the position x = L. The mathematical state
ment of the problem using the illustration of Fig. 1 for the liquid 
region during stage 2 is 

•Nomenclature-

',, b, c = temperature profile coefficients 
that may be functions of time 

Ci = integration constant in equation 
(20) 

Cp = specific heat 
Cp = pseudo specific heat 

h = heat transfer coefficient 
k = thermal conductivity 

KL = thermal conductivity ratio, 

kL/kM 

KM = thermal conductivity ratio, 
ht/ks 

L = slab length 

P = distance of cooling penetration 
R, = ratio k/h 

s = liquidus phase front position 
t = time 

U = time constant 
T = temperature 

Ta = temperature variable 
TA = ambient temperature 
Tb = liquidus temperature 
To = initial temperature 
Tv = solidus temperature 

v = solidus phase front position 
x = distance from cooled surface 
a = thermal diffusivity 

pseudo thermal diffusivity, k/p 

X (Cp + Cp) 

dimensionless variable, 

x/2Va(t U) 
X 

P 

Subscripts 

latent heat 

density 

L, M, S designate liquid, mushy, and 
solid regions, respectively 

1, 2, 3 . . . 6 designates time when 
used with t; designates time inter
val when used with other symbols. 
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,-Convectively 
Cooled 

Insulated. 

STAGE 
Entire slab 

0 < f < t , 
superheated 

STAGE 4 t 3 < t < t 4 

Entire slab two phase 

STAGE 2 t, < t < t2 

Development, of two phase 
region with P(t)<L 

STAGE 5 t 4 < t< t 5 

Development of solid region 

STAGE 6 
Entire slab solidified 

t5<t<t6 STAGE 3 t2<t<t3 

Development of two phase 
region for time after P(t) = L 
but before initiation of solid 
region. 

Fig. 1 Sequence of events that are likely to occur during solidification of a binary alloy with extended freezing range 

<xL — s < x < P ti < t < 
dx* 

x = P TL2 = T„ 

x = P 

X = S 

i>x 
0 

KL 
dx dx 

t — h TLZ = TLI 

(6) 

(a) 

(b) 

(c) 

(d) 

(e) 

t = k = 0 

Clearly the number of restraints (a)-( / ) exceeds the number of 
constants of integration of equation (6); however, these equations 
will be used later to determine constants that appear in poly
nomial approximations of the temperature distributions. 

For the mushy region during stage 2, 

Z>TM2 = _ M » 

dt dx1 0 < x < s h < t < U. 

x = s TMI= Tb 

x 0 dx « 2 
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and additional conditions are given by equations (6) (d)-(f). 
The temperature profile for the liquid region is found using the 

heat balance integral technique to be 

TLI — To ~ (To <*fc)' (8) 

The temperature profile for the mushy region is found by a change 
of variables 

V 
2Va(t - k) 

0) 

in equation (7). From the transformed equation, the tempera
ture profile for this region is found to be 

Tm = Tb - (Tb - TA) 

erf I 

x = L 

x = s 

x = s 

t = U 

t = U 

For the mushy region: 

bTMz _ b2TM3 = a 
bt bx2 

x = s 

x = 0 

bTLs/bx = 0 

Tu = n 

K &Ti3 _ bTM3 

bx bx 

TL3 — Ta 

s = s2 

0 <x < s t2<t <U 

TMS = Tb 

dTm Tuz - TA 

bx R3 

(a) 

(&) 

(c) 

(d) 

(e) 

(15) 

(a) 

ib) 

X 
2Va(t « ) — ( 2Va(t - k) 

t = h (c) 

Rt 

Vnait - k) 
+ erf 

2Voc(t - k) 

(10) 

The effective cooling distance P(t) is found by a heat balance 
on the liquidus phase front s(t). This yields 

and additional conditions are given by equations (14c) and (He). 
The mushy-region temperature distribution is the same as for 

the previous period, equation (10), except the time continues to 
U and TMI becomes TMS and R% becomes R3. 

For the liquid region, the heat balance integral technique gives 
the temperature profile as 

(Tb - TA)(2Lx - x1 + s2 - 2Ls) exp 

TLZ - n + 
l mt - h)\ 

XL - s) | A + V,a(t - k) erf ^ = = T } 2K. 
(16) 

exp ±a(t - k) 
(11) 

To determine an equation for the liquidus phase front position, 
the logarithm of an expression obtained from the boundary con
dition 

K, 
The liquidus phase front is determined using a technique sug
gested by Goodman [6]. The boundary conditions TLI = Tb 
at s(t) and TMI = Tb at s(t) are differentiated with respect to time 
by the chain rule. The time-derivatives of the temperature pro
files are replaced using the energy equations of the liquid and 
mushy regions. Making these substitutions and equating the 
results yields 

bTL3 

bx 

bTM3 

bx 
(17) 

ah 
P - 2(t - h) 

(12) 

is differentiated with respect to time. The resulting equation is 
then integrated from time U, to t by using the law of the mean. 
This yields 

3aL(t - k) + (L - s)2 - (L - s2)
2 = (L - s)Sl

2 

X 
Combining with equation (11) yields the following implicit ex

pression for the liquidus phase front position: 

45(i! - k) m(h - k) 

sKL Tb - TA 

aL(t - k) To Tb 

exp -

X 
\ •4W-t1)j 

+ ln 

(13) 

R3 + Vra(t - k) erf / 77 
2 V a ( ( — k) 

R3 + Vwa(h - k) erf „ / — = = 
2 V a ( l i — k). 

(18) 

\R: + Vira(t - k) erf ^ 
a(t - k)) 

This period ends when the effect of cooling spans the entire 
slab, i.e., P(t) = L,t = t2. Time fe is found by placing P(t) = L 
in equation (11) and solving in combination with equation (13). 

Third Time Period. Liquid and mushy regions exist during the 
third period, which ends at ti when the liquidus phase front reaches 
the position x = L. With reference to Fig. 1 the problem can be 
described mathematically for the two regions. For the liquid 
region: 

where [L — s(t)]fr2 is [L — s(t)}i evaluated at time & such that 
U < £i < h. To evaluate [L — s(«)]fi2, set t = t3 and s(t) = L in 
equation (18). However, the time U is unknown and is deter
mined from the fourth-time-period results. 

Fourth Time Period. Throughout the fourth period, the slab 
exists in the mushy state, and the following equations apply: 

bTMi b*TMi 

= a bt bx2 
0 < x<L U<t <U 

bTzz 

bt aL 

b2TL3 

bx2 s < x < L <t<t3 
(14) bTm 

bx 
= 0 

(19) 

(a) 
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dTm TM* — TA 

bx 

TM* = Tu 

Rt 
(b) 

(c) 

This period ends at time U when the temperature at position 
x = 0 reaches 1\, which signifies the start of solid formation. 

Following the heat balance integral technique up to the point 
of applying the initial condition produces a temperature profile 
of the form 

Tui — TA d( , r 2 - 2Lx - 2LR4) exp -
\ L2 + SLR,} 

(20) 

At time t3 the error-function form of Tm does not satisfy the no-
heat-fiow boundary condition at position x = L. To avoid the 
difficulty of matching a polynomial profile and an error-function 
profile to satisfy the initial condition, the error-function form of 
TMS is approximated at time U with a polynomial TM of the form 

TM = 

subject to the conditions 

x = L 

x = L 

x = 0 

a + bx + ex2 

VTM 

dx 
= 0 

TM = Tb 

bx + 
dTjm 

bx 

(22a) 

(22b) 

(22c) 

With the resulting polynomial approximation for TM replacing 
TMS in the initial condition TM* = TM3 at I = t3, the constant & 
in equation (20) is determined. The temperature profile is 

TM* 

(Tb - TA)(2LRI + 2Lx - x2) exp -

+ 

'ia(l - h) 

L2 + 3LRt 

' { • 
2L\Rz + V V a f e - U)eii 

2Va(h ti)j 

(23) 

At time U and position x = L, the temperature is Tb. This con
dition when applied to the temperature profile yields 

v V a f e — k) erf 
L 

Wa(t3 - tx)
 2 

+ R, ~ R, (24) 

which may be solved to obtain the time U, which is required also 
for the third-time-period solution. A combination of this equa
tion and equation (23) gives the temperature profile as 

(Tb - TA) 
(2LRi + 2Lx - x1) 

L2 + 2LR, 

3a(t - t3) 
X e XP i ~ 7 7 , n r n \ (2 5) 0 L2 + SLR. 

The fourth period ends when the temperature is Tv at position 
x = 0. When this condition is applied to the temperature profile, 
an expression for time tt is obtained 

, L2 + SLR, 
= ' H 7 - m 

3a 

Tb - TA 2R< 

Tv — TA L -\~ 2Ri 
(26) 

Fifth Time Period. A mushy region and a solid region exist dur
ing the fifth period as the solidus phase front moves from position 
x = 0 to position x — L. The problem statement for this period 
becomes the same as the third period if appropriate notational 
changes are made by replacing the mushy and liquid regions with 
solid and mushy regions, respectively. The temperature profile 
for the solid region becomes 

Tss = n - (Tv - TA) 

erf = - erf — 

X 
2y/as(t - U) 2y/as(t ~ U)\ 

Rs 
erf 

(27) 

s/iras(t - U) 2\Zas(t — h) 

and for the mushy region it is 

TMS ~ Tv 

(Tv - TA)(2Lx - x2 + v2 - 2Lv) exp 

+ 
ias(t — t,)) 

2KU(L - v) i & + y/iras(t — U) erf 
2\/as —1 

(t - U)) 
(28) 

The solidus phase front position can be obtained from: 

(21) Zas(t - k) + (L- v)2 - L2 = (L- v)^2 ^ ^ Z ^ ) 

+ In [ 1 + ^ a s { t -M erf 
2 Vas Ml 

C - u)J) 

(29) 

where [L — v(t)]&2 is [L — v(t)]2 evaluated at time £j such that 
U < £2 < h- To determine [L — v(t)](2

2, set t = U and v(t) = L 
in equation (29). However, time k is unknown and must be de
termined by the results of the sixth time period. 

Sixth Time Period. During the sixth period the slab is cooled to 
ambient temperature. Equations (19) for the fourth period 
apply for this period if the necessary notational changes are made 
to replace the mushy region with a solid region. The tempera
ture profile is given by 

TS6 = TA+ (T, - TA) 
2LR6 + 2Lx - x2 

L2 + 2LRe 
exp 

3as(t - 4) ' | 

L2+ 3LRe) 

(30) 

and the time U can be determined from the graphical solution of 

L L 

VWcfc - u) erf T ~ 7 = = = = r; + Rt- - R-< (31) 
2Vas(k - U) * 

Experimental Investigation 
To establish the usefulness of the analytical technique, tem

perature profiles were measured for the solidification of a super
heated binary alloy. The alloy was cooled in a mold placed in a 
wind tunnel. 

Alloy. A lead-tin alloy was chosen as the casting material be
cause of its low but wide melting range. The two compositions 
used were 80-20 and 50-50 lead-tin (by weight). The properties 
required for the two alloys were obtained from several sources and 
are listed in the Appendix. The latent heat of fusion, mean 
specific heat as a liquid, and mean specific heat as a solid for the 
50-50 alloy were obtained from Koerner [18]. The density as 
a function of temperature for the 50-50 alloy above 361 deg F 
was obtained from Koerner, and the remainder of data for both 
alloys was obtained from the ASM metals handbook. The 
thermal conductivity as a function of temperature for both alloys 
was obtained from a procedure suggested by Hsu [19]. This 
method develops property data as a volumetric function of each 
constituent of the alloy. Hsu has validated the expression for a 
liquid, but nothing is available for the solid mixture. Due to the 
lack of available data, this same method was used for the solid 
phase. The latent heat and the mean specific heats for liquid 
and solid for the 80-20 alloy were obtained, based on the method 
of Hsu. 

Cooling Equipment. The mold was mounted flush with an inside 
wall of the wind tunnel shown in Fig. 2. Air was supplied to the 
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Fig. 2 Wind tunnel 

test section through a nozzle constructed to the requirements 
specified by AS M E [20]. With the addition of straightening 
ducts and screens, the turbulent eddies were reduced to a mini
mum. An accurate prediction of the convective heat transfer 
coefficient on the surface of the mold was obtained using a well-
established equation given by Kays [21]. 

Mold. The sides of the mold, Fig. 3, were constructed from 1/i-
in. steel, and the base plate was made of aluminum. The 
top plate served as a cover and was put in place after the alloy 
was poured. During the tests the sides and top of the mold 
were covered with 8 in. of glass-wool insulation with a thermal 
conductivity of 0.0266 Btu/hr-ft-deg F at 80 deg F and 0.0433 
Btu/hr-ft-deg F at 600 F. , This minimized the heat loss and im
proved the one-dimensional solidification. 

Temperature Measurement. The temperature measurements were 
obtained with Vs-in-OD ceramic-insulated grounded thermo
couples. These thermocouples had a time response of 0.34 sec 
for recording 68.3 percent of a step temperature change in a 
water bath from 60 to 212 deg F. The emf output of these ther
mocouples was recorded, using a multipoint recorder. The 
thermocouples were inserted through the side of the mold at 1A-in. 
intervals from the cold surface of the mold, and one thermocouple 
was placed just at the cold surface of the mold. 

Procedure. The alloy was melted and the composition was 
varied by adding appropriate amounts of lead and tin. While 
the alloy was being melted, the mold was preheated. When the 
mold and alloy were at the desired uniform superheat tempera
ture, the alloy was poured into the mold, and the top plate and 
top insulation were replaced. The wind tunnel was started and 
the thermocouple recording equipment was marked at zero time. 
Upon completion of a test, the solidified alloy was sectioned and 
analyzed to determine variation of composition in the vertical 
direction from the cooled surface of the mold. 

Results and Discussion 
The temperature distribution for a 50-50 lead-tin alloy that 

was initially superheated to 507 deg F is shown in Fig. 4. Fig. 
5 shows the temperature distribution for an 80-20 lead-tin alloy 
that was initially superheated to 550 deg F. 

The analytical and experimental results show reasonably good 
agreement. Some of the differences may result from experimen
tal errors in location of the thermocouples, the influence of the 
thermocouples on the solidification of the alloy, inaccuracies in 

Fig. 3 Mold for alloy solidification 

1.0 1.5 2.0 2.5 

DISTANCE FROM COOLED SURFACE (INCHES) 

Fig. 4 Temperature profiles for solidification of 50-50 lead-fin alloy 
initally superheated to 507 deg F 

1.0 1.5 2.0 2.5 3.0 

DISTANCE FROM COOLED SURFACE (INCHES) 

Fig. 5 Temperature profiles for solidification of 80-20 lead-tin alloy 
initially superheated to 550 deg F 
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Fig. 6 Temperature versus density for lead-tin alloys 

the analytical development, and composition changes in the alloy 
as solidification . occurred. The casting was sectioned and a 
five percent variation in composition was measured. Another 
source of error resulted from the uncertainty in the property 
data, which was determined by the techniques previously dis
cussed. 
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A P P E N D I X 

Property Data. The property data used for the calculation of 
the analytical results for the 50-50 lead-tin alloy and 80-20 lead-
tin alloy are presented herein. The following values for the 50-50 
lead-tin mixture by weight were obtained from Koerner [18] : 

Latent heat of fusion = 23 Btu/lb,„. 
Mean specific heat as a liquid = 0.046 Btu/lb,„-deg F. 
Mean specific heat as a solid = 0.051 Btu/lb„,-deg F. 

The corresponding value for the 80-20 lead-tin mixture by weight 
were obtained based on Hsu [19]; the values used were: 

Latent heat.of fusion = 6.5 Btu/ lb«. 
Mean specific heat as a liquid = 0.0393 Btu/lb,„-deg F . 
Mean specific heat as a solid = 0.041 Btu/lb,„-deg F. 

The density temperature data were obtained from the ASM 
metals handbook with certain portions supplied by Koerner [18]. 
These data are presented in Fig. 6. The values of thermal con
ductivity as a function of temperature for pure lead and tin, Fig. 
7, are from Hsu [19]. The values of the thermal conductivity as 
a function of temperature for the two alloys were developed ac
cording to Hsu [19, p . 15]. The values were developed as the 
sum of the two components' thermal conductivities, each being 
adjusted by the volumetric percentage of the element in the mix
ture. Hsu [19] has shown this procedure to be valid for a liquid 
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hut has not validated the method for a solid. In the absence of 
data for a solid mixture, this method was used to obtain thermal-
conductivity values for the solid mixture. 

The air property data were obtained from the gas tables [22]. 
A velocity traverse of the boundary layer along the cooling plate 
indicated the velocity profile satisfied the 1 / r power law for a tur
bulent-boundary-layer velocity profile. 

The following are the physical conditions that existed for both 
sets of data presented in Figs. 4 and 5: 

50-50 Pb-Sn 

Initial temperature of alloy = 507 deg F. 

Ambient temperature of air = 74 deg F. 
Air dynamic pressure = 7.93 in. of H 2 0. 
Melting range of alloy = 361 deg F to 421 deg F. 

80-20 Pb-Sn 

Initial temperature of alloy = 550 deg F. 
Ambient air temperature = 63 deg F. 
Air dynamic pressure = 7.6 in. of H 2 0. 
Melting range of alloy = 361 deg F to 531 deg F. 
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Optimization of Finned Tubes for Heat 
Transfer in Laminar Flow1 

The heat transfer of fully developed laminar flow in internally finned tubes is investigated 
analytically. If there is no heat generation in the fluid, the highest Nusselt number is 
obtained for the tube with 22 fins extended to about 80 percent of the tube radius. Its 
value is almost 20 times that for the finless tube. When there is heat generation at 
sufficiently large rate, the number of fins is reduced from 22 to 16 in order to obtain the 
highest Nusselt number. 

Introduction 

INTERNALLY FINNBD TUBES have been employed 
for many years in compact heat exchangers [1, 2].2 Most re
cently, the use of this type of tube has been considered in the de
sign of gas-cooled nuclear reactors and jet engines of nuclear-
powered aircraft. Various arrangements of internal fins have 
been investigated in the recent few years [3-5]. The continuous 
straight and spiral fins are the most common examples. 

The apparent purpose of fins is to provide additional surface 
area for increasing the rate of heat transfer if a given temperature 
distribution is maintained at the surface, or for lowering the 
average surface temperature when heat is applied to the surface 
at a given rate and a given distribution. This statement, how
ever, is rather loose, for the hydrodynamic aspect has not been 
considered. The presence of fins in a tube will alter the flow 
pattern and hence the flow friction. The flow may break down 
into vortices at edges and will slow down in troughs. If fins are 
continuous and straight, the former may be negligible, while the 
latter is important. For the same rate of mass flow, the larger 
the number of fins and their height, the higher will be the flow 
friction, and hence the pumping power. Therefore the investi
gation on heat transfer performance of finned tubes in turbulent 
flow is usually conducted under the condition of constant pump
ing power. For laminar flow, such a criterion is not needed, since 
the Nusselt number is independent of Reynolds number for 
fully developed velocity and temperature fields. 

In spite of the importance of internally finned tubes in the de
sign of compact heat exchangers, no results of analytical studies 

1 This study was supported in part by the National Science Founda
tion under grant GK-23688. 

2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (with

out presentation) in the JOTJBNAL OP HEAT TEANSPBB. Manuscript 
received by the Heat Transfer Division May 23, 1972. Paper No. 
73-HT-M. 

have been reported in the literature, and only limited experi
mental information is available. Fluid friction and heat transfer 
data for single-phase water flow in the turbulent regime were re
ported by Bergles, et al. [3, 4]. They found that the greatest 
increase in heat transfer was achieved with tubes having short 
spiral fins. On the basis of the nominal heat transfer area, the 
Nusselt number was found to be as high as 170 percent more than 
that for a smooth tube. Hilding and Coogan [5] tested turbu
lent air flow and found that straight fins of larger height give 
better heat transfer performance. 

The analytical study of heat transfer in turbulent flow through 
a finned tube involves the production and suppression of turbu
lence, the mechanism of which has not yet been understood. In 
view of the damping effect of fins on the intensity of turbulence, 
straight fins will be more effective in improving the heat transfer 
performance for laminar flow than for turbulent flow. Taking 
into account the increase of solid-fluid contact area and the 
change of flow pattern, we can expect that a certain combination 
of the height and spacing of fins will give the highest improvement 
of heat transfer performance. This is the main purpose of the 
present study. 

Since finned tubes have been considered for heat exchangers in 
nuclear-powered engines, the effect of heat generation in the fluid 
on the heat transfer coefficient will be studied with particular 
attention. 

Statement of Problem 
The problem to be investigated is concerned with the momen

tum and heat transfer in laminar flow of a single-phase fluid 
through an internally finned tube as shown schematically in Fig. 
1. The fins are straight and continuous along the axis of the 
tube and are equally distributed around the wall. Properties 
of the fluid are assumed constant. The thickness of fins is 
neglected, for otherwise the problem would involve many aspects 
of the particular system to be chosen. The velocity and tem
perature are assumed to be fully developed. A constant and 
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Fig. 1 Geometry of the internally finned tube 

uniform heat flux is assumed to apply steadily over the cylindrical 
surface. A constant and uniform heat flux is also assumed at 
each fin. The last assumption is not quite realistic, but will 
simplify the analysis considerably, for otherwise we have to con
sider a specific system so that the heat conduction in the solid 
and the heat convection in the fluid can be analyzed simul
taneously. 

Under the foregoing conditions, the problem can be formulated 
for the channel of circular cross section as shown in Fig. 2. The 
momentum and energy equations are, for 0 < ?•* < r0* and \x*\ < 

where 

r* br* \ br*) r*2 d02 ~ p. dx* 

I d / bT*\ 1 

•* br* \ br* / r* 

$* = £ |7^L*Y , (± a»!V"| 
k l\br* J \r* bd ) J 

(1) 

b*T* 1 ^bT* Q* ^ 
= — u* - $ * (2) 

*2 bd1 a bx* k 

(3) 

The boundary conditions are 

„ n a r * qwl* 
u* = 0, —— = —-— for r* = r0* 

br* k ^ <e <^ 
2 ~ ~ 2 

(4) 

u* = °» ~T^ = ^ T f o r ** ^ r* ^ ro*, 6 - ± ^ (5) r*bd k 2 

bu* bT* 

•b9=°' W = ° 
for 0 < r* < n* 6 = ± — (6) 

For the steady state in the temperature field to be established, 
the following condition is to be satisfied: 

dTb* 

dx* 
(qM*/k)dr* 

r fit/z r< 
(q*i*/k)dd + 

L.Jo Jn 

J 'Bo/2 /To* /Q* \ "I 

. J. (T+*-) '*H/ 
Mo/2 fn* u* 

Jo Jo a 

r*dr*dd (7) 

-Nomenclature-

C\ = constant parameter, 
pCp 

ft 
/ V A fdp*\ /dT* 

\qo*) \dx*J \dx* 

defined by (14) 

constant parameter, 

\qo*) \dx*) 

1 

D, 

Cj> = specific heat at constant 
pressure 

D„*, De = 4(cross-sectional area) / 
wetted perimeter, De — 
D.*/n* 

'', Do = diameter of finless tube, 
Do = D0*/n* = 2 

/ = friction factor 
G = Green's function defined 

by (19) 
G = generalized Green's function 

defined by (25) 
h = heat transfer coefficient 
k = thermal conductivity 

I*, I = height of fin, I = l*/n* 

m = number of fins 
Nu = Nusselt number defined by 

(33) 
p* = pressure 
Pr = Prandtl number 

Q* = rate of heat generation per 
unit volume 

Q3* = rate of total heat transfer 
through solid-fluid inter
face 

qwi* = heat flux at tube wall = 
Q„*/2 TITO* + 2uml*, to = 
qv>2*/qwi* 

<Zt»2* = heat flux at each side of fin 

= wq^i* 
go* = Qa*/irDo*, reference heat 

flux 
•*, 6, x*) = cylindrical coordinates 

r = r*/n* 
ro* = radius of tube 
n* = ?-0* — I*, n = ri*/n* 

Re, Reo = Reynolds number, Re = 
pum*De*/p,, Re0 = pum* 
D0*/p, 

T* = temperature 
Tm* = averaged temperature over 

entire cross section 
T = (T* - Tm*)/(qa*r0*/k) 

Tb* = bulk fluid temperature = 

I u*T*r*dr*dd / 

r>0<,/2 />l 
I I u*r*dr*dd 

Jo Jo 
TBm* = averaged temperature over 

solid-fluid interface 

velocity 
dimensionless velocity 

Y r0*
2 dp*\ 

\ H dx*) 

iimensioi 
/•So/2 pi 

= v 
Jo Jo 

reo/2 ri 

Jo Jo 

mean dimensionless velocity 

u(r, 8)rdrd0 

U 

H = 

P = 

$* = 

$ = 

rdrdd 

mean dimensionless velocity 
of finless tube 

dimensionless velocity for 
0 < r < n at 9 = ± 0 o / 2 

thermal diffusivity, k/pcp 

qwi*/qo*, ̂ 2 = gVs*/?o* 
angle of circular sector, 

da = 27r/m 
heat generation parameter 

= r0*Q*/q„* 
viscosity 
fluid density 
dissipation function de

fined by (3) 
dimensionless dissipation 

function 

A buy 
\r bd) 

/buy 
\br) + 
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Equation (7) is obtained by integrating both sides of (2) over the 
cross section of the channel, and the following relation for fully 
developed temperature has been used: 

dT* _ dTh* 

Ax* dx* 
(8) 

By introducing the dimensionless quantities as defined in the 
Nomenclature and using (8), equations ( l ) -(7) take the form 

Equation (16) is an integral equation in the form of a Predholm 
equation of the first kind. Its solution will be discussed later. 

The Green's function G(r, 6\r', 6') can easily be constructed 
by the standard method of a partial eigenfunction expansion [61 
for ?•' < r, 

" 1 1 
G(r, 6\r', 8') = V — f ' " " ' ! ( t ' - " ' ! - rm"n) sin — mn 

» - 1 n r 2 

i. *L ( ^\ — ^ _ 
r br \ br J r2 bd* ~ 

r br \ br / r2 

(9) X y + \ 0°) sin | mn \0' + i - 0„ j ( 1 9 o ) 

= -CiM - X - c2$(r, 8) (10) For ?•' > r we simply exchange r and r'. The series in (19a) can 
be rewritten in closed form as 

„ = 0, — = ft for r = 1, - - ^ < B < — ( ID 
' br H ' 2 _ ~ 2 

« = °> ^ 7 , = ± & f o r n<r <1, d = ± — (12) 
rd0 2 

dit dT ft 
^ = 0, — = 0 for 0 < r < n, 8 = ±-~ (13) 
at) 00 2 

G(r, 0|r', 0') = — I - I n )•»' + r'<" 

— 2?-",'2r'm/2 cos — (8 9')] 

+ ln 1 -j_ ,.».,.'». _ 2r'»'2r'»''2 cos — (8-8 

where 

r /•«o/2 /»i 
C! = - | ftdfl + 

L«/0 Jri 
re«/2 n + I 

Jo Jo 

+ In \ rm 

Pid8 + I fcdr 

J ri 

fo/2 pi 

- 2j-'»'V»''2 cos — (do + 8 + 8 
z 

(X + c&)rdrd8 

»So/2 / • ! J»So/2 /«1 

o Jo 
urdrdd (14) 

- I n 1 + r">r'm - 2>-»/V»''2 cos — (do + d + 8') \) (196) 

We substitute (196) and (19a) into (17) and (18), respectively, 
to obtain 

Solution for Velocity 
The boundary conditions on u, (11)- (13), are of the mixed type. 

In order to obtain the analytical solution for u, we can divide 
the circular sector into two regions by a circular arc of radius ?'i. 
This approach will be quite lengthy, and therefore we do not use 
it. If, however, we let U(r) denote the velocity for 8 = do/2 and 
0 < r < i\, then the boundary condition over the contour of the 
circular sector is of the Dirichlet type. If G(r, d\r', 8') is the 
Green's function associated with the Dirichlet problem, we have 

Jflo/2 fl 
I G(r, 6\r', OWdr'dO' 

-9o/2 JO 

K(rlr') — — I 
1
 v' I (-rm v'm\1 ( 1 fmr'm\2 I 

J g "> 9.2 _ rm(2n-l)l2 

f ' = ~~m ^ mK2n - l ) 2 - 16 

(20) 

(21) 

Now the problem is to solve (16). We wish to use a simple, 
though approximate, method whose accuracy will be discussed 
later. We divide the radial length (0, n ) into N intervals. Let 
i = 1, 2, 3, . . . , N be the primary nodal points and j = 1, 2, 3, 
. . . , N the secondary nodal points. We assume that U(ri) re
mains constant within each interval. Then (16) can be written 
as a set of algebraic equations 

iv c 
K(n,r')dr' =/<(»•;) 

(15) 
or, in matrix notation, 

Differentiating both sides of (15) with respect to 8, setting 8 = 
do/2, and using the boundary conditions (13) for u, we obtain 

r 
Jo 

K(r\r')U(r')dr' - /(?•) = 0 (16) 

where the kernel K(r\r') and the function f(r) are defined by 

JC(r|r') = £ [ m G{r' e°/2lr'- e°/2) 

d2 

ddo~8 
G(r, 8o/2\r', ~8o/2) (17) 

Sir) 
2x Ce"/2 

- G(r, 8o/2\r', d'ydr'dd' (18) 
J -0o/2 Jo ad Fig. 2 Geometry of a circular sector of the tube 
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Some calculated results from (24) for various values of m and 
I are shown in Fig. 4. 

Solution for Temperature 
We wish to solve (10) iovT{r, 8) satisfying conditions (11)—(13) 

by the use of a generalized Green's function. By the method 
of partial eigenfunotion expansion and the use of the well-known 
symmetry condition [7, 8], this function can be constructed as 

G(r, 8r', 6') = - — + - (r> + r'») - g(r, 0\r', 6') (25) 
47T 27T 

.8 .95 1.0 

Fig. 3 Dimensionless velocity distributions at 0 < r < r^ and 9 = 
±(?o/2 for various values of m and / 

where 

g{r,e\r',0')i 
iir 

{in [ru> + r'2"' — 2r'"r'm cos m(6 — 6')] 

\M\Vi\ = \f<\ 

where the matrix elements are given by 

(22) 

/ An = I K(n, r')dr' 
Ar, 

(rirj+U2)m'' 

(nr ,- i / !)*" 

\r»» - ri+1/2»> 1 - r^ry+i/j™/ 

(—1 *—) 
yr.m _ ?v_1/2.» i _ r^j-m™/ 

+ In [1 + r2mr'2"1 — 2rmr'm cos m{8 — 6')] 

+ In [r2m + r'2m - 2r"lr'm cos m(0 + 8')] 

+ In [1 + r 2 V 2 ' " - 2rmr'm cos m(8 + 6')]} (26) 

The solution of (10) is then determined up to an additive con
stant, 

(23) 

with 

A?7 A?v 
»V+I /J = »V + — ' ?V-i/2 = ti W~ 

Calculated results from (22).are shown in Fig. 3 for a wide 
range of values of the spacing and height of fins, which are char
acterized by the parameters m and I, respectively. 

Substituting (19) into (15) gives the velocity distribution 

^ Jo 
u(r, 8) = — I M(r, r', 8)V(r')dr' 

2T 

+ - z 
32 

2x ^ (2n - l)[m2(2n - l ) 2 - 16] 

X [;'2 — ).(n-l/2)»K 

where 

M(r: 

] smLn(n-~) (d + | 0„j 

',?•', 9) = w I — 1 f rml2r'ml2 cos — 0 1 

(24) 
Fig. 4(a) Equi-velocify lines u /u „ , for / = 0.8 and m = 2 
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Fig. 5(a) Isotherms (T — Tb)/(Tsm — Tb) for / = 0.8 and m = 2 Fig. 5(b) Isotherms (T — Tj)/(T,„, — Tj) for / = 0.8 and m = 8 

/•So/2 _ d T 

T(r, 0) = C + I G(r, 0\l, 6') — (1, O'W 

+ ;>('•*•• H i ( " -H* 
/•80/2 /» i __ 

+ I I [CIM + X + c2*]G(r, 0|r', O'ydr'dd' (27) 
J o J o 

Substituting (25) into (27) and using condition (14), we obtain 

T{r, 0) = C + i ft -r "J — (1 ~ n3)fr 
2 6 7T 

- fa \ g (('•, 0|r', - ^ o j * ' + f ° J (CIM + X + c2$) 

- r '2 - ff(r, 6>|r', 0') r » W 
IT J 

The constant C is determined by 

-et/2 /•! rOt/2 nl 

Jo Jo 
T(r, eydrdd = 0 

(28) 

(29) 

Now we can calculate T(r, 9) from (28). If the tube wall and 
fins are very thin and are of the same material and same thick
ness, and if the heat is applied electrically, then we can assume 
that /?2 = /3i/2, since heat is transferred to the fluid from both 
sides of the fin. Some calculated results from (28) are shown in 
Figs. 5(o) and 5(6). 

Friction and Heat Transfer Coefficients 
For fully developed flow, the friction coefficient is obtained by 

the balance of frictional and pressure forces as 

/ = -
dp*/dx* De* 

pM,„*V2 " T 

ce 

1 1 1 1 1 1 
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- y / ^ ^ 
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Fig. 6 Friction factor 

, „ -Do D„z 

De 2um 

(32) 

(30) 

as shown by solid lines in Fig. 6. 
Now we consider the heat transfer performance of finned and 

finless tubes. I t has been shown in [4, 5] that the hydraulic 
diameter is not suitable for correlating data of heat transfer in 
finned tubes. 

We define the heat transfer coefficient and the Nusselt number 
for finned as well as finless tubes as: 

If we follow the usual practice of defining the Reynolds number 
on the basis of the hydraulic diameter De*, we obtain 

Qs* 

irD0*(T„ Tb*) 
Nu 

k 
(33) 

n 2 9 
, n _ _t, _ 

6 ~ 2M,„ ~um[l + ro(l - ri)/7r]2 
(31) 

Some calculated results of (31) are shown by dotted lines in 
Fig. 6. However, a better correlation for the friction factor is 
obtained if we write 

where Qs* is the rate of heat transfer at the interface of the solid 
and fluid, T3,„* is the temperature averaged over the interface, 
and Tb* is the bulk temperature of the fluid. Reasons underlying 
the definitions (33) are: they reduce to those of finless tubes; 
the finned tube replaces a finless tube of the same nominal 
diameter, which alone describes the compactness of a heat ex-
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changer; for a given prescribed temperature of the solid surface, 
h (and hence Nu) dictates the rate of heat transfer, or con
versely for a given rate of heat transfer it determines the average 
temperature difference between the fluid and the solid surface, 
an important factor in the design of heat exchangers. Some 
calculated results of Nu without and with heat generation are 
shown in Figs. 7 and 8. 

Limiting Cases: Finless and Full-Fin Tubes 
Since the velocity distribution was calculated numerically by 

a method that has not been used by other investigators, we con
sider two special cases whose results are well known: finless 
and full-fin tubes. For finless tubes, (24) and (28) reduce to 

«(r) = J (1 j,2) 

T(r) 

+ cA±r* - 2r4 - —J 

and (31) and (33) become 

/ Re = 2/«m 

V(s*< Nu = Do/3t J \ — ft + — + c2u„ 
• ) 

(34) 

(35) 

since um0 = 1/8, Do = 2, these yield the well-known results o f / R e 
= 16 and Nu = 48/11 in the absence of heat generation and 
dissipation. For full-fin tubes, i.e., I = 1, (24) and (28) for ct = 
0 reduce to 

u(r, d) 
2TT 

y _(_i)(»+i) /2 

n= 1,3,5 

32 

nimV — 16) 

X (r2 - )-"""2) cos — mnd (36) 

T(r, 0) = C + 

+ 

(i-H* + i* + *(7)(H 
. 2 " , . / 1 \ cos mm d 
a — y . ( — 1)" I mr — — rmn 1 

71= 1 N ' 

+ ci-
1 fc 1 

+ m/c — 4 

32 
+ ci-

?n7r-: 

fc=T3 5 t2(m'c + 4) [3mfc + 24 

- 4 

(X — r(mfc/2)+2) 

co to i 

y y (-i)» •— 
,, = 1 3 5 „ = i n(m%2 - 16)(/e2 - 4n2) 

1 . 4 
— (1 - rM -
16 (mk + 4)2 

2mn 

\mhi2 — 16 

2 

r4 + 
8m?i 

r(mkl2) +2 

m'n' 16 

(mfc + 2m?i + 4)(mfc — 2mn + 4) 

mk + 4 

(mfc + 2m?i + 4)(m& — 2mn •+- 4)_ 

cos mn# (37) 

Equation (36) is identical with that reported by Eckert, Irvine, 
and Yen [9], and hence the friction coefficient is as shown in Fig. 
9. Equation (37), however, is different in form from that in 
[9]. Calculated values of the Nusselt number, as defined by 
(33), from the temperature distribution given by (28) with n = 
0, A = c2 = 0, and j8a = /3i are also shown in Fig. 9. The Nusselt 
number Nu defined in this paper is related to the Nusselt number 
NUB used in [9] by 

Journal of Heat Transfer 

Nu = (1 + m/7r)2NuB (38) 

In Fig. 9 are shown the results of Nu from (38) calculated by 
reading the values of NUB from Fig. 3 of [9]. I t is seen that 
they agree well qualitatively, but not quite so well quantita
tively, with a maximum error of about 9.6 percent. This error 
is probably due to the fact that the series solution of equation 
(13) in [9] was truncated somewhat earlier in their calculation. 
Of course we could also calculate Nu through the use of series 
(37), but the definite integral in (28) was used for the present 
calculation to yield accurate results. 

Discussion and Optimum Fins 

Before we discuss the results shown in Figs. 3-9, a few remarks 
are in order on the approximate numerical technique that was 
used in obtaining the matrix (22). The accuracy of this method 
has been discussed in [10] with regard to the use of fundamental 
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m 

Fig. 9 Friction factor and Nusselt number for full-fin tubes 

Green's functions (i.e., those in an infinite region), of incom
plete Green's functions (i.e., those satisfying homogeneous bound
ary conditions only over a part of the surface), and of Green's 
functions (i.e., those satisfying homogeneous boundary conditions 
over all the surface). For a piecewise-smooth surface, the less 
the incompleteness of the Green's function, the more accurate 
is the result obtained by this approximate technique. Therefore, 
excellent results for u can be obtained by this technique for the 
present problem. 

As shown in Fig. 4(a) for m = 2 and I = 0.8, the equi-velocity 
lines form two symmetric loops with the highest value in loop 
eyes. This is in contrast to the flow pattern of concentric loops 
for Unless tubes. Two types of loops occur in Fig. 4(6) for m = 
8 and I = 0.8: one at the center that may be referred to as the 
primary loop, while those between fins are secondary loops. 
For this combination of m and I, the highest velocity occurs in 
the eyes of secondary loops. If I is kept at the value of 0.8, the 
increase of m tends to shift secondary-loop eyes toward the tube 
wall, but the highest velocity is shifted from the secondary to the 
primary loop. Loops of isotherms of these two cases are shown 
in Figs. 5(a) and 5(b). For the case of I = 0.8 and TO = 2, the 
lowest temperature occurs in the two eyes. For I = 0.8 and 
TO = 8, the lowest temperature takes place along the tube axis. 
For either case, the highest temperature is at the base of each 
fin. I t was found, but not shown here, that a further increase 
of I and m shifts the location of highest temperature along the 
fin toward the tip. If, however, there is heat generation at. a 
large rate in the fluid, the highest temperature occurs at the tube 
wall near the fin base. 

The dependence of Nusselt number upon the parameters I 
and m is quite complicated as shown in Fig. 7. For a given 
value of I, the maximum Nusselt number occurs at a certain value 
of m but not at the highest value of TO. For a given value of 
TO < 8 the Nusselt number goes through first a minimum and then 
increases with increasing I. For a given value of 8 < m < 30, 
the Nusselt number not only goes through a minimum but also 
a maximum as / increases. Short fins of any number and long 
fins of very large number may cause a decrease in Nusselt number 
to below the value of a finless tube. The optimum value of 
Nusselt number is found as 86.82 at I = 0.795 and m = 22. 

The increase of Nusselt number with fin height I is of great 
interest, as shown in Fig. 7. For instance, with 20 fins, the in
crease of I from 0.2 to 0.4 decreases the Nusselt number by 6.17 
percent, though the solid-liquid contact area is increased by 
54.3 percent; increasing I from 0.6 to 0.8 increases the Nusselt 
number by a factor of 12.8 while the solid-liquid contact area is 
increased only by 26.6 percent. To understand this surprising 

change of Nu with respect I and TO, we have to look into the de
tailed velocity and temperature distributions in the primary and : 

secondary loops. For short fins (I < 0.32), no secondary loop j s 

found in either the velocity or the temperature field; the highest 
velocity is along the tube axis, and the highest temperature is 
around the fin base where the fluid is nearly stagnant. As I in-
creases, secondary loops of both temperature and velocity begin 
to appear. When I is increased to about 0.8, the high-velocity 
flow in the primary loop joins force with the flow in the secondary 
loop in heat convection. 

As I —*• 1, the primary loop will begin to vanish, and the highest 
temperature will occur at a region around fin tips where the fluid 
is almost stagnant. Consequently the heat transfer coefficient 
drops drastically from the optimal value of 86.82 to that of the 
full-finned tube, 17.98. 

We have also examined the effects of dissipation and heat 
generation on the. Nusselt number on the basis of the same total 
heat transfer rate. I t is found that the effect of dissipation is 
insignificant for all cases, and therefore it is not shown iri any 
figure. However, the increase of the rate of heat generation 
decreases the Nusselt number appreciably. For X > 2.4, the 
optimum value of m changes frofn 22 to 16, as can be seen in Fig, 
8. Thus if the rate of heat generation in the fluid is so large that 
X > 2.4, the tube with 16 fins extended to about 80 percent of 
the tube radius gives the highest heat transfer coefficient. 

Calculations have also been made for finned tubes with /32 = 
/3i, and it was found that the Nusselt number as shown in Fig. 9 
does not change appreciably from that with (3i = /3i/2. In other 
words, the Nusselt number is not quite sensitive to the selection 
of values of j3i. 

From the above discussions, the following conclusions can be 
drawn: (a) the installation of internal fins in tubes improves 
the heat transfer performance more effectively for laminar flow 
than for turbulent flow and (6) the Nusselt number for laminar 
flow in the optimized finned tube can surpass that of many 
cases for turbulent flow in a finless tube such as [11]: Pr < 
10 and Re < 10"; Pr < 1, and Re < 3 X 104; Pr < 0.03 and 
Re < 106. More discussions on (33) and Fig. 7 can be found in 
[12]. 
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Stochastic Optimization of 
Convective-Fin Design 
In the design of convectivefins, stochastic variations in fin dimensions have traditionally 
been handled by the use of safety factors. Often this process results in a multiplication 
of safety factors and thus an overly expensive design. This paper presents a probabilis
tic approach that not only analyzes the probability of system failure but also uses this 
analysis to synthesize the optimal design. Four methods of varying accuracy and 
difficulty are described and compared. The method based on the RMS approximation 
for the variances appears to be most useful for design purposes. 

Introduction 

A, IT PRESENT, allowance for stochastic variations in 
material properties and dimensions in engineering designs is based 
upon the use of safety factors. The magnitude of the safety 
factors is based on experience with past failures. One of the 
shortcomings of this practice is that there is a multiplication of 
safety factors throughout the design, so the final design is too 
costly. This problem has been recognized, and several authors 
have attempted to rectify the situation. Shigley [ l ] , 1 for ex
ample, has suggested the use of probability distribution functions 
for the mechanical properties of materials. Haugen [2] has 
developed relationships between the probability of system failure 
in terms of the probability of component failure. Several recent 
publications [3-5] deal with particular heat transfer applications. 

The present paper takes the probabilistic approach a step 
further. Not only is the probability of system failure analyzed, 
but the failure analysis is used to devise the optimal design. 
The result is a synthesis of the optimal design rather than just 
an analysis of an existing design. 

The system considered herein is a reasonably simple system: 
the convective fin of rectangular cross section. This problem is 
chosen because of the commercial importance of fin design, but 
also because the problem exhibits a nonlinear relationship be
tween the dependent and independent variables that is char
acteristic of more complicated problems. I t is hoped, therefore, 
that some of the findings reported herein concerning the rela
tive merits of exact and approximate methods for predicting 
the probability of failure are applicable to more complex prob-

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (with

out presentation) in the JOURNAL OF HEAT TKANSFEH. Manuscript 
received by the Heat Transfer Division October 26, 1972. Paper 
No. 73-HT-O. 

lems. Another advantage of the fin problem is that there are 
only two independent variables, so the results can conveniently 
be portrayed. 

Theoretical Development 
Of the many uncertainties associated with fin design, including 

the uncertainty or variability of thermal conductivity and con
vective heat transfer coefficient, the ones considered in this paper 
are those associated with the physical dimensions of the fin: the 
length and thickness. The problem to be solved can therefore 
be developed as follows: The heat transfer rate per unit length 
on one side of the fin is [6] 

Q = (hktYHTo ~ Ta) tanh (hLykt)1^ 

or, in dimensionless form, 

a = T ' / 2 tanh ( X / T 1 / 2 ) 

A stochastic dimensionless length 

X = X,(l + ox) = hL/k 

(1) 

(2) 

(3) 

is introduced where X0 is the mean value of X and 5x is a random 
variable assumed to be distributed parabolically according to 
the equation 

/(era, «x) = 777T^-T ( l - ^ ~ ) , - ^h 

4(5 /2<76x) \ 5<rt\2/ 
fsx < §x < 5'A fax 

(4) 

0, elsewhere 

with mean of zero and variance O"JX2- Similarly, a stochastic di
mensionless thickness 

T = To(l + ST) = ht/k (5) 

is introduced with probability density function f(<rsT, ST). These 

Journal of Heat Transfer AUGUST 1 973 / 339 Copyright © 1973 by ASME

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Accuracy of typical simulations at a single X0, TQ 

N 

exact 
evaluation 

10 
100 

1000 
5000 

10,000 

P 

0.9362 

1.0000 
0.9600 
0.9400 
0.9356 
0.9361 

VT 

0.0014071 

0.0013173 
0.0013722 
0.0014014 
0.0014080 
0.0014073 

evaluation at : 
qr = 0.08 
Ao = 0.1437 
TO = 0.009169 

o-sx = 0 .1 
<TST = 0 . 1 

Percentage 
error in 

VT 

— 

6.382 
2.480 
0.405 
0.064 
0.014 

parabolic probability distribution functions are more repre
sentative of the true distribution functions of X and T than the 
frequently chosen normal or Gaussian probability distribution 
function, since the normal distribution function indicates there 
is a finite probability that X or r become negative or extremely 
large. The parabolic distribution does not allow this when real
istic values of a$\ and <rgT are used. 

The average total cost per fin produced can be approximated 
by an equation of the form 

Cv = CiXoTo + C2 (6) 

where Ci is the cost per unit volume of fin material and c2 is the 
fixed cost per fin, including fabrication, tubing, etc. Since some 
fins may be rejected because they do not meet the heat transfer 
requirement, the cost per acceptable fin is then 

Ca' = 
ClA0To 

+ P(q > qr) P(q > q,) 
(7) 

where P(q > q,) is the probability that the design meets or ex
ceeds the q requirement q,. The optimization problem here con
siders both the cost of rejecting unsatisfactory fins and the cost 

of conservative design. The variation of the second term with 
respect to X0 and T0 is usually small, so we can simply optimize 
Ca = C'a — ci/P. Minimizing this cost is equivalent to mini, 
mizing the total volume of material per acceptable fin, 

VT 
*\oTo 

P(q > qr) (8) 

The minimum value of VT for given qr, <rg\, and <TJT may be 
found by searching over X0 and T0. Since an algebraic expression 
for P(q > qr) cannot be obtained, the search offers considerable 
difficulty. Various methods for evaluating P and hence vT are 
described in the following section. The methods differ in ac
curacy and degree of difficulty. 

Determination of the Cumulative Distribution 
Function for q 

By Simulation. The simplest method of obtaining P is by 
digital simulation. Given qr, X0, T0, <TS\, and a01., a random 
number generator provides properly distributed values of S\ and 
8T that are used in equation (2) to obtain q. This is repeated 
N times; the number of times n tha t q > qr yields 

P = n 
N (0) 

While easy to program on a computer, the method is not practical 
for this problem. If N is too small, P is not accurate enough for 
the optimization process. For very large N, a high degree of 
accuracy may be obtained, but running times on the computer 
become prohibitively long. Table 1 shows some representative 
simulations at a single A0, To point for various values of N and 
compares the results to a more accurate method that is intro
duced next. 

By Integration. Another method is to develop P by integrating 
the joint probability distribution function /x,T(X, r ) over the ap
propriate limits, thus obtaining 

P(q >qt) = l - / / A . T ( \ , T)d\dr= 1 F (10) 

•Nomenclature-

a = tanh a/a 
Ca = average material cost per ac

ceptable fin 
Cp = average production cost per fin 
Ci — cost per unit volume of fin 

material 
Cz = fixed cost per fin 

/(<7, 8) = probability distribution func
tion defined by equation (4) 

/x = probability distribution func
tion defined by equation (11) 

joint probability distribution 

function for X and r 
probability distribution func

tion for T 
cumulative probability dis

tribution function for q 
h = heat transfer coefficient 
fc = thermal conductivity 
n = number of successful fins in 

simulation 
N = number of trials in simulation 
L = fin length 
P = probability that heat transfer 

requirement is met = P{q > 

qr) 

/X.T ^ 

F = 

q = stochastic dimensionless heat 
transfer rate = Q/[k(T0 — 
Ta)] _ 

q, = dimensionless heat transfer rate 
requirement 

g0o = mean value of q 
<2i = mean value of q at Xmin, Tmax 
g2 = mean value of q at X max, Tmin 

Q = heat transfer rate 
S = safety factor 
t = fin thickness 

Ta = ambient temperature 
Ta = fin root temperature 
VT = average volume per acceptable 

fin = XoTo/P 
VTX = average volume per acceptable 

fin evaluated by exact calcu
lation of P 

a = XO/TO1/* 

8\ = stochastic variation in X 
8T = stochastic variation in r 

Ax = sech2 a 
A r = tanh a / ( 2 a ) - sech2 a / 2 

X = stochastic dimensionless length 
= hL/k 

Xo = mean value of X 

Vq = standard deviation of q 
ffsx = standard deviation of variation 

of5 x 

crsr — standard deviation of variation 
of8 r 

<J\ = standard deviation of X 
<rr = standard deviation of r 
S = variance parameter defined by 

equation (21) 
T = stochastic dimensionless thick

ness = ht/k 
To = mean value of r 

Subscripts 

max = upper limit of random variable 
in probability distribution func
tion 

min = lower limit of random variable in 
probability distribution func
tion 

00 = evaluation at 8\ = 8T = 0 

Superscripts 

* = optimal value 
— .= root mean square 
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Case Region 

gi < 52 I- QV < gi 
I I . gi < gr < g2 

I I I . g2 < q, 

gi = 92 I- ?r < ?1 
I I . gi < gr 

g2 < gi I- qr < ga 
I I . g2 < q, < gi 

H I . g, < gr 

Table 2 Definition of expressions for P(q > qr) 

r limits X limits 

Tmin to r(gr, Xmin) 
to 

r ( ? r , Xmax) t o 

tO r ( g r , X m in ) 
r{q,, Xmax) tO 

Tmin tO r ( g r , X m i n ) 
T(X, g2) to T(X, gr) 
r ( g r , Xmax) tO Tmax 

Xrain tO X(gr, T ) 
X(gi, r ) t o X(gr, T ) 
X(gr, T ) t o Xmax 

Xrain tO X(g r , T ) 
X(g r , T ) tO Xmax 

Xmin tO X(g r , r ) 
Xmin t o Xmax 
X(g r , T ) tO Xmax 

Integral 

Fi 
F„ 
P I I I 

F I 
P I I 

F I 
F n 
P I I I 

P(9 > Qr) 

1 - Fj 
1 - Fr - F n 

P i n 

1 - Fi 
P I I 

1 - Fi 
1 - F I - F „ 
P I I I 

where the integration limits encompass all X and T for which 
„ < q,. For X and r statistically independent, f\,T(X, r ) = 
k(\)fr(r). From equation (4), b j ' the substitution crx = Xo âx 
and the coordinate transformation implied by letting f\d\ — 

(X - X0)2 

A 4 ( 5 ' / v x ) 
l"i _ (X ~ X ° ) 2 1 
L 5<rx2 J ' 0 < Xo 5'A 

X <xx < X < Xo + 5 ' / v x (11) 

= 0, elsewhere. 

A similar expression can be written for fT. The only difficulty 
in evaluating the integral is determining the limits of integration. 
The region over which the integration occurs is the intersection 
of the rectangle 7-min < r < Tm0x, Xmin < X < Xm[lx and the semi-
infinite region q < qT. Because q = q, is a line of negative slope, 
the outline of this intersection will be either a three-sided figure 
in various orientations or a four-sided figure, depending on which 
side of Xmax, 7-min and Xmin, Tmax the line q = qr falls. In either 
case g = qr forms one side of the figure. If we let 

and 

gi = Tmax > / 2 t a n h ( X m i „ / T m a x ' / ' ! ) 

g2 = Tmin 1 / 2 t a n h (Xmax/Tmin 1 / 2 ) 

(12) 

(13) 

and constant g lines are plotted for gi and g2, the various cases 
are evident. The cases are listed in Table 2 along with the cor
responding integration limits, values of Fi as evaluated from 
equation (10), and expressions for P{q > qr). In the table, 
functional forms such as r(q„ Xmin) imply that T is to be deter
mined according to equation (2) with q = qr and X = Xmin. 

These integrals may be evaluated numerically to a high degree 
of accuracy, and the results are exact in the sense that no assump
tions have been made concerning the form of the distribution 
function for q. The results of this exact solution will be com
pared to the approximate solutions to be derived next. 

By Two-Dimensional Taylor's Series. The exact solution requires 
rather long computation times (but not as long as the digital 
simulation). A root-mean-square approximation might be 
used based on a Taylor's series expansion for q [3], so that 

(14) 

and 

?oo 0-sx2 + r f 
dg 

55T 
CSr (15) 

The subscript 00 implies that the function is evaluated at S\ 
ST = 0. Now, if a = XO/T0

1/2 

( ^ r ) = Xo sech2 a = X0Ax ^sj (16) 

r f ) = ( T O V 7 2 ) tanh a - (Xo/2) sech2 a = X0AT (17) 

goo = T0
1/2 tanh a = oX (18) 

Under this linear approximation, since X and T are independent 
random variables, g is parabolically distributed; therefore, an 
algebraic expression for P(q > qr) can be derived. For the 
parabolic distribution analogous to equation (11), 

for gr < g00 + ^^<rq 

P(q > qr) = 0 

for goo — 51/2aq < q, < qm + 51/!<7g 

•*Q00+51/2(Ta g 

P(q 
Qr 4(5'/>o-8) 

(? - 9o»)2"[ 
5(T,» J 

dq 

P(q > Qr) = 
3 (qr - gooV _ 3 lqr - gon\ 1 

20(5'^) \ crg J 4 ( 5 ^ ) \ aq ) + 2 

for g,. < g0o — 51/2o\, 

P(q > qr) = 1.0 (19) 

With this algebraic expression for P(q > qr), a two-dimensional 
search over X0 and ra for given as\, <rsTI and qr can easily be con
ducted to find the minimum i>r. 

By One-Dimensional Taylor's Series. The foregoing two-dimen
sional, root-mean-square (2D RMS) method is simpler than the 
exact solution but is still somewhat awkward since the optimiza
tion is over two variables. Jakob [6] shows that for an optimal 
deterministic fin 

a = 1.4192 (20) 

If tins is assumed true for the stochastic case at all times, then 
Ax, AT, and a are constant. The problem now involves a one-
dimensional search over Xo (or T0) to find the minimum Vr-

The optimal values of X0/gr, T0/qr
2, and tv/g r

3 are found to be 
functions of 2 only, where 

2 = (AxVsx2 + AT
2<70r

2)'/* (21) 

Numerical Results 
Computations were performed with each of the above meth

ods for numerous values of qr, cr0x, and o-jT to minimize Vr! opti
mal values of X0 ( = X0*) and T0 ( = To*) were obtained. 

Although according to the one-dimensional, root-mean-square 
method (ID RMS), X0*/gr, T0*/gr

2, and vT*/q,s are functions of 
2 only, this is not true in the exact and 2D RMS methods. The 
results suggest, however, that for practical purposes \*/qr, 
To*/?!-2, and Vr*/qr3 are functions of crjx and <rgT only. Table 3 
shows some results indicating this for several values of gr. 

The 2D RMS method provides a good approximation to the 
exact results for X0*/gr with the maximum percentage of error 
in the results in Fig. 1 being approximately 1.34 percent. The 
ID RMS method is a poor approximation to the exact solution 
for X0*/gr (Fig. 2). The error is a result of the assumption tha t 
Xo/Vo1/2 is constant. Nonetheless, the maximum error is 12.54 
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Table 3 Lack of dependence of X 0 * / a " To*/tr2t and v r i * / l r 3 pn q> 

q, as\ <TSr XoVgr r0*/qr
2 VTx*/q,'i 

0.02 
0.04 
0.06 
0.08 
0.02 
0.08 
0.02 
0.08 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0 
0 

0.1 
0.1 
0.1 
0.1 
0 
0 
0.1 
0.1 

1.7959 
1.7960 
1.7960 
1.7960 
1.9452 
1.9455 
1.5941 
1.5966 

1.4326 
1.4326 
1.4326 
1.4326 
1.2641 
1.2640 
1.5426 
1.5403 

2.7483 
2.7483 
2.7483 
2.7483 
2.5271 
2.5271 
2.5271 
2.5271 

percent. The maximum error in Te*/qr
2 for the 2D RMS method 

is approximately 1.90 percent (Fig. 3). In Fig. 4 the maximum 
error for the ID RMS method is seen to be 13.62 percent. 

Fig. 5 shows Vrx*/qr3 as a function of <rs\ and agTI where 
VTX is VT evaluated at Ao* and r0* using the exact computation 
for P. The values of Ao* and r0* are, however, found by minimiz
ing VT using the various approximation schemes. The maximum 
error in the given data for VTX*/<Zr3 is 0.94 percent for the 2D 
RMS method and 3.66 percent for the ID RMS method. 

For the ID RMS method, Xn*/qr and Ta*/qr
2 can be shown as 

functions of 2 alone (Fig. 6). 

1 .9 

1 . 7 -

l . e — 

1 . 5 

0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0 

Fig. 1 Optimal X 0 /q r determined by exact and 2D RMS methods 

1 . 9 

l .S 

1 . 5 

..^-z 
ID RMS 

J L — _ _ - L _ I 

0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0 

6 T 

Fig. 2 Optimal X„/q r determined by exact and I D RMS methods 

Computation times for the four methods are compared in 
Table 4, which shows estimated relative timings for each method 
These values are for comparative purposes only; actual timings 
relative or absolute, are highly dependent on the type of com
puter, search algorithm, initial values, etc. 

The stochastic optimization approach given previously is su« 
perior to a safety-factor approach, but for the convenience and 
comfort of designers familiar with safety factors, the optimal 
safety factor is 

S* = To*'/* tanh (Ao*/ro*1/2)/?r (22) 

The numerator is the nominal value of q for A0* and r0*, and n, 
is the design or required value of q. Fig. 7 shows S* as a func
tion of crs\ and a$T for the 2D RMS and ID RMS methods 
respectively, with exact results included. These values of 8 do 
not determine the optimal fin, however, since there are two de
sign variables, A0 and T0. However, if the designer used A0*/ 
r0*1/! = 1.4192, which is consistent with the ID RMS approxi
mation, S* is a function of 2 only, as shown in Fig. 6. This 
relationship can be correlated by the linear equation 

S* = 1 + 2 2 (23) 

The utility of this last equation is shown in Table 5. I t is 
desired to design an optimal fin given qr = 0.08, CTJX = 0.1, and 
air = 0.1. An exact solution is given, along with an optimal 
safety-factor solution found by using equations (20) and (23). 
Finally, a solution is given with a more conservative safety factor, 
in which the designer has decided, in this example, to design the 
fin for a value of qr tha t is 30 percent higher than the normally 
required value. 

Fig. 3 Optimal ro/qr
2 determined by exact and 2D RMS methods 

* , 2 T * / q 

1 
1 

1 
, 

1 

-

ID RMS 
1 1 1 l l 1 .2 

0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0 

Fig. 4 Optimal ro /q r
2 determined by exact and I D RMS methods 
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3 
v Tx ' Mr 

2 .0 -

0.02 0 .04 0 .06 0.08 0 .10 

J 6 T 

Fig. 5 Optimal v y / q r
! 

T*/q 2 
o ^r 

Fig. 6 X 0 * / ° r , T0*/qr
2, and S* versus 2 

Conclusion 
Four methods of determining the optimal fin design have been 

discussed. The two-dimensional method, based on the lineariza
tion of q to determine its variance, provides results close to the 
exact solution. Since in this problem Ao*/Vo*1,/2 remains rela
tively constant, a one-dimensional method may also be applied 
to determine the optimal safety factor. In other problems a 
similar multidimensional analysis could be conducted in search 
of groupings of variables that are almost constant so that a 
similar reduction in dimensionalit}' could be effected. 

All methods provide an optimal safety factor, but equation 
(23) gives S* as a function of 2 alone. Although only an ap
proximation, the use of this safety factor with equation (20) 
is convenient for designers and provides them with a rational 
and nearly optimal selection of the fin dimensions. 

Although the fin problem is not representative of all problems 
in engineering, the results of this investigation are at least en-

1.04 

1.00 
0 0.02 0.04 0.06 0.08 0.10 

6T 

Fig. 7 Optimal safety factor 

Table 4 Comparison of computation times 

Optimization 
method 

simulation 
"exact" by 

integration 
2D RMS 
ID RMS 

Estimated relative 
computation time 

39,656 
8292 

25 
1 

Table 5 Comparison of exact, optimal safety-factor, and arbitrary 
safety-factor solutions 

Percentage 
Safety excess in 

factorS Xo TO P VTX vrx/q,-3 VTx/qr
3 

optimal 0.144 
1 + 22 0.140 
1.3 0.166 

0.00917 
0,00968 
0.0137 

0.936 
0.954 
1.000 

0.00141 
0.00142 
0.00227 

2.75 
2.77 0.71 
4.43 61.2 

couraging with regard to the use of linearization schemes for 
stochastic optimization and design. 
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The Use of Singularity Programming in 
Finite-Difference and Finite-Element 
Computations of Temperature 
This report contains a description of a numerical technique designed to overcome the 
difficulties associated with the usual solution of two-dimensional discretized thermaH 
problems when there are singularities arising from point sources or discontinuous i 
boundary conditions. The method is here applied to both the finite-difference and the'} 
finite-element approach by incorporating in the numerical computations the known ana
lytical form of the singularities. 

L 
Yi Introduction 

I HE USUAL numerical method of solving linear two-
dimensional field problems with singularities, such as those 
arising from point sources or from sharp boundary corners, is to 
refine the mesh, but this can be done only at the expense of in
creased computing effort, and frequently it is not possible to know 
when the mesh has been sufficiently refined. 

A more promising approach is to superimpose a closed-form 
analytical solution and a numerical solution in the vicinity of the 
singularity. This can be done in both the finite-difference and 
the finite-element methods of solving the field equations. Motz 
[1]1 presented one of the first demonstrations of this technique in 
solving a Poisson equation for a sharp reentrant corner by finite 
differences, and this approach was later extended by Woods [2] 
to classical linear elastic problems. Morley [3] and Fix [4] have 
applied the technique to.elastostatic eigenvalue problems solved 
by the Rayleigh-Ritz technique. Fix has shown that only if the 
singular solution is adjoined to the polynomial function used in 
the numerical solution is the normal accuracy of the finite-dif
ference operator achieved. Emery and Segedin [5-8] have used 
superposition in conjunction with finite-difference methods to 
solve several fracture-mechanics problems. The use of super
position with finite-element algorithms is typified by the solutions 
of Wait and Mitchell [9] to Motz's original problem. Yamamoto 
[10, 11] has utilized the method for the solution of fracture-
mechanics and stress-concentration problems. Pian and Tong 
[12] have used the technique in their hybrid finite-element model 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (without 

presentation) in the JOURNAL OF HEAT TRANSFER. Manuscript re
ceived by the Heat Transfer Division September 13, 1972. Paper 
No. 73-HT-K. 

for fracture analysis. Gallagher [13] gives a review of the dif
ferent superposition models available. In this paper we would 
like to demonstrate the applicability of superimposing analytical 
solutions to thermal problems and to illustrate how the method 
can be incorporated into the usual finite-difference an d finite-
element computer codes. The superposition technique used 
herein was termed singularity programming in [14] and should 
not be confused with the usual superposition method where a 
singular solution or a Green's function is adjoined to a second 
solution, whose values are then adjusted such that the com
bined solution achieves the correct boundary conditions. In 
singularity programming, the singular solutions are used to 
generate an effective (or pseudo) spatially varying heat source, 
which is usually only considered close to the point of the singu
larity. 

In §2 and §3 the finite-difference and finite-element approaches 
are outlined. In §4 they are applied to problems of point sources 
of heat. The solution is found for a range of mesh sizes, and it is 
shown that with singularity programming, striking accuracy can 
be obtained with a coarse mesh. In §5 a discontinuous boundary 
condition is treated for which the singularity functions are 
known. 

In §6 the method is applied to thermal singularities caused by a 
boundary corner. In contrast to the previous sections where the 
singularity function was known completely, here the form of 
the singularity is known, but not its strength. Further effort is 
thus required to evaluate these singularity strengths K. Usually 
there are several singularity functions that must be considered, 
and it may be that the evaluation of the several K's does not yield 
consistent values. I t has been found that by including extra 
singularity functions consistency can be obtained. In this sense, 
the technique is adaptive in that the need for higher order singu
larity functions can be detected. In §7, singularity programming 
is applied to a problem involving an instantaneous plane source. 
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§2 Finite Difference Singularity Programming 
Consider a region R with the bounding surface dR and let the 

variable T satisfy the field equation of conservation of energy2 

kV*T + Q + q = 0 (1) 

where Q represents distributed heat sources and q represents point 
sources of heat and the boundary condition on dR 

PT = g (2) 

Replacing the derivatives in equations (1) and (2) by finite-dif
ference expressions of the form 

yT _ T(x + Ax) - 2T(x) + T(x - Ax) d^T Ajc2 

to* ~ Ax2 dx4 4! 

and ignoring the error terms will yield good approximations 
except near "singular points." A singular point is defined as any 
point in R + dR for which T or a derivative of T in the Taylor 
series expansion for T becomes infinite or large in such a way that 
the corresponding error term in the finite-difference equations 
cannot be ignored. Such singularities can be found at point 
sources of heat, or at abrupt changes in boundary conditions or 
abrupt changes in direction of the boundary tangent as at re
entrant corners. Here nearness is characterized not by the 
physical distance x but by the distance in terms of the number of 
nodal points, for if As —»- 0 the error term will tend toward zero 
for any nodal point not at the singularity. 

Hence it is usual to treat singular problems by reducing the 
mesh spacing Ax in order to keep the error terms negligible. 
While this remedy can be effective if the troublesome derivative 
is large, it is inadequate if the derivative becomes infinite at the 
nodal point in question, and in any case the price to be paid for 
this is a mesh size so small that the computational effort required 
can become prohibitive. 

The essence of singularity programming is to assume that T can 
be decomposed into two parts : 

T=T+Y, E K'PSiF = T + E KJSi = ? + W (3) 

where P is the number of singular points in R + d-ffi, Np
 :s the 

number of singular functions to be considered at each singular 
point, Ar is the product P X NP, and in the last form of equation 
(3) the Einstein summation convention is used. T is "smooth" 
in the sense tha t the finite-difference approximations involving T 
have acceptable accuracy. The Si, termed singularity functions, 
are assumed to satisfy the homogeneous form of the equations for 
T, namely when point heat sources are absent, 

V*S{ = OinR 
(4a) 

@Si = 0 on dR near the singularity 

or to satisfy only the field equation when point sources are present 

KiV*Si + f = 0 (46) 
k 

In the former case the Ki depend upon the boundary conditions 
that cause the singularity, while in the latter case the Ki are 
known through the magnitude of q,. Birkhoff [15] gives the 
derivation of several singularity functions for the Poisson equa
tion. Generally speaking, Si is found by solving V2S; = 0 in 
polar coordinates, i.e., Si = r" (A cos nd + B sin nd), with A, B, 
and n adjusted to satisfy (3Si = 0 in d-ffi near the singularity. 

If we denote the finite approximation to V2 and /3 as 0 and B, 
it f ollows that 

0 2 ' = <>T + KiOSi 

2 Although the derivation is for constant thermal properties, the 
extension to variable properties is easily carried out. 

Since T is smooth, 0 T is a good approximation to V'T, and we 
have 

OT = V 2 f + IdOSi 
(5) 

= V*T - KtV*Si + KiOSi 

or 

OT = KiOSi - Q/k 

Correspondingly we find upon assuming that BT = flT 

BT = 0T + Ki(BSi - /as,-) 
(6) 

= g + Ki(B - P)S{ 

I t is thus apparent tha t the presence of singularities can be taken 
into account by adding the pseudo heat sources If; OS; and the 
pseudo boundary conditions Ki{B — j3)Si to the actual heat 
sources Q and boundary conditions g and solving the set of equa
tions (5) and (6). The solution then proceeds by taking the 
standard finite-difference program and adding to each nodal 
point the pseudo source term and to each boundary nodal point 
the temperature or flux pseudo boundary contribution Ki(B — 
/3)Si. In evaluating these terms, 0 and B are the operators used 
by the program. For example, if V2 is modeled by {T(i, j -j- 1) 
- 2T{i,j) + T(i,j - l)}/A.-c2 + {T(i + 1,'j) - 2T(i,j) + T 
{i — 1) j)) /Ay2, then OS; would be evaluated by substituting S{ 

for T in the preceding formula. I t is usual to neglect all (}Si 
whose values are less than 1 percent of ()Si in the immediate 
vicinity of the singularity. Likewise, most problems in which 
the boundary is a large number of nodal points away from the 
singularity will have a negligible contribution to g.' 

For problems where both K»• and St are known, this is all tha t is 
needed. 

When the singularity strength is unknown, Ki can most con
veniently be found by first solving two subsidiary solutions in the 
following way: 

1 Solve for T" from 

OT" + Q/k = 0 
(7) 

BT" = g 

which corresponds to the usual finite-difference solution ignoring 
singularities 

2 Solve for Tl from 

0 2 V = OSi BTS = (B - B)Si (8) 

The solution of equations (5) and (6) is then written in the form 

T = T" + KiTi1 (9) 

3 In order to evaluate Ki, we now collocate by insisting that 
the energy equation (1) hold at points on the boundary at which 
we have hitherto required only satisfaction of the boundary con
ditions.3 If 0 * is the finite-difference form of V2 on the bound
ary, we have 

0*T = KiO*Si - Q/k 

or 

Q*T° = Ki(0*S - 0 * ? V ) - Q/k (10) 

4 Equation (10), when applied to the requisite number of 
boundary points, will yield sets of algebraic equations for Ki. 
I t is best to use points on the boundary near the singularity to 
determine Ki, for at points far from the singularity, S; becomes 

3 One of the simplest ways to detect the presence of a singularity is 
to check the satisfaction of the energy equation at boundary points 
(normally this check is not made since the energy equation is usually 
not applied at a boundary point). Even weak singularities will 
usually display gross errors near the singular point. 
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smooth and ( 0 — V2>S; approaches zero quite rapidly. Because 
of truncation errors, the use of points for which 0 *T° + Q/k and 
0 *Si ~ 0 *Til are small often leads to ill-conditioned equations 
and consequently erratic values of Ki (see [14] for examples). 
When using several boundary points to determine IQ, if the 
values are equal we say that Ki is consistent and that the solution 
has been found. However, if the values are not equal, either the 
nodal spacing is too coarse or some important singularities have 
been neglected (see §4 in the following). 

5 If there are multiple singularities, each singular point gives 
rise to values of K{, say K{

A and KiB. However, when using 
boundary points near singularity A, the truncation error will ad
versely affect the values of KtB. The best procedure is to 
evaluate KiA using points near A and KiB using points near B, 
which corresponds to ( 0 — V2)iS» being equal to zero at points far 
from the singularity. This can always be achieved by refining 
the mesh sufficiently. Otherwise it is best to regard the terms in 
KiB as known perturbations in the equations for A and vice versa, 
and continually correct until convergence has been achieved. 

§3 Finite-Element Singularity Programming 
The appropriate integral to minimize for steady thermal 

problems [16] is 

'-;/>[©>(£)* QT\ dA J qnTds 
J R 

( ID 

where q„ is the outwardly directed heat flux on the boundary of 
any element that does not have a prescribed boundary tempera
ture. 

We subdivide R into elemental areas and let the temperature 
be expressed in polynomial form by the basis functions 

a 0 + ctix + aiij + . . . + KSi 

T = </>{«} + {S){K) 

(12) 

(13) 

where (/) is a row vector whose components are functions of x and 
y and {a} is a column vector of coefficients; (S) is a row vector 
whose components are singularity functions and [K} is a column 
vector of singularity strengths. If the temperatures and the 
singularity functions at the nodal points are denoted by T and S, 
respectively, we have 

f [S]{K] = [A){a] (14) 

where {A] is a square matrix whose rows are (/) evaluated at the 
nodal points and [S] is a matrix (not necessarily square) whose 
rows are (S) evaluated at the nodal points. Solving for {a} we 
have 

{a} = [A] - i{ r} - [A]-HS]{K\ (15) 

T = </>[A]-»{!?} - {f)[A]^[S]{K} + (S){K] (16) 

If we define 

M = [i-fiMOT.) + M/zwiu-'i 
N = [A^vikziuns^ + k^riSytiiA-i] 
P = kx(Sxy(Sx) + kv(Sy7(Sy) 

R = W > 

O = Q(S) 

A = [A-i] 

where (fx) = (bf/i>x), superscript T denotes transpose, and M, 

(17) 

N, P, R, and O are the integrals of M et seq. over the elemental 
area, we find for constant kx and ky 

I = \[{f)T{M{f] + (N - MS)\K)} 

+ {K} T{ (iV - STM){f] + (P - NTS - STN + STMS){K}} 

+ 2RA{T] ~ 2RAS{K} + 20[K}] (18) 

[Differentiating with respect to J\ and Ki, we find the linear 
equations for the element to be 

- ^ = M{T\ + (N - MS){K] + A'B? = 0 (l9) 
bTi 

U 
— = (NT - STMT){T\ + (P ~ NTS - STN + STM§) lK] 
f \ T ( . • — - — - — - — - — — — _ * J dKi 

STATRT + 0 ? = 0 (20) 

Here M is the usual thermal-conductance matrix [16] and ATRT 
is the usual thermal source term; the underlined terms are the 
additional terms due to singularity programming. 

Singularity programming is implemented by taking a standard 
finite-element thermal analyzer and adding the underlined terms. 
In general these terms are added only to the conductance matrices 
of the elements near the singularity. Some testing must be done 
to determine how far the influence of the singularity extends, and 
thus how many elements must include these terms, but normally 
the distance is not large. Inasmuch as S must be evaluated in 
each element (for example if S — r" cos nO, r is measured from 
the point of the singularity to the nodal point of the element, 
and thus S is not independent of an element's spatial position or 
orientation) and the integrating routines for N, P, and 0 must be 
rather carefully formulated in order to achieve a satisfactory 
accuracy, as well as the fact that the inclusion of S in very many 
elements effectively expands the band width of the matrix, it is 
best if the singular terms are added only to elements close to the 
singularity where the effect of singularity programming is most 
noticeable. 

The polynomial portion of T is determined by the type of ele
ment used: bilinear for three-node triangles, bicubic for four-
node quadrilaterals or six-node triangles, etc. Inasmuch as one 
of the primary aims of singularity programming is to yield im
proved accuracy in the simplest manner, the bilinear poly
nomial <Xo + oiiX + a%y was chosen. The choice was dictated by 
the observation that almost all existing finite-element thermal 
analyzers are based upon bilinear polynomials and by previous 
tests of the bicubic and hybrid models [16] indicating that only 
the six-node triangle was better. However, the difficulty of 
automatic mesh generation for the six-node triangle discouraged 
its use. Furthermore, if singularity programming is valid, then 
the singular function should account for all of the ill-behaved part 
of T and the polynomial basis should need to treat only the 
smooth part of T, and for this the bilinear form should suffice. 

In general, equations (19) and (20) are sufficient to define the 
solution, and when the element contributions are combined and 
the flux boundary integi'al included, if necessary, equation (11), 
the solution to the set of equations will yield T and {K}. 

§4a The Point-Source Problem—Known Value of K 

Consider a square region ( — Va < x < i/2, —l/i<y< Va)with 
zero boundary temperature and with a steady line source of heat 
of strength K = 1.0 Btu/hr-ft located at the center x = y = 0, 
The singular solution S is given by 

S = In (r/R) (r2 = x2 + y*) and R 
2TTK 

reference length 

(21 
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f/nl/s Etemcnf Sin<?u/arr~tti/fe 
A* Smfo/ar Standard Difference 

Fig. 1 Comparison of temperature along the diagonal 

To establish the element thermal-stiffness matrix, a source of heat 
of strength l/7re2 was uniformly distributed over a circle of radius 
e centered at x = y = 0. The stiffness matrix was formed and 
then e was allowed to approach zero. Fig. 1 compares the 
temperatures on the diagonal obtained by the standard finite 
element, singular finite element, and singular finite difference. 
It is obvious that the singular techniques using a mesh spacing of 
Ax = Ay = y 3 are as accurate as nonsingular methods using Ax 
= Ay = V20. And of course near the singularity even the finest 
regular mesh cannot retain any reasonable accuracy, as evidenced 
by the temperatures computed at the source as indicated by the 
limiting lines on the figure. The values of T shown for points on 
the diagonal that are within the singular element enclosing the 
point source were estimated by interpolating the smooth part of 
T and adding S. In fact, one of the major shortcomings of the 
standard procedure is its inability to provide for any reasonably 
accurate interpolation near the source. 

§4b The Two-Point Source Problem—K Known 
When two point sources of unit strength, Si and S,, are placed 

at x = —0.125, y = 0 and at x = 0.125, y = 0 respectively, see 
Fig. 2, the singular functions are again known, but now we must 
consider the interaction between the two singularities. Fig. 2 
compares the standard finite-element and the singular finite-
element solutions, and the superiority of the singular element 
with Ax — Ay = y a is apparent. The success of the singular 
element is due to its ability to extract from the numerical solution 
the singular part. The dashed curve in Fig. 2 shows the smooth 
part of the solution (i.e., T - KiSi = T) for Ax = V11, and its 
smoothness is readily observable. 

In computing this solution with finite differences by imaging 
about the line x = 0.0, care must be taken to consider the effect 
of S, by including the term OS, in the region — 0.5 < x < 0.0, in 
addition to OSi- Table 1 gives a comparison of the temperature 

Table 1 

r (os, = 0) 
T (OS, ^ 0) 
T (OS, = 0) 
T (OS, * 0) 

T at x = O and y = 

AZ = Ai/ = y 3 

-0.199 
-0.187 

0.132 
0.144 

0 

Ax = Aj, = Vu 
-0.179 
-0.177 

0.155 
0.157 

atx = 0,y = Owhen <>rJ2isand is not considered. Apparently, 
for Ax = Vn where the singular points are separated by about 
six mesh increments, the second singularity no longer contributes 
to the pseudo heat source term because ( 0 — V2)S2 has suf
ficiently approached zero. 

§5 Discontinuous Boundary Conditions—K Known 
Consider the rectangular region shown in Fig. 3(b). The tem

perature is prescribed to be zero for 0 < x < 0.25 and 0.75 < x < 
1.0 and unity for 0.25 < x < 0.75. Because of the discontinuous 
change in temperature at x — 0.25 and 0.75, there is a singularity 
in the heat flux at these points. The appropriate singular func
tion is 

S 

with the corresponding heat flux on y = 0 of 

cos 81 cos 6,\ 1 / cos 61 cos 8,\ 
qv = - I I 

7T \ n r, ) 

(22) 

(23) 

A X 3wai//ar Standard 
1/3 • 
'/s A 
Vu 
'/it a 
>/3l O 

Fig. 2 Comparison of the temperatures along y = O predicted by 
singular and standard finite-element procedures 
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AX Singular Standard 

O 
A 
+ 
X 

Fig. 3(a) Temperatures on the lower surface calculated by singular and 
standard finite-difference procedures 

Because the usual finite-difference procedure assumes that the 
value of a function at a nodal point represents the average value 
over the region — As /2 < x < Ax/2, the singular point was 
placed at the center of a mesh interval. The computations were 
made by assuming that the insulated lower surfaces was a plane 
of symmetry. Consequently it was necessary to introduce the 
images of the singular points 1 and 2 in the calculations. Figure 
3(a) is a comparison of the temperatures calculated on the lower 
surface by the standard finite-difference and singular finite-dif
ference procedures. Acceptable accuracy is obtained by the 
standard technique only for Ax < • /», even though the singular
ity is far removed from this plane, whereas Ax = 1 /6 suffices for 
the singular procedure. The heat flux on the upper surface y = 
0, 0 < x < 0.25 is compared in Fig. 3(b). As expected, even the 
use of Aa; = V22 with the standard procedure is not adequate, 
while Ax = y 6 with the singular approach is quite satisfactory. 
The heat flux for the singular procedure is calculated according to 

Q (/smooth [AT smooth + 
01 sing 

h\A(T - r . i n , ) + 
dTBin 

~by 
(24) 

where A is the finite-difference form of b/dy and dTaine./dy is de
termined analytically. 

§6 Interrupted Heat Flux—AC Unknown 
Consider the rectangular area shown in Fig. 4 where the flow of 

heat from the left boundary to the lower is impeded by an insu
lated splitter plate extending from x = 0 to x = 0.5. The gen
eral form of the singularity function is 

S = r"(A cos nd + B sin nd) . 

where A, B, and n determined from the boundary conditions near 
the singularity for the configuration of Fig. 4, namely qu = 0 on 
8 = IT and — IT, are 

1WK . . . 

n = — (m = 1, 2, 3, . . . ) where a is the included angle 

(27T in this case) 

and 

A = B 
cos mir 

In this case there are at least two operative singular functions 

AX 
'It 
1/10 

1/14 
'/lB 
•III 

Smfvlar Standard. 
9 O 

A 
+ 
X 

— o 

xr.c 7-=/ /io 

-. __ IO *• 

OS 

Fig. 3(b) Heat flux on the upper surface calculated by standard and 
singular finite-difference procedures 

n = 1/t and n = 3/z that give rise to infinite terms in the fiiiite-
difference expressions for d2T/dx2 and d2T/dy2. Consequently, 
there are two values of Id to be determined. 

§6a Finite-Difference Singularity Programming 
Using the singular finite-difference technique with only Si (?i( 

= 1/i) and applying equation (10) at the nodal point at the tip of 
the splitter and a t the next two nodal points on the splitter, see 
Fig. 4, we find the results of Table 2. We note that : (a) 7ft 

Table 2 Evaluation of K, when K2 is neglected 

Ax = K^P) Ki(Q) Xi(fl) 

A 
/1. 

A. 
Ao 

1.1567 
1.1490 
1.1453 
1.1432 

1.1023 
1.1132 
1.1187 
1.1219 

1.0108 
1.0688 
1.0835 
1.0920 

varies significantly from point to point; (6) Ki_ evaluated at the 
tip varies as Ax is diminished. This type of variation, namely 
point to point and with Ax, suggests that the next singularity 
function with n% = 3/z must be considered. By including K& 
and solving the set of simultaneous equations at P and Q, P and 
R, and Q and R, we find the average Klt K2 and their standard 
deviations given in Table 3. By including Ki we note that the 

A.T. 

Table 3 Simultaneous evaluation of K, and K± 

Kx o-OKi) K* «{IU) 

u 
/ i t 

/.. 
Ao 

1.1325 
1.1326 
1.1334 
1.1338 

0.0012 
0.0016 
0.0029 
0.0018 

-0.492 
-0.431 
-0.429 
-0.442 

0.013 
0.075 
0.063 
0.050 

values of Ki agree to within 0.1 percent and that the standard 
deviation is less than 1 / ! percent. This type of consistency is 
taken to be indicative of a satisfactory solution. Furthermore, 
a mesh of A = Vs is seen to be quite as good as A = V20. The 
values of Ki do not appear to be as consistent, showing a deviation 
of about 15 percent. This oi'der of variation is not unusual ana 
appears to be related to the greater sensitivity of the numerics 
to strong singularities (n = V2) than to the lesser ones {n = '/»)-. 
The importance of evaluating Ki lies not with its own value bui 
with its effect upon the consistency of Ki. Table 4 lists the con-
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1/16 a 
Vio o 

1_ 1 (__ 
•0.2 0.3 

X 

0.4 0.5 

Fig. 4(a) Comparison of singular and standard finite-difference values 
of heat flux along the splitter plate 

Ax T0 

Table 4 Temperature at point A 

KiT1 K2T
2 TA (= T» + IdT1 + K2T

2) 

Vs 0.1735 0.0073 0.0007 
V12 0.1784 0.0038 0.0003 
7,6 0.1801 0.0025 0.0001 
>Ao 0.1809 0.0018 0.0001 

0.1815 
0.1824 
0.1827 
0.1827 

tribution of T°, KiT1, and K2T
2 to the temperature at point A of 

Fig. 4. The contribution of K2T
2 even with the coarse grid of 

Ax = Ay = y8 is only 0.4 percent of TA and less than 10 percent 
of the effect of KiT1. Consequently the 15 percent variation in 
K«is not incommensurate with a variation of 0.5 percent in Ki. 

§61) Finite-Element Singularity Programming 
The splitter-plate problem was also solved using the finite-ele

ment method with square elements. In this case the number of 
elements that included the singular effect was varied. Fig. 4 
illustrates the case where 12 elements included the singularity 
functions. Other cases were generated by expanding or contract
ing the singular-element region in a nearly circular pattern. 
Table 5 lists the values of Ku Ki, and TA and compares them to 
the finite-difference singularity programming results. In these 
finite-element calculations the values of Ki and K2 appear to be 
more dependent upon the number of singular elements than upon 
the total number of elements. Even when all of the elements are 
singular, the finite-element results for Ki and K2 are significantly 

5.0 

4.0--

1.0 

IT, \ 

A\\ 
: \ ^ 

" ^ 

<S "*"" 

-+ 

^ " ^ 

AX 
1/4-

1/8 
l/lt 
1/16 
l/ZO 

- © 

S/nou/ar 

rf-

Standard 
O 
X 
A . 

n 
o 

— — o 

— I r— 
0.5 ,0.6 0.7 0.8 0.9 

X 

Fig. 4(b) Comparison of singular and standard finite-difference values 
of the vertical heat flux 

different from the finite-difference results, although the values of 
TA are not. This is caused by a compensation between the 
effects of KiT1 and K2T

2 that tends to adjust Ki to offset any 
errors in K2T

2. The errors in Ki and K2 apparently stem from 
the finite-element formulation. For square elements (obtained 
by adjoining four triangles and condensing out the central point), 
the boundary points on the splitter plate have the equations (Fig. 
4) 

§TQ - i(TP + TR) - ±TC - iTD - iTE = 0 (25) 

which, by use of the Taylor series expansion, may be written as 

-Ay 
dT 

(Ay)2V2T + = 0 (26) 

Thus to an accuracy of (Ay)2, the finite-element algorithm satis
fies neither the field equation V2T = 0 nor the boundary condi
tion bT/bj/ = 0, but rather a weighted sum of both. As a conse
quence of this combined boundary condition, the singularity 
strength is not accurately evaluated. 

§6c Comparison of Singular and Nonsingular Techniques 
Regardless of the small error in Kt produced by the singular 

finite-element technique, the resulting answers are significantly 
better than any normal finite-element or finite-difference method, 
as shown in Table 6. Figs. 4(a) and 4(6) give a comparison of 
the singular finite-difference and usual finite-difference values for 

Table 5 

'A 
>A 

dumber of singular elements 

2 (all elements 
2 
6 
8 (all) 
2 
6 

12 
18 
32 (all) 

singular) 

Finite element 
Ki (K2 = 

1.285 
1.277 
1.234 
1.224 
1.275 
1.232 
1.212 
1.203 
1.195 

0) Ki 

1.285 
1.276 
1.234 
1.224 
1.275 
1.232 
1.212 
1.203 
1.195 

K2 

0.091 
0.067 

- 0 . 0 3 2 
- 0 . 0 4 5 
- 0 . 0 5 6 
- 0 . 0 4 8 
- 0 . 0 7 7 
- 0 . 0 8 6 
- 0 . 0 9 4 

TA 

0.170 
0.179 
0.179 
0.178 
0.182 
0.182 
0.181 
0.181 
0.181 

Ki 

1.1325 

Finite difference 
K2 TA 

-0.492 0.1815 
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Table 6 Comparison of values of TA by different methods 

Ay 

V J 

'A 
Ve 
v8 Vio 
Vu 
Vic 
Vso 
Vw 
V«» 

lst-order 
triangular 

element (16) 

0.1429 
0.1591 
0.1659 
0.1697 
0.1721 
0.1738 
0.1759 
0.1772 
0.1781 
0.1793 

2nd-order 
triangular 

element (16) 

0.1737 
0.1771 
0.1784 

lst-order 
quadrilateral 

element 

0.1176 
0.1579 
0.1674 
0.1717 
0.1741 
0.1756 
0.1775 

lst-order 
finite 

difference 

0.083 

0.151 

0.166 
0.173 
0.176 

2nd-order 
finite 

difference 

0.133 

0.174 

0.178 
0.180 
0.181 

Singular 
finite 

element 

0.170 

0.181 

Singular 
finite 

difference 

0.1815 

0.1824 
0.1827 
0.1827 

the heat flux along the splitter plate and on the line y — 0, x > 
0.5. The singular heat fluxes were calculated as in §5. For both 
figures there is a substantial error in the finite-difference results 
even for the finest mesh (A = x/w) at points closer than 0.1 to the 
singular point. In both cases the singular results for A = V* dif
fered by less than 0.001 from the singular results for A = y2o. 

Pig. 5 compares the heat flux along the splitter computed by 
the standard and singular finite-element methods with the singu
lar finite-difference results. 

§7 Transient Singularities 
Although it is conceptually possible to include in the singular 

finite-element method transient singular problems'—such as a 
transient point source'—the numeric difficulties are so great that 
the method loses much of its appeal. In general, transient 
singular solutions are not available in analytic form, or if they are, 
they are so complex that the necessary spatial integrations are 
nearly impossible to perform. Inasmuch as the intent of singu
larity programming is to reduce computation times, and since 
transient singularities are not necessarily singular for all times 
(viz. the instantaneous point source), these problems are best 
treated by either singular finite-difference techniques for which no 
spatial integrations are necessary or by standard discretization 
techniques. If we define V to be the finite-difference approxima
tion to d/bt, the singular finite-difference procedure gives 

VT - QT = K(VS - OS) (29) 

where V can be any desired time discretization; it is chosen here 
as the Crank-Nicholson differencing [16]. 

Consider the region shown in Fig. 6 where a plane source of 
heat is located in the center. At the point P, located at x = 
10/n, the temperature should be approximately that near a plane 
source in an infinite region, namely 

T-,%1 = 
Q 

2V«« 
exp [ — (xp — xs)

2/4Ki] (30) 

where xa is the location of the source. Fig. 6 is a comparison 
of the results obtained by standard and singular finite-difference 
techniques. A base time step AU was taken to be the usual ex
plicit stability limit [16]. 

Ato = AX2/4K (31) 

Time steps of 2, 4, 8, and 16 Afe with the singular finite-difference 
procedure gave values of Tv that were identical to each other and 
to 2'rot to within 10 ~6. On the other hand, the standard finite-
difference procedure with time steps as small as Ai0/16 showed 
reasonable accuracy only for Kt > 0.01. 

Furthermore, since time increments less than Afo/8 gave 
nearly equal values of Tv for Kt > 0.001, there is no possibility of 
improving the standard technique by further reductions in time 
step unless the spatial mesh is simultaneously refined. 

teU3 

AX 
'/4 
'/a 
l/IZ 
1/16 

f~/n/fe 

Singular 

• 
• 

Element 

Standard 
O 
A 
D 
O 

Singular Fin/fa Difference 

0.2 0.3 

X 

§8 Conclusions 
It has been demonstrated that both singular finite-element and 

finite-difference algorithms are powerful tools for yielding striking 
improvements in accuracy and reductions in computing time for 

Smoi//ar finite Difference 
£i= 1,1,4,8.16) 
At. 

—a 

p 

A 
L—: 2 

Plane 
Soi/rce 

A 

Standard fOnife Difference 

Ai At,'<M) 
At. +X 

I O 
Ut A 
1/4 D 
l/S O 
1/16 

0.02 0.03 

Kt 

Fig. S Comparison of singular finite-difference and standard and singu- Fig. 6 Normalized temperature at point P due to a unit plane source of 
lar finite-element values of heat flux along the splitter plate heat 

350 / AUGUST 1 973 Transactions of the AS ME 

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



problems that contain points of singularity. Although the singu
lar finite-element algorithm tends to give slightly inaccurate 
values of the singularity strength K, the overall accuracy of the 
method and the ease with which the singular strength K is auto
matically computed compared to the need for choosing the 
boundary points in the singular finite-difference method renders 
it the logical choice for implementation. 

One of the major attractions of either approach is the ease with 
which they are implemented. In finite-difference methods, one 
need only add a pseudo source term to the true source term. For 
the finite-element method, subroutines to evaluate the extra 
matrix terms are all that are needed. Thus existing computer 
codes can be easily modified. 
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Heat or Mass Transfer in Laminar 
Flow in Conduits With Constriction 
Analytical solutions are obtained on the effects of boundary constriction on heat or mass 
transfer at the entrance region in a well-developed steady laminar flow in symmetric and 
axisymmetric conduits subjected to uniform wall temperature or mass concentration. 
The solutions are limited to the fluids of constant properties with negligible viscous 
dissipation, moderate Reynolds number, and large Peclet or Schmidt number, and the 
spread of the wall constriction is large compared to the mean width or radius of the con
duits. It is found that both the bulk temperature and heal transfer rate at the w.all are 
oscillatory in nature, and their amplitudes decrease drastically as the fluid moves away 
from the entrance. Near thermal entry length, the bulk fluid temperature approaches 
its mean value with vanishing oscillation, but the heat transfer rate at the wall stays 
oscillatory in nature due to the irregularity of the wall. The thermal entry length 
changes very Utile from the corresponding straight-wall conduits. These results are 
also true for the mass transfer. 

Mi* INALYSIS of forced convection and mass transfer in 
laminar flow inside a conduit has been the subject of extensive 
study since the publication of Graetz's paper in 1855 [ l ] . 1 Until 
now, little analytical work has been done on the effect of irregular 
surface upon the nature of heat and mass transfer in a conduit, 
due to the lack of hydrodynamic data [2]. Recently, Chow, 
et al. [3, 4], have obtained hydrodynamic solutions on steady 
laminar flow with moderate Reynolds numbers in conduits with 
irregular surfaces, where the spread of roughness is large com
pared with the mean radius of the conduit. These results are 
of considerable interest, especially for blood flow in arteries with 
stenoses and for membrane oxygenators using parallel plates 
with wavy surfaces. The hydrodynamic solutions are used here 
to obtain temperature and mass concentration distribution and 
heat and mass fluxes from the wall in the entrance region for a 
fluid with constant fluid properties and negligible viscous dissipa
tion subjected to uniform wall temperature and mass concentra
tion for symmetric parallel plates and axisymmetric tubes with 
arbitrary wall variation. We are able to obtain the solution 
using Green's functions. Numerical results are presented for 
the bulk fluid temperature and the Nusselt number for the con-

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (with

out presentation) in the JOURNAL OF HEAT TRANSFER. Manuscript 
received by the Heat Transfer Division April 28, 1972. Paper No. 
73-HT-N. 

duits with sinusoidal wall variations and are compared with those 
of the conduits with straight walls. 

Formulation of the Problem 
Consider a Newtonian fluid of constant fluid properties flowing 

steadily in a conduit. The boundary of the conduit is given by 

!?(z) = 1 + tg(x), e a 
—, x = (1) 

where x', y', a, and A are, respectively, the longitudinal and 
transverse (or radial) axes of the conduit, the height of the wall 
constriction, and the characteristic length along the x' axis over 
which the significant changes in fluid quantities occur; g(x) 
describes the wall variation relative to the mean half-width (or 
radius) y0'. At x' = x0', the wall temperature and mass con
centration are suddenly changed from T! = T0' to T' = T, 
and C" = Co' to C" = CV, respectively, and maintained there 
for the remaining conduits. The equation governing the heat 
transfer is the same as that for the mass transfer with negligible 
viscous dissipation. Thus, in the following, we shall consider 
the equation governing the heat transfer only, which is also 
applicable to the mass transfer problem by replacing the tem
perature T' by the mass concentration C" and the Prandtl num
ber v/a by the Schmidt number v/D. The symbols v, a, and B 
are, respectively, kinematic viscosity, thermal diffusivity, anc 
mass diffusivity. 

The steady nondimensional energy equation governing the 
temperature field for constant fluid properties and large Pecle 
number in plane symmetric and axisymmetric conduits is 
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P r R e S ( ^ , „ r i l t - faxT,y) = (y»T,v),v; m = 0, 1 

„ v up'yo' 2/0' 
P r = - , R e = , 8 = — , 

a p A 

7 " - T V , d-' 

2/o' 

To' - Tw Mo ?/o ' 

(2) 

(3) 

where ua' a n d \p' are , respec t ive ly , t h e ave rage l ong i t ud ina l v e 

loci ty a t t h e cross-sect ional a r ea j/o'. T h e s t r e a m func t ion , 

which is r e l a t e d t o t h e l ong i t ud ina l a n d t r a n s v e r s e (or r a d i a l ) 

veloci ty c o m p o n e n t s u' a n d v', respec t ive ly , is g iven by , 

u' = — \ l / ' ,y>,v' = \I/',X (4) 

T h e supe r sc r ip t s in = 0 a n d m = 1 co r r e spond t o p l a n e s y m 

met r i c a n d a x i s y m m e t r i c condu i t s , respec t ive ly , a n d t h e s u b 

script c o m m a d e n o t e s p a r t i a l d i f ferent ia t ion. 

T h e in i t ia l a n d b o u n d a r y cond i t ions a re t h e cond i t ions specify

ing t h e un i fo rm t e m p e r a t u r e across t h e c o n d u i t a t x = xo, t h e 

equa l i t y of t e m p e r a t u r e on t h e wall , a n d t h e s y m m e t r i c cond i t i on 

on t h e axis of s y m m e t r y . T h e s e are , respec t ive ly , 

T = 1 a t x < xo 

T = 0 a t 2/ = T], x > Xo 

T,y = 0 a t 2/ = 0, x > Xo 

(5) 

(6) 

(7) 

W e h a v e neg lec ted t h e v iscous d iss ipa t ion t e r m s in e q u a t i o n 

(2). T h i s is pe rmiss ib le s ince t h e order of m a g n i t u d e of t h e 

viscous d i s s ipa t ion t e r m t o t h e conduc t ion t e r m is 4/*wo'V 

K(TO ' — T V ) a n d is sma l l for m o d e r a t e R e y n o l d s n u m b e r . T h e 

symbols jU a n d K d e n o t e t h e d y n a m i c v iscos i ty a n d h e a t c o n d u c 

t i v i t y of t h e fluid, r espec t ive ly . 

(1 - Y>)T„,X - ( ^ ( K ^ - W l V r U 

+ KJ!>n(To, Th . . . , TV. , : fa, fa, • • • , fa) 

n = 0, 1, 2, 3 . . . (15) 

T h e c o r r e s p o n d i n g in i t ia l a n d b o u n d a r y cond i t ions are 

Ta = 1, Tn = 0 for n > 1 a t X < Xo (16) 

T'„ = 0 a t Y = 1, X > Xo (17) 

T V K = 0 a t Y = 0, X > Xo (18) 

I n e q u a t i o n (15), t h e source func t ion $ „ , t h e c o n s t a n t Km, a n d 

t h e expl ic i t forms of t h e s t r e a m func t ion \pn u p t o t h e second order 

of 5 a re [3, 4] 

$o = 0 (19) 

$ „ = YJ ( "A ' .A-TV- I .F - fa.yT^.x) n > 1 (20) 
/. = l 

for m = 0: 

«—k 
fa = c(Y° - 3 F ) 

fa = c2Ree<7,yF ( — 

(21) 

(22) 

3 , 3 33 3 \ 
— Yc^ F 1 F H (23) 
70 10 70 1 4 / v ; 

3c Ye 
fa = - — (463 ,x2 - VS.xxW* - l ) 2 

B.,&cH2rig,xxF(Y) - Vie.Veig,x'
lG(Y) (24) 

Methods of Solution 
T h e b o u n d a r y condi t ion , e q u a t i o n (6), c an b e m a d e i n d e 

p e n d e n t of t h e x axis b y t h e following t r a n s f o r m a t i o n of t h e i n d e 

p e n d e n t v a r i a b l e s : 

For m = 1: 

X = x, Y = - f - (8) 

I n t e r m s of X a n d F , t h e gove rn ing e q u a t i o n , e q u a t i o n (2), a n d 

t h e in i t ia l a n d b o u n d a r y condi t ions , e q u a t i o n s (5), (6), a n d (7), 

become , respec t ive ly , 

T h e so lu t ions of e q u a t i o n (9) sat isfying e q u a t i o n s (10 ) - (12 ) 

are first e x p a n d e d in series in t e r m s of 5, a n d t h e a s y m p t o t i c 

so lu t ions a re s o u g h t in t h e l im i t of 8 —<- 0. 

T(X,Y: P r , R e , e, 8) = jh 8"Tn{X,Y: P r , R e , e) (13) 

Ky 
4c 

fa = ciY* - 2 F 2 ) 

(25) 

(26) 

= ? £ ! £ ! giXY*{Y* - 6 F 1 + 9 F 2 - 4 ) (27) 
9?7 

R e W o . x 2 

fa = -ce(5eg,x2 - V<l.xx)H{Y) - ^—I(.Y) (28) 

PrReo 

T = 1 X < Xo 

T = 0 at F = 1, X > Xo 

T.r = 0 at F = 0, X > Xo 

Y),Y (9) 

(10) 

(11) 

(12) 

where 

F{Y) = -
540 \ 

1518 462 r 
, F 1 1 - 11 F» -I F 7 — F 6 

1540 V 35 5 

35 35 J 

G(Y) = -
550 \ 

165 2244 627 r 

v u _ — ys J V7 _ — yt 
14 49 7 

49 98 ; 

ff(F) = 
( F 2 - 1 ) 2 F 2 

i A ( X , F : R e , e, 5 ) = J ] S » ^ „ ( Z , F : Re , e) (14) 
n = a 

T h e s u b s t i t u t i o n of t h e a b o v e series i n to e q u a t i o n (9) a n d t h e 

s u b s e q u e n t col lect ion of equa l powers of 5 yield t h e se t of pe r 

t u r b e d equa t i ons . T h e e q u a t i o n s gove rn ing t h e different o rders 

of t h e t e m p e r a t u r e field can b e p u t i n t o t h e following f o r m : 

Journal of Heat Transfer 

I{Y) = ( 3 2 F 1 2 - 3 0 5 F 1 0 + 7 5 0 F 8 - 7 1 3 F 6 + 2 3 6 F 4 ) 
s 3600 

T h e so lu t ion of e q u a t i o n (15) sat isfying t h e in i t ia l and b o u n d -
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Table 1 

K 

0 

1 

2 

3 

4 

5 

6 

' 7 

8 

9 

gOK 

1.6815953222 

5.6698573459 

9^6682424625 

13.6676614426 

17.6673735653 

21.6672053243 

25.6670964863 

29.6670210447 

33.6669660687 

37.6669244563 

\K 

2.70436441990 

6.66790314493 

10.6733795381 

14.6710784627 

18.6698718645 

22.6691433588 

26.6686619960 

30.6683233409 

34.6680738224 

38.6678833469 

Table 2 

K 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

ACK 

0.420876657180 

0.395860429674 

0.393809856830 

0.393256290093 

0.393032212597 

0.392920173537 

0.392856337860 

0.392816582482 

0.392790172160 

0.392771745488 

A1K 

0.0939337679236 

0.0375198383265 

0.0234421243406 

0.0170471104066 

0.0133936093750 

0.0110298085669 

0.00937523183708 

0.00815231980450 

0.00721163558319 

0.00646558481357 

ary conditions, equations (16), (17), and (18), are obtained first 
by solving the homogeneous part of the equation by separation 
of variables followed by constructing the Green's function to 
satisfy the inhomogeneous part [5]. The solutions for the differ
ent orders of Tn are: 

zerolh order: 

nth order: r-r/' 
J Xo J 0 

I F'» 
Jo 

(1 - Y'*)G{X,Y; Xa,Y')dY' (29) 

$nm{X',Y')G{X,Y; X',Y')dY'dX' 

n > 1 (30) 

where Green's function G is given by 

G(X,Y;X',Y') = YJ 
K = 0 

ZmK(X - X')WmK(Y')WmK(Y) 

(3D 

- r 
nK — I 

Jo 

F ' " ( l - Y'tWnKKY'W (32) 

ZmK(X - X') = exp 

(33) 

WmK{Y) = V a,Y*' withoo = 1, ai = - , , -, 
i = o 2 d + « ) ' 

aj = — 2Z(2i + m - 1) 
(a ;_i — aj_2), Z > 2 (34) 

fimK is the 7fth eigenvalue. The values of fimK and AmK are 
given in Tables 1 and 2, respectively. 

Heat Flux and Musselt Number 
The heat flux at the wall is 

TV - TJ 07' W 
W 2/o' cW 

where 

n' = - j / V l + SVg,x\ N = — 
V 

In terms of (X, Y), equation (35) becomes 

(35) 

(36) 

57" 

dn' 

+ 

= TV - To'TjaT7 , (_v1xY\ 5^}M 
2/„' |_U* \ *? ) ZYJbN 

I1 VL\*-1~\ =
 T~ - T°'(Vl + M>g.A 

Vi? S F / ' aivjr=i wo' V v ) y- i 

(37) 

The Nusselt number based on the mean width (or radius) and 
the bulk fluid temperature is 

Nu v,' az" 
TV - f ' aw' 

Vi + -~^)mj » 
where 

Jo 
Typ.ydY 

L 
(39) 

If^.rdF 

Discussion of Results 
In the following, we shall present the heat transfer solution in 

graphical form for the conduits with sinusoidal wall variation 
(see Fig. 1). First, the effects of the wall constriction upon the 

-e-—»• x1 

• y 'sy1 + a s i n - = ^ 
o X 

Fig. 1 Conduit with sinusoidal wal l variation 
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flow pattern in a plane symmetric conduit is shown in Fig. 2 for 
§ = 0.1, e = 0.4, and Re = 25. The figure shows the occurrence 
of separation and subsequent reattachment in the divergent part 
of the conduit. The streamline pattern is quite similar to the 
corresponding axisymmetric flow. 

For a small conduit constriction e, the energy dissipation (or 
average pressure drop) along the conduit is negligible compared 

0.95 

Fig. 2 Streamlines for 8 = 0 . 1 , e 
symmetric channel 

2.0 

0.4, and Re — 25 for a plane 

— 1.5 -

oU.I 

0.5 

with the straight-wall boundary, but it increases rapidly as e 
increases above 0.1 and approaches infinity as e approaches one, 
the latter condition corresponding to the complete blockage of 
the conduit. This is shown in Fig. 3. Any increase in Re or 5 
also causes a substantial increase in the energy dissipation. I t 
is also found that the pressure drop is higher in the convergent 
section than in the divergent section due to higher wall shear 
stresses. 

Since the hydrodynamic solutions are obtained up to the second 
order of 5, the foregoing results are qualitative in nature if the 
following relations are not strictly satisfied for plane and axisym
metric conduits with sinusoidal wall variation, respectively, 
Re<5e « 1.39, 1.3552 (48e2 + 1) + 0.00702 (ReSe)2 [(40/e) + 79] 
« 1, and Ree<5/(1 - e ) ' A « 1.433, (1 + 0.987e) e§2 « 1.50. 
Nevertheless, the asymptotic solution up to the second order of 
8 gives the essential flow characteristics obtained numerically 
[6] and experimentally [7] in a tube with local constriction 
where the parameter 5 is of the order one. 

The effects of a wavy wall upon the bulk fluid temperature 
versus the nondimensional axial distance are shown in Figs. 4 
and 5 for the plane symmetric and the axisymmetric conduits, 
respectively. I t is readily seen that at a low Reynolds number 

T 
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Fig. 3 Energy dissipation per unit time and per unit length: (a) Re ~ 
25 and 5 = 0.2; (b) Re = 25 and S = 0 . 1 ; (c) Re = 12.5 and S = 0.2; 
(d)Re = 12.5 and S = 0.1 
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Fig. 4 Bulk temperature via nondimensional axial distance for plane 
symmetric channels 

Fig. 5 Bulk temperature via nondimensional axial distance for axisym
metric tubes 
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Fig. 6 Nusselt number via nondimensional axial distance for plane 
symmetric channels 

Journal of Heat Transfer AUGUST 1 9 7 3 / 355 

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Q\ I I L I U 1 I 
0 .02 .04 .06 .08 .10 .12 .14 

I X'-Xj, 

2P rRe yi 
Fig. 7 Nussell number via nondimensional axial distance for axisym-
metric tubes 

and with a small conduit constriction, the bulk fluid temperatures 
vary very little from the corresponding straight-wall conduits 
except that they are oscillator}' in nature with decreasing ampli
tudes as the fluid moves away from the thermal entrance. As 
one increases both the Reynolds number and the conduit con
striction, the behaviors of the bulk temperature stay almost the 
same as in the previous case, excejjt that the amplitude of the 
oscillation is much more pronounced. 

Again, as in the case of the bulk fluid temperature, the Nusselt 
number fluctuates markedly with respect to its mean as one in
creases the Reynolds number and the conduit constriction. 
But the Nusselt number stays oscillatory in nature throughout 
due to sinusoidal variation of the wall. At a low Reynolds num
ber and with a small conduit constriction, the mean coincides 
with its corresponding straight-wall conduit, but as one increases 
both the Reynolds number and the conduit constriction, the 
mean becomes considerably high compared with the correspond
ing straight-wall channel. Due to the oscillatory nature of the 

local Nusselt number, the thermal entrance length can be de-
fined as the distance from the entrance where the amplitudes of 
the local Nusselt number become constant. The thermal entry 
length changes very little from that of the corresponding straight 
wall conduits. The reason for this is that the concave part of 
the conduit enhances the heat transfer rate, but the convex part 
of the conduit decreases the heat transfer; thus the overall 
effects of the concave and the convex parts upon the heat transfer 
rate seem to cancel each other out. Also, the overall effect of the 
position of the thermal entry makes little difference upon the bulk 
thermal temperature and the Nusselt number, except very close 
to the thermal entrance. 

In conclusion, our analysis of steady laminar flow in conduits 
with continuous constriction subjected to constant wall tem
perature shows that there exists a large local temperature and 
Nusselt number fluctuation as compared with a conduit with a 
straight wall, with very little change in the thermal entry length. 
As long as the flow field remains laminar, the foregoing conclusion 
is valid even if 5 is of the order one. 
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Unsteady, Combined Radiation and 
Conduction in an Absorbing, Scattering, 
and Emitting Medium1 

The transient cooldovm of a gray, absorbing, isotropic scattering, emitting, and conclud
ing medium bounded by gray, diffusely emitting and reflecting parallel plates is con
sidered. Numerical solutions are obtained for the initial boundary-value problem with 
a discontinuous decrease in temperature at one boundary. The quasi-steady equation 
of radiative transfer is solved using Gaussian quadrature and a matrix eigenvector 
technique together with explicit numerical solution of the unsteady energy equation. 
Temperature and energy flux distributions are presented for variations of optical thick
ness, boundary emissivity, albedo, and conduction-radiation parameter. 

Introduction 

INTERACTIVE conduction and radiative transfer in 
materials has been a subject of increasing technical interest in 
recent years. In part this interest has developed as a natural 
outgrowth of many studies involving independent convective, 
conductive, and radiative energy transfer. On the other hand, 
much activity also is directly attributable to significant technical 
applications such as heat transfer in fibrous insulations, heating 
and cooling of glass, radiative behavior of cryodeposits, and 
volume reflecting heat shields. Undoubtedly, additional appli
cations will follow the enhanced understanding engendered by 
continuing research in this area. 

The classical problem of energy transfer through an interven
ing medium between two diffusely emitting and reflecting parallel 
plates is considered here. The plates are assumed to be gray and 
of uniform temperature. The medium absorbs, scatters, emits, 
and conducts in accordance with the equations of radiative 
transfer and energy conservation and Fourier's law. Both the 
steady-state and unsteady problems are treated, steady-state 
solutions being obtained as the asymptotic time limit of the 
transient problem. Such an extensive literature exists in the 
independent fields of conductive and radiative transfer and in the 
combined processes for special types of materials that it is in
appropriate to at tempt here to cite the many pioneering re
searches in these areas. We will therefore review only those 
earlier researches having direct bearing on the present problem. 

1 This research was performed under NASA-Ames grant NGR 37-
008-003. 

Contributed by the Heat Transfer Division for publication (with
out presentation) in the JOURNAL OP HEAT TRANSFER. Manuscript 
received by the Heat Transfer Division September 21, 1972. Paper 
No. 73-HT-J. 

Journal of Heat Transfer 

Among the early significant papers in one-dimensional combined 
radiative and conductive transfer was the study of steady-state 
simultaneous transport in absorbing media between black parallel 
plates by Viskanta and Grosh [ l ] . 2 The same authors extended 
their work to include the effect of surface emissivity [2]. Vis
kanta [3] later considered the same problem but included scat
tering as well as absorption and emission effects. More recently, 
Doornink and Hering treated the problem of transient combined 
radiative and conductive transfer [4]. In the latter work, the 
authors considered the transient development of temperature and 
radiation fields in nonscattering media between black parallel 
plates. The present work extends the problem of Doornink and 
Hering to consider the effects of isotropic scattering and nonblack 
boundaries. 

The method of idempotents, discussed by Frame [5], was ap
plied by Hsia and Love [6, 7] to the analysis of radiative transfer 
between parallel plates separated by a nonisothermal medium. 
In these significant studies the authors made no at tempt to 
couple the temperature field and the radiation field through the 
energy equation. In the present work the idempotent technique 
of Hsia and Love has been utilized to study transient interactive 
radiation and temperature fields in absorbing and scattering me
dia between parallel plates. 

Analysis 
The simultaneous transport of energy in a gray, absorbing, 

scattering, emitting, and conducting plane layer may be described 
in terms of the geometry shown in Fig. 1. The present calcula
tions assume that thermal and radiative properties are tempera
ture-independent, scattering is isotropic, and the index of refrac-

! Numbers in brackets designate References at end of paper. 
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tion is unity. Recognizing its azimuthal symmetry for the 
present problem, the intensity field in the layer at a given instant 
may be considered dependent only on the optical thickness T and 
the cosine fx of the elevation angle 0. Thus the dependent vari
ables of the combined radiative and conductive problem may be 
expressed as T(T, I*) and I(T, IX, I*) where the dimensionless time 
t* has been nondimensionalized using the characteristic conduc
tion time I? I a. 

The analysis of energy transport b}' radiation and conduction 
in a plane layer is governed by the quasi-steady equation of ra
diative transfer 

/* T (r, fi, I*) = -I(T 
CIT 

, A>, **) + j f Sfa, n')I(T, /*', t*)dn' 

+ n2( l - «O)/BB(T) (1) 

and the conservation of energy 

dT = a &T _ To2 dqR 

U* ~ T" dr 2 X/3 AT 
(2) 

where Fourier's law of conduction, the dimensionless time, and 
the optical depth have been employed in equation (2). These 
equations are coupled through the radiative-heat-flux divergence 
term in the energy equation where: 

qn(j, I*) = 27T 

/ : 
IXI(T, IX, t*)d)x (3) 

and through the temperature-dependence of the blackbody in
tensity function 7BB. 

Defining the dimensionless temperature G and dimensionless 
radiative flux FR as 

e = * ^ FR - M. 
T* - Tr crTV 

the initial and boundary conditions for diffusely emitting and re
flecting boundaries may be stated as 

Table 1 Nondimensional parameters for simultaneous conduction and 
radiation in a plane slab 

Equation Parameter name 

Equation of radia- optical thickness 
tive transfer 

albedo of single scat
tering 

Conservation of en- conduction-radiation 

Symbol 

n = (s + k)L 

ergy parameter N = 

s + k 
3C/3 

4o-7V 

Boundary condi- surface emissivities ei, ca 
tions surface temperature 

ratio e. 

J> 

Fig. 1 Geometric nomenclature for radiative transfer between parallel 
plates 

0( r , 0) = 1, 0 < T < To 

9(0, t*) = 0, i* > 0 

G(r„, I*) = 1, t* > 0 

(4a) 

(46) 

(4c) 

1(0, , /i, I*) = 2(1 - e,) j /x'/(0, fx', t*)dfi' 
Jo 

+ €I7BB[G(0, t*)], n > 0 (id) 

I(T0, H, t*) = 2(1 - e2) J n'I(n, ix', t*)dn' 

+ €2i"BB[0(r„, <*)], ix < 0 (4e) 

The analysis and results of this study can be completely de
scribed in nondimensional terms using the independent and de
pendent variables already discussed and the parameters shown in 
Table 1. The parameters OJ0 and To are intrinsic to the analysis 
of radiative transfer and are determined for a given layer thick
ness by the characteristics of the media. However, when the 
interaction of a radiation field and a temperature field is con
sidered, the conservation of energy equation must also be in
cluded. Thus the conduction-radiation parameter N enters the 
problem. In this parameter, both thermal and radiative 
properties of the medium are involved. The remaining two 
parameters, the emissivities and temperature ratio of the surfaces, 
enter through the boundary conditions. Thus we can hope to 
gain some understanding of the influence of the media through 
examination of the effects of varying N, OJ0, and r0, while varia
tions involving the emissivities and temperature ratio are repre-

c = 

F = 

FR = 

I = 

/ B B = 
7c = 
X = 
L = 

n = 
N = 

'1 = 
qn = 

heat capacity of medium 

dimensionless heat flux, q/irTi* 

dimensionless radiative heat flux, 
qnlvTf 

intensity 

blackbody intensity 

absorption coefficient of medium 
thermal conductivity of medium 
thickness of medium 

index of refraction of medium 

conduction-radiation parameter, 
3C/3/40-2V 

heat flux 

radiative heat flux 

s 

S 

I 

t* 

T 

Tr 

T,, 

V 

a 

P 

scattering coefficient of medium 
phase function of medium 
time 

dimensionless time, aL/IJ 

absolute temperature 

absolute temperature of cold 

boundary 

absolute temperature of hot 

boundary 

coordinate distance measured 

from boundary 1 

thermal diffusivity of medium 

extinction coefficient of medium, 
s + k 

6], ti 

G = 

M = 

P = 

To 

CO0 = 

emissivities of bounding surfaces 
elevation angle 
temperature ratio, Ti/T* 
dimensionless temperature, (T — 

ri\)/(i\ - r,) 
cos d 

density of medium 
rv 

optical depth, I jidy 
Jo 

optical thickness of medium, 

f pdy 
Jo 

albedo for single scattering of me
dium, s/j3 
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Fig. 2 Effect of albedo and boundary emissivity on the unsteady temperature and energy flux distributions in scattering, absorbing, and emitting 
media between parallel plates, N = 0.005, T„ = 1.0, di = 0.5 

sentative of the specific configuration and imposed conditions of 
the problem formulation. 

Six- and eight-point Gaussian quadratures were employed to 
reduce the differential-integral equation (1) to six or eight dif
ferential equations and the integral boundary conditions (4d, e) 
to algebraic equations. The differential equations of radiative 
transfer thus obtained were recast in matrix form. Utilizing the 
boundary conditions, equations (4d, e) and a specified instan
taneous temperature distribution, the matrix of the six (or eight) 
intensities describing the radiation field at each point in the 
medium was determined using the idempotent technique of Hsia 
and Love [7]. With the radiation field determined, the energy 
equation was solved for the temperature using the explicit finite-
difference technique. Thus with the temperature distribution 
at the next time interval determined, the new radiation field may 
be calculated and the cycle continued. In the calculations pre
sented, 7 and 21 nodes were employed in the steady and unsteady 
solution of the energy equation respectively. 

The solutions described here were obtained on the University 
of Tulsa Sigma VI and the NASA Ames Research Center I B M 

360/67 digital computers. Typical run times to steady state were 
1 to 2 min for 7 nodes and six-point quadrature on the Sigma VI 
and 2 to 20 min for 21 nodes and eight-point quadrature on the 
IBM 360/67. Further details of the analysis and solution tech
nique are discussed in [8]. 

Results and Discussion 
Studies, have been made of both steady-state and transient 

energy transfer between infinite parallel plates. As indicated 
above, the solutions were obtained by numerical approximation 
to the energy equation and the equation of radiative transfer. 
I t is estimated tha t the maximum error in the solutions is about 2 
percent. In most cases, the error is believed to be much smaller. 

Steady-State Heat Transfer. Extensive comparisons were made 
with steady-state results reported in the literature to validate 
computational procedures. All steady-state results discussed 
here were obtained using six-point quadrature and 7 conduction 
nodes. Computations of steady-state temperature distribution 
were made for comparison with the nonscattering results of Vis-
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Fig. 2 Effect of albedo and boundary emissivity on the unsteady temperature and energy flux distributions in scattering, absorbing, and emitting 
media between parallel plates, N = 0 .005, T0 = 1.0, 8\ = 0.5 

kanta and Grosh [1] for T0 = 1.0. Excellent agreement was ob
tained for N = 0.01, 0.1, and 1.0 for ft = 0.1 and 0.5. Additional 
computations were performed to validate the program for prob
lems including isotropic scattering. Comparison of radiative 
flux and temperature distributions with those of Viskanta [3] for 
To = 1.0, N = 0.1, ft = 0.1 and 0.5, and a>o = 0. 0.5, and 0.9Q97 
also indicate excellent agreement. Space does hot allow the 
inclusion of these results, but the senior author will be happy to 
supply them to interested readers. I t should be emphasized 
that the present results were obtained by an entirely different 
technique than those of Viskanta and Grqsh [1] and Viskanta 
[3]. Thus the present results are both validated by and lend 
support to these sources. 

Unsteady Combined Radiative and Conductive Heat Transfer. Solu
tions have been obtained for the transient thermal response of a 
plane layer of a scattering, absorbing, emitting, and conducting 
medium bounded by diffuse, opaque gray surfaces. Specifically 
the transient cOoldown from a state of thermodynamic equilib
rium ( 6 = 1) to the steady state developed as a consequence of a 
discontinuous change at t* = 0 in the temperature at one bound
ary to 0 (0, i*) = 0 is considered. Space and resources do not 
allow an extensive presentation of the effects of varying all the 
parameters of the problem. Hence results are presented which 
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typify the major dependencies and which allow comparisons to 
be made with special cases published elsewhere. 

Studies of the effects of varying the number of conduction 
nodes and the order of the Gaussian quadrature revealed that 
while 7 nodes and sixth-order quadrature were adequate to pro
duce the desired accuracy in the steady-state results discussed 
above, these selections were clearly inadequate for accurate 
computation of the unsteady cases considered here. I t was 
found that the steep temperature gradients in the vicinity of the 
walls, particularly in radiation-dominant cases and at early 
times, dictated a substantial increase in the number of nodes 
used. Thus the remaining results presented here were obtained 
employing 20 spatial increments and eighth-order quadrature. 

The effect of variation of albedo on the temperature and flux 
distributions at several instants of dimensionless time including 
the steady state are shown in Fig. 2 for N = 0.005, To = 1.0, 
ft = 0.5, and ei = ft = 1.0. In examining these results it is well 
tq recall tha t variation of albedo here implies variation of at 
least two quantities—in the simplest case—both the scattering 
and absorption coefficient. Thus the results presented in Fig. 2 
may be viewed as the compound effect of variation of absorption 
coefficient and scattering coefficient such that their sum—the 
extinction coefficient—is constant. 
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Fig. 3 Effect of albedo and conduction-radiation parameter on the unsteady temperature and energy flux distributions in scattering, absorbing, and 
emitting media between parallel plates, ei = ei = 1.0, TO = 1.0, Bi = 0.5 

Examination of Fig. 2(a) shows clearly the effect of conduction 
and radiation shortly after the discontinuous temperature change 
at the left wall. For co0 = 0.9997, the temperature and radiation 
fields are virtually independent, hence the temperature distribu
tion approximates a pure conduction profile. For OJ0 signifi
cantly different from unity, a more or less uniform reduction in 
temperature across the layer is evident except in the region near 
the left wall where conduction predominates. This is sub
stantiated by examination of the radiative and total flux curve 
of Fig. 2(a). I t should be remembered here that the local rate of 
temperature increase due to radiative interaction is proportional 
to the local slope of the radiative flux curve. Thus it is apparent 
that for T/ro > 0.2, cooling of the layer due to radiation occurs 
roughly at a uniform rate. These same effects are evident to a 
lesser extent at later times in Fig. 2 prior to the attainment of 
the steady state. 

Considering the several parts of Fig. 2 with respect to the 
temporal evolution of the steady state, it is clear that the steady 
state is attained most quickly for small albedo due to two effects. 
First, the increased global cooling effect due to radiative emission 
throughout the medium together with the conductive flux pro
duces increased overall rates of cooling. Secondly, the steady-

state temperature distribution for low albedo exceeds those for 
higher albedo. Thus not only is the rate of cooling greater for 
low albedo, but the temperature change needed to achieve the 
new steady state is also smaller. 

Recently, Doornink and Hering [4] have studied extensively 
the transient cooldown of an absorbing, nonScattering medium 
bounded by black walls. Fig. 2 and succeeding figures include 
results taken from [4] for comparison with the present results. 
Because of the small size of the figures in [4], it is estimated tha t 
the reference results presented here may be in error by several 
percent. Nevertheless, good agreement is evident even though 
the present computation techniques differ significantly from those 
of Doornink and Hering. 

The effect of reducing the boundary emissivities from 1.0 to 
O.i is also shown in Fig. 2. I t is seen that for Wo < 1 the early 
rate of cooling is lower for low emissivity. This may be attrib
uted to the increased boundary reflectances. As the steady 
state is approached, the temperatures near the cold wall remain 
higher for low emissivity while they are lower in the vicinity of 
the hot wall. Evidently the high reflectance at the cold boundary 
causes increased radiation absorption in this region. Near the 
hot wall the reduced emitted flux from the wall evidently allows 
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Fig. 3 Effect of albedo and conduction-radiation parameter on the unsteady temperature and energy flux distributions in 
emitting media between parallel plates, ei = a = 1.0, TO = 1.0, 61 = 0.5 

scattering, absorbing, and 

the medium to cool down well below the values associated with 
the black wall. These emissivity variations are consistent with 
those discussed by Viskanta and Grosh [2] for steady-state solu
tions. Substantially reduced radiative and total fluxes are 
indicated for the reduced-emissivity cases, as expected. 

The effect of a change of the conduction-radiation parameter 
N from 0.005 to 0.5, keeping all the conditions of the preceding 
figure fixed with eL = e2 = 1:0, is shown in Fig. 3. Curves from 
Fig. 2 are repeated here for ease of comparison. I t is evident 
that for N = 0.5 the temperature distributions closely resemble 
pure-conduction temperature distributions and depend only 
weakly on albedo for a given t*, indicating clearly that conduction 
is the dominant mode of energy transfer. Because of this weak 
dependence on albedo, only the co0 = 0 and Wo = 0.9997 curves 
are shown. The reader is warned against interpreting t* as a 
measure of absolute time in comparing results for differing values 
of N. This becomes clear if one considers as an example a fixed 
medium thickness and volumetric heat capacity. Because T0 = 
1.0 for Fig. 3, the extinction coefficient must be fixed; thus in
creasing N by a factor 102 implies increasing thermal conductivity 
by a factor of 102. But the absolute time for a given medium 
thickness is inversely proportional to the thermal conductivity; 

hence for a given t* the absolute time for N = 0.5 is 10~2 times 
the absolute time for the N = 0.005 case. Thus if we wish to 
compare the temperature and heat flux distributions for N = 
0.005 and t* = 0.001 with corresponding distributions for N = 
0.5 at the same absolute time, we should compare these distribu
tions with the corresponding N = 0.5 distributions for t* = 0.1, 
Fig. 3(c). Note also that this relation is not unique for the cases 
of Fig. 3—other absolute time relations may be obtained by con
sidering examples in which other variables are held fixed. 

The interaction between the radiation field and the temperature 
field as displayed in this figure and the following figure may be 
best explained by examining the energy equation (2), nondimen-
sionalized: 

d9 d29 To ZFR 

(0' tm-e"<0 
(5) 

I t is evident that increasing the conduction-radiation param
eter reduces the influence of the radiation term on the dimension
less rate of cooling. Thus while Fig. 3(a) shows a slightly steeper 
slope of the radiative flux for N = 0.5, the dimensionless rate of 
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Ficj. 4 Effect of albedo and optical thickness on the unsteady temperature and energy flux distributions in scattering, absorbing, and emitting media 
between parallel plates, ei = £2 = 1.0, N = 0.005, di = 0.5 

cooling dQ/dt* is governed primarily by its explicit dependence 
in equation (5) on N. Thus the temperature distribution for 
N = 0.5 shows little influence of the radiation field, in contrast 
to the N = 0.005 temperature distribution. 

The effect of reducing To from 1 to 0.1, holding other parameters 
at the same values as in Fig. 2 (with ei = t% = 1.0), is shown in 
Fig. 4. I t is evident that the effect of varying albedo is much 
less pronounced at To = 0.1 than it was for r0 = 1.0. This may 
be attributed to the reduced interaction of the radiation field 
with the temperature field as the optical thickness is reduced, as 
indicated by equation (5). The same caution should be ob
served here as with the preceding figure in comparing results in a 
temporal vein for different optical thickness. The higher radia
tive and total fluxes associated with the reduced optical thickness 
are evident. 

For To = 0.1, the medium offers little opposition to the passage 
of radiation directly from boundary 2 to boundary 1. The 
radiative fluxes in fact approximate those for two black plates 
with no intervening medium. Little radiative cooling is evi
dent; thus the temperature distributions resemble pure-conduc
tion profiles. With little effect of albedo on the temperature 
distributions, the dimensionless conductive fluxes and hence the 

total fluxes are almost independent of albedo at a given dimen
sionless time. 

Concluding Remarks 
The effect of varying the albedo of single scattering on the 

transient energy transfer in a semitransparent medium has been 
explored for several values of the conduction-radiation parameter, 
optical thickness, wall emissivity, and dimensionless time. 
Steady-state solutions were also obtained for absorbing and 
scattering materials. Comparisons with special cases in the 
literature indicate good agreement for both transient and steady-
state solutions. The present work clearly demonstrates the 
feasibility of computer solution for engineering purposes of 
transient energy transfer problems in materials in which scatter
ing is significant. 
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Void Fraction and Vapor and Liquid 
Teniperatures: Local Measurements in 
Two-Phase Flow Using a Microthermocouple 
A technique is described which enables the detection of the phase (liquid or vapor) in 
steam-water two-phase flow and the temperature measurement of each phase, using the 
hot junction of a microthermocouple. The signals are processed with a multichannel 
analyzer in order to obtain the amplitude histograms of the temperature. Significant 
results are obtained in pool boiling, forced convection subcooled boiling, and flashing 
flow of water. 

T, 
Introduction 

I HE DEVELOPMENT of nuclear reactor technology has 
produced an increase in the number of studies of two-phase flow 
during the last two decades. Many new measurement devices 
have been invented to give a further insight into the local struc
ture of boiling two-phase flow. The purpose of these investiga
tions has been to understand the complex mechanism of hydro
dynamics and heat transfer in such flows, in order to know the 
normal behavior of the channels in a BWR or the accidental be
havior in a PWIi . The void formation in a channel drastically 
changes the pressure drop laws which have to be known accu
rately to determine the required pumping power or the stability 
regime of the channels. 

A first detailed approach of the "boiling" phenomenon was 
undertaken in our laboratory with a schlieren method associated 
with high-speed cinematography [J].1 This technique showed 
the destruction and the entrainment of a film of superheated water 
lying on the heated wall, in the subcooled liquid. I t has been 
thought that this process was connected with some temperature 
fluctuations produced by the motion of the steam bubbles [2]. 

The interest in the temperature fluctuations, especially in pool 
boiling, is not new. A microthermocouple, 50// in diameter, was 
used in 1965 by Marcus and Dropkin [3] to evaluate the thick
ness of the superheated liquid layer in contact with a heated wall. 
Around the same time, Patten and his co-workers [4, 5] examined 
the transient aspect of the superheated liquid layer with the same 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division of THE AMERICAN 

SOCIETY or MECHANICAL ENGINEERS and presented at the AIChE-
ASME Heat Transfer Conference, Denver, Colo., August 6-9, 1972. 
Manuscript received by the Heat Transfer Division April 10, 1972; 
revised manuscript received November 20, 1972. Paper No. 72-HT-
13. 

method. In 1966, Bonnet, et al. [6] reported some results ob
tained with a microthermocouple imbedded in a resin block, in 
such a way that only a small part (20/x) of the hot junction was 
in the flow. Unfortunately, the size of the probe (80/i) produced 
a disturbance in the flow and its thermal inertia led to extra 
vaporization of the liquid on the sensor so that the significance of 
the signal was not very clear. In forced convection, the results 
of similar investigations were published by Treshchov [7] in 1957 
and Jiji and Clark [8] in 1964. During our studies, other results 
on pool boiling were published b5<- Van Stralen and Sluyter [9], 
Jacobs and Shade [10], and Subbotin and Tsiganok [11], and on 
forced convection subcooled boiling by Walmet and Staub [12] 
and Stefanovic, et al. [13]. Although all these works have con
tributed to a large extent, to the understanding of the local 
structure of two-phase flow with change of phase, they have not 
provided any reliable statistical information on the distribution 
of the temperature between the liquid and the vapor phases. 

The originality of our work [14] is based on the possibility of 
separating the temperature of the liquid phase from the tempera
ture of the vapor phase, and of giving the statistical properties 
of the temperature of each phase as well as the local void frac
tion. The basic idea was to use the hot j unction, 20/t in diameter, 
of the microthermocouple, as an electrical probe [15] which indi
cates the nature of the phase surrounding the sensing element. 
The temperature signals are then processed in a multichannel 
analyzer which delivers the amplitude histograms of the liquid 
and vapor teniperatures. Starting from these data, we can easily 
determine the local void fraction and the time average tempera
tures of the liquid and of the vapor. This technique requires an 
electrically conducting liquid, the electrical resistivity of which 
can be as high as 10 kfi-cm. In these conditions ordinary water 
can be considered as an electrically conducting liquid. Never
theless, the same results can be obtained in a nonequilibrium 
two-phase flow, without any phase indicator device, after making-
some assumptions concerning the amplitude histogram of the 
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Fig. 1 Microthermocouple used in the flrst runs
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Fig. 2 New microthermocouple

temperature signal given by the micro thermocouple without its
electrical probe component.

Description of the Microthermocouple
The first runs were carried out with a probe similar to the well

known hot-wire probe. The hot junction connected two chromel
alumel wires, 25j.t in diameter, straightened between two quartz
supports, Fig. 1. However, this type of probe has two major
drawbacks:

1 The steam bubbles tend to avoid the hot junction by rolling
around the wire.

2 The quartz supports have poor mechanical resistance and
the probe is easily broken.

The microthermocouple that we are now using is made up of
the following components (Fig. 2):

1 Two chromel-alumel wires, 150j.t in diameter, whieh support
the hot junction.

2 These wires are proteeted by a stainless steel sheath and
insulated by alumina.

3 The sensor, composed of two ehromel-alumel wires, 20j.t in
diameter, 1 mm in length.

The ends of the stainless steel sheath are sealed with an epoxy
resin (Araldite) to prevent any infiltration of water. The hot
junetion is prepared first, then tin-soldered onto the 150j.t wires.
This method has the advantage of making probe repairs very
easy.

Phase Indicator Device
The mierothermoeouple, exeept for its hot junetion, is elee

trically insulated from the liquid with a varnish. The insulating
resistance between the junction and the ground, which is a func
tion of the phase (vapor or liquid) surrounding the junction, is
measured with a Kohlrauseh bridge. In order to avoid any dis
turbanees due to stray capaeitances, all the sheaths are neutro
dyned by the phase indicator signal. Both signals (phase and
temperature) are received by a differential amplifier with a high
common mode rejection mtio. Only the differential signal (tem-

perature) is proeessed by the amplifier. The common mode
(phase signal) is rejected and directed toward a logical switeh
circuitry.

Microthermocouple and Electrical Probe Signal Processing
When the microthermocouple is used in a temperature range

close to 100 deg C, its cold junction is kept at the saturation
temperature corresponding to the atmospheric pressure iu an
ebullioseope. The e.mJ. differeuee between the hot and eold
junctions is then amplified. In the case of a flashing flow at, a
subatmospheric pressure, the cold junction is kept at 0 deg a
and a known voltage is applied to minimize the e.mJ. difference
between the hot and cold junctions.

Both signals (phase and temperature) were observed on a two
beam oscilloscope, and at the same time, the temperature signal
was also sent to a multi-channel analyzer, INTERTECHNIQUE
DIDAC 4000. This latter device is used as a statistical analyzer
so that it delivers the amplitude histogram of the temperattll'e
signal. The content N of each channel of this analyzer COl'l'e
sponds to the number of times that the signal reached a given
amplitude (Fig. 3). In order to do that, a clock delivers pulscs,
at a frequency which is chosen according to the power spectrulll
of the signal which is to be analyzed. At each clock-timc, It

sample of the signal is picked up and an analog-frequency eon
verter is used to transform this quantity into a pulse-train pro
portional to the amplitude of the signal. This numerized qultn
tity gives the number of the channel where the sample will be
stored. At this time the arithmetic register adds a unit in the
selected channel. So, the amplitude histogram N(e) of the signal
e(t) is built up. The choice of the seanning rate is given by the
Shannon's theorem [16]: the sampling frequency has to be
higher than twice the highest frequency occuring in the signal
power spectrum. During all our experiments a 1 kHz sampling
frequency was chosen. This technique has already been used by
Delhaye [17] to process the signal delivered by a hot-film anc
mometer, in an isothermal air-water flow. The entire signal (ail'
and water) was analyzed, and a hypothesis was made to separate
the air histogram from the water histogram, Fig. 4.

In the present work,the phase signal has been used to switeh
the liquid signal or the vapor signal into a first 1000-channel

---Nomenclature...........................-----.......- .....................---...................................-------

e = signal

N = probability density

S = area
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T = temperature

t = time

IX = local void fraction

Subscripts

L = liquid
sat = saturation condition

V = vapor

Transactions of the AS ME

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



subgroup or into a second 1000-channel subgroup of the 4000-
charmel analyzer (Fig. 5). We thus obtain separately the histo
grams of the vapor and of the liquid temperatures. 

Signal Processing When the Phase Indication Is Not Available 
If it is impossible to detect the phase (liquid or vapor) surround

ing the hot junction, only the entire histogram (liquid and vapor) 
is available. As for the hot-film anemometer signal analysis, we 
have to make some assumptions to separate the liquid histogram 
and the vapor histogram. But before making a statement on the 
entire histogram (liquid and vapor), we have to analyze carefully 
the temperature signal delivered by the microthermocouple. 

Following many runs carried out with high-speed movies, we 
can visualize the temperature fluctuation, detected by a micro-
thermocouple located on the upward trajectory of a steam bubble 
very close to a heating wall, in a nucleate pool boiling experiment 
with subcooled water. These experiments indicated an increase 
in temperature during the approach of a bubble, Fig. 6. This 
fact is due to the penetration of the hot junction into a super
heated film of water surrounding the bubble. When the micro-
thermocouple enters the bubble, the temperature decreases very 
rapidly toward the saturation temperature. The high time-rate 
of change of the temperature level is produced by the vaporiza
tion of a small quantity of water remaining on the hot junction 
after its penetration into the vapor. Then the temperature re
mains constant and equal to the saturation temperature inside 
the bubble. Finally, when the hot junction exits from the bub
ble, it detects a superheated liquid wake and the temperature 
decreases toward the subcooled liquid temperature. 
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The histogram corresponding to this sequence is shown in Fig. 
7. The main characteristic points on this histogram are: 

A = minimum liquid temperature 
B = most probable liquid temperature 
C = minimum vapor temperature 
D = most probable vapor temperature 
E = maximum vapor temperature 
F = maximum superheated liquid temperature. 

If the pressure were constant, the saturation temperature would 
also be constant, and the temperature amplitude histogram 
would present a straight vertical line, Fig. 8, corresponding to 
this constant saturation temperature. However, the pressure is 
never constant and a distribution of the saturation temperature 
follows, Fig. 9. Therefore, we have to assume that, between 

1 and r8J there exists some liquid. From this statement 
we derive our main hypothesis to process the temperature histo
gram in an electrically nonconducting liquid: The vapor tem
perature histogram is the cross-hatched region CDEC, Fig. 9, 
and the liquid temperature histogram is the complementary 
region ABCEFA, Fig. 9. The time average vapor and liquid tem
peratures are given by the barycenters of these areas, and the 
local void fraction can be calculated by the formula: 

Sv 
Sv + SL 

Fig. 5 Diagram for the signal processing 

where Sv is the area of the vapor cross-hatched region CDEC, 
Fig. 9, and SL the area of the liquid region ABCEFA. The de
nominator represents the total area of the histogram ABCDEFA. 
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Fig. 9 Actual temperature amplitude histogram in local boiling 

Some Experimental Results 
The use of a microthermocouple has supplied enough informa

tion under different conditions to be considered as a valuable in
strumentation device in the study of the local structure of a two-
phase flow with change of phase. In the following section, we 
will investigate the temperature histograms in three types of 
flow: nucleate pool boiling, forced convection local boiling, and 
flashing flow. 

The study of water nucleate boiling with a microthermocouple 
was carried out in a test section which is described in reference 
[14]. In order to understand the physical significance of the 
temperature signal given by the microthermocouple, we took 
high-speed movies (20,000 frames per see) of a bubble pierced by 

the hot junction simultaneously with the temperature signal 
Reference [14] shows the main results of these experiments. Trm 
shape of the temperature histogram changes when the hot junc
tion moves away from the wall. In Fig. 10, four histograms are 
represented with the corresponding temperature signal, as a func
tion of the distance from the wall. The cross-hatched areas are 
the vapor temperature histograms according to Our previous hy
pothesis. Since the electrical probe function was not yet available 
in these experiments, we had to process the histograms as in the 
case of an electrically nonconducting liquid. Near the wall 
Fig. 10.1, there is no subcooled water but only vapor arid super
heated liquid. At 0.5 mm from the wall, Fig. 10.2, water and 
vapor are practically at the same temperature. At 1 mm above 
the wall, Fig. 10.3, some superheated water remains but most of 
the water is already subcooled. Finally when the hot junction is 
2 mm above the wall, there is no longer any superheated liquid 
and the histograms of the vapor and of the subcooled liquid are 
distinctly separate. A graph of the most probable liquid tem
perature (point B in Fig. 7) is shown in Fig. 11. The constant 
local void fraction curves are also represented. These experi
ments have confirmed the qualitative results which were ob
tained with a schlieren method by Behar and Semeria [1]. This 
technique visualized a destructive process of the superheated 
liquid layer by the bubble growth, and an entrainment of super
heated liquid in the wake of the bubble. The pattern of the 
temperature profile, Fig. 11, can be explained by a re-supply of 
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Fig. 11 Most probable liquid temperature and void fraction above a 
nucleus in nucleate boiling 

the wall area by some colder liquid originating from the bulk 
fluid which leads to an enhancement of the heat transfer coef
ficient in nucleate pool boiling. 

All the tests in forced convection were carried out in a water 
loop described in reference [14]. The temperature signals and 
the histograms are identical to those observed in subcooled 
nucleate boiling. 

A graph of the local void fraction distribution across the test sec
tion is given in Fig. 12, for a 2.2 deg C subcooling, 1 m/s velocity 
and with the following heat fluxes: 50, 70, and 80 W/cmA The 
void fraction was determined with the phase indicator device of 
the microthermocouple. In reference [14] more detailed results 
are given on the influence of the subcooling, the heat flux, and 
the velocity, on the local void fraction profile, and on the tem
perature profiles. 

The more systematic study of flashing flow of water [IS] justi
fied the validity of our assumption concerning the processing of 
the temperature histogram, when the indication of the phase 
surrounding the hot junction is not available. All the tests were 
conducted in a subatmospheric loop described in reference [19]. 
In this work Barois proposed a different hypothesis for the sepa
ration of the liquid and vapor histograms. He considers that the 
vapor histogram has to be symmetrical. This type of assump
tion, Fig. 13, which was also used afterwards by Stefanovic, et al. 
[13] in forced convection boiling, gives liquid temperatures which 
are too high. Our hypothesis, as explained previously, was 
found to be in better agreement with the direct separation of the 
histograms made by the phase indicator device. Preference [18] 
shows various results concerning the evolution of the steam and 
liquid temperatures, as well as the void fraction along a channel 
in which a flashing flow of water takes place. 

Conclusions and Future Work 
1 The microthermocouple has been proved to be a valuable 

instrumentation device in obtaining information on the local 
structure of boiling two-phase flow in nonequilibrium conditions. 

DISTANCE FROM THE HEATED WALL , mm 

Fig. 12 Local void fraction distribution in forced convection local boiling 

Tsot 

TEMPERATURE,T 

Fig. 13 Barois's hypothesis 

2 The microthermocouple, associated with a phase indicator 
electronic circuit, gives the local void fraction, the time average 
temperatures of both phases, and their fluctuations. 

3 The same results can be obtained with a proper assumption, 
either when the phase indicator electronic circuitry is not avail
able, or when the fluid is electrically nonconducting. In this case, 
we have to separate the vapor and liquid histograms according to 
the hypothesis explained in the text and represented in Fig. 10. 
As we can see in this figure, this technique cannot be applied 
when the histogram is symmetric as in Fig. 10.2. 

4 The liquid and vapor velocities ai'e expected to be measured 
by a cross-correlation method, as explained in reference [14], 
where significant results have already been obtained. 
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Vapor Flow in Cylindrical Heat Pipes1 

Solutions of the complete axisymmetric Navier-Stokes equations for steady, laminar 
vapor flow in circular heat pipes with various lengths of evaporator and condenser have 
been obtained by finite-difference methods. In addition, a new series solution for the 
slow-motion case was obtained that is valid for arbitrary distributions of evaporation and 
condensation and that confirms the numerical result in the limit of low Reynolds num
ber. For uniform evaporation and condensation, the motion in the evaporator is found 
to be described adequately by similar solutions in both limits, and in the transition from 
low to high Re, the flow is completely determined by the evaporator Reynolds number. 
The evaporator is very weakly coupled to the condenser. The conditions in the con
denser are decidedly more complex, and similar solutions are of value only for small 
Reynolds numbers and long tubes. Reverse flows occur for condenser Reynolds num
bers greater than two and occupy a substantial fraction of the condenser length. Com
plete flow descriptions for symmetrical and asymmetrical heat pipes were obtained, 
and practical results for the calculation of pressure losses in low-speed heat-pipe vapor 
flows are given. 

Introduction 

I HE ENGINEERING ANALYSIS of a heat pipe can often 
be simplified to the solution of three fluid mechanical problems: 
(1) the calculation of the capillary pumping action available in the 
wick structure, (2) the pressure loss associated with the liquid 
return path, and (3) the pressure loss in the vapor flow between 
the evaporator and the condenser, and the solution of thermo
dynamic relations between the phases as shown by Cotter [ l ] . 2 

The first two problems can usually be solved readily, but the 
dynamics of the vapor flow is surprisingly complex, even when 
the geometry and boundary specifications are simple. 

For steady operation within the working range of many heat 
pipes, the vapor velocity in the evaporator is well below sonic, 
and to a good approximation the entire process can be considered 
to take place at constant densitj'. In the regime of creeping 
flow, the problem is a linear one, and in principle there is no 
difficulty in obtaining a stream function that can satisfy arbi
trary boundary conditions. However, solutions for the transi
tion and inertial flow regimes should satisfy the full Navier-
Stokes equation of motion, since viscous effects at the boundaries 
may have a strong influence on the motion, even in the limit of 
vanishing viscositj'. 

1 This work was performed under the auspices of the U. S. Atomic 
Energy Commission. 

2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (without 

presentation) in the JOURNAL OF HEAT TRANSFER. Manuscript re
ceived by the Heat Transfer Division September 22, 1972. Paper 
No. 73-HT-P. 

Solutions of the Navier-Stokes equations for heat pipes of 
semi-infinite length with only uniform evaporation or only uni
form condensation have been obtained by Knight and Mclnteer 
[2], Yuan and Finkelstein [3], Donaldson, et al. [4], and TerriU 
and Thomas [5]. In each case attention was restricted to a class 
of similar solutions. The results can be summarized as follows: 

(a) For positive Re r (condensation)3 between 2.30 and 9.11, 
there are no solutions of the class considered [4, 5]. 

(6) All of the investigators agree that at positive Re r below 
2.30, there is only one solution without reversal of the axial com
ponent of velocity (w). The solution also features a single maxi
mum of the axial velocity, which lies on the axis of the pipe. The 
same is true for all negative Re r . As Re r tends to zero, each of 
these two solutions approaches the Poiseuille form, u — «o(l — 
r2/ir!2), which is the solution for creeping flow in these cases. As 
Re,- tends to negative infinity, the solution (for negative Re r) 
tends to the form u = u0 cos [ir/2(r/R)2], which is the solution 
for the inviscid flow appropriate to the boundary conditions [6]. 

(c) At all Re r less than 2.3, there is a second solution that 
features flow reversal [4, 5]. 

(rt) At Re r between 9.11 and 20.6, there may be more than 

3 It is customary to discuss this class of flows in terms of the radial 

Reynolds number Rer = p The axial Reynolds number is re-
f 

Vr 
(£)d£. For uniform suction or 

4 Cx 

lated to Rer by Reji(.T.) = - I Rer 

injection, Re^z) 
4a; Rer. I t should be noted that the stability 

limits for laminar flows of this class have not yet been established. 
Flows with injection have been found to retain laminar velocity pro
files at axial Reynolds numbers greater than 106. 
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EVAPORATOR 
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— R-

Fig. 1 The cylindrical heat pipe and coordinate system 

one solution [5]. One such solution, given in [4], exhibits 
maxima of the axial velocity off the axis. 

(e) At Re r above 20.6, there is a multiplicity of solutions. 
Four of them, given in [4], exhibit flow reversal or maxima off 
the axis. 

There have been several experimental investigations of laminar 
flow with uniform injection at the cylindrical wall [7-9], varied 
initial conditions, and attempts to produce motions with reverse 
flow. However, only those cases discussed in (6) have been 
observed. 

Weissberg [10] used an approximate integral analysis that 
yields nonsimilar solutions and includes, as a special case, one of 
the. similar solutions of Yuan and Finkelstein [3]. The analysis 
indicates that reverse flows should occur for 2.4094 < Re < 7.6344 
and that the explanation of the nonexistence of similar solutions 
is the onset of velocity reversals near the wall due to the action of 
an adverse pressure gradient. Results for large Re are not 
given. 

Other investigators have solved equations of the boundary-
layer type in which certain gradients in the axial direction are 
neglected and the pressure is taken to be uniform across the pipe 
to analyze flow with only injection or only withdrawal at the wall 
[11-14]. The assumptions limit this type of analysis to small 
rates of suction or injection and preclude the calculation of re
versed flow. They do not require similarity and so at low Re 
are useful for describing the transitions between components. 
Busse [14] has applied an approach like that of Weissberg to the 
case of a slender heat pipe with an evaporator and condenser 

connected by an adiabatic wall at which no mass transfer occurs 
The effects of compressibility have been studied by Levy ngi 

and by Deverall, Kemme, and Florshuetz [16] for one-dimen
sional flows, and very recently by DeMichele for two dimensions 
[17]. 

In his original analysis of heat-pipe performance [18], Cotter 
assumed that the flows in the evaporator and the condenser were 
nearly uncoupled so that similarity solutions could be applied 
separately in each. He used solutions of Yuan and Finkelstein 
for small Re and results of Knight and Mclnteer for large Re. 

Because of the limitations of previous studies as to Reynolds 
number or geometry, the rational design of real heat pipes has 
awaited a solution of the full Navier-Stokes equation for a pipe of 
finite length and with both evaporation and condensation. In 
this paper such a solution is obtained by a numerical method. 
A new analytical solution for creeping flow is also given and 
serves as one of several checks applied to the numerical results. 

Mathematical Description 
The Differential Equations and Boundary Conditions. W e consider 

the steady, laminar axisymmetric motion of an incompressible 
vapor in a right-circular-cylindrical cavity as depicted in Fig. 1. 
The uniform inflow and outflow boundary conditions are re
ferred to here as evaporation and condensation, but no change 
of phase is actually involved in the calculation. We could just 
as well describe the processes that occur at the wall as blowing 
and suction perpendicularly through a porous-walled pipe. Under 
these conditions, the flow is governed by conservation of mass in 
the form 

du 

dx 

1 d(rv) 

r dr 
0 

and by conservation of momentum in the form 

du du 
pu — + pv — = dx dr 

dp 

dx 
+ M 

d2u 1 du d 

+ ~— + 
and 

dv dv dp 
pu — + pv~ = - — + n 

dx dr dr 

dx 

d2v 

dx'1 

dr 

dhil 

r dr + - — 
d2v 

dr2 

(1) 

(2) 

(3) 

The boundary conditions are 

M(0, r) = v(0, r) = 0 

u(L, r) = v(L, r) = 0 

v{x, 0) = 0, du(x, 0)/dr = 0) 

u(x, R) = 0, v(x, R) = vw(x) 

p(0, 0) = 0 

(4) 

Finite-Difference Solution. The dependent variables are trans
formed to the stream function and the vorticity, thereby elimi-

-Nomenclature-

A = constant of integration 
a = pvw/ft 
B = constant of integration 
6a = constant defined by equation (10) 
6c = constant defined by equation (10) 
/ = Bessel function 
i = index of axial mesh spacing 

J = Bessel function 
j = index of radial mesh spacing 

Kn = coefficients in equation (14) 
L = length of heat pipe or component 
p = pressure 
R = pipe radius 

Re r = radial Reynolds number, pvwR/p, 
(can be ± ) 

Re = radial Reynolds number, pVsR/p 
= |Re r | , but is pVcR/p where 
identified as the condenser 
radial Reynolds number 

r = radial coordinate 
axial velocity component 
radial speed at wall 
radial velocity component 
axial coordinate 
normal distance from pipe wall, 

R - r 

u 
V 

y = 

p. = dynamic viscosity 
p = vapor density 
T = shear stress 
\p = stream function 
oi = vorticity, dy/d£ — du/br 

a>* = modified vorticity, u/r 

Subscripts 

C = condenser 
E = evaporator 
N = value of mesh index j at r = R 
0 = condition at r = 0 
w = condition at pipe wall, r = R 
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nating the unknown pressure and reducing the number of de
pendent variables to two. 

The new variables \p a n d w* are defined by 

rpu 
d\p 

dr 

rpv = dx 

(5) 

and 

„* = I (^ _ Â 
r \dx dr / r 

Then equations ( l)-(3) yield the set 

—pw* 
1 d2^ l^dhj^ J_ d^ 

r2 d.T2 r2 dr2 r3 dr 

(6) 

(7) 

and 

pit 
dor" 

dx 
+ pv 

dco* 

dr |_£>.-c \ dx / 

X 

1 A 
r dr 

2 dco* 

r dr 
(8) 

The boundary conditions on \p in (7) follow readily from (4). 
Those on lo* in (8) must be derived from equation (7) in con
junction with (4), noting that the usual finite-difference repre
sentations of (7) become inaccurate and may introduce serious 
errors or instabilities. The procedure used here involves the 
integration of (8) for the special conditions existing very near 
the bounding wall and the subsequent integration of (7) to obtain 
an algebraic relation between \p and co* at the boundaries. 

In a region very near a wall, we can neglect the variation of co* 
with x in comparison with the radial variation. Then equation 
(8) after two integrations reduces to 

m — ] {Be-"'' — 
p-cr 

• R* [(1 + aR)e-"« - (1 + or)] 

(9) 

where y is the distance from the wall. Equation (7) can now be 
integrated twice between the wall and the radius TN-I of the 
adjacent mesh point to provide a second equation involving the 
integration constants A and B. An approximation, valid for 
small values of ay, is 

\P„ - 4/ = B-bc + A 
(1 + aR)bc 

p.a2R2 

in which 

be = 

and 

^ + 

(•»-*FK(: 

ba 

Ha2_ 

R* -

(10) 

+ 

r2 In 

aW 

4 
\ . 2/4«2 

a 1 H 
/ 16 

(i) + 
iJ2 

+ 
ay2R 

(>-S) 
Equations (9) and (10) can be solved for A and B at J'N-I, and 
the value of co* at the wall can then be calculated from (10). 

When ay is large, the error of (10) can be reduced by decreasing 
the mesh spacing near the wall or by increasing the number of 
terms retained in (10), but both measures increase the computa
tional effort required. We note that large values of ay are associ
ated with small viscosities and that at y > 0 the viscous forces 
are small compared to the inertial forces. Then, near a wall 

along which the radial velocity is constant and to which the 
streamlines are normal, co is independent of r. We can write 
equation (7) in the form 

— pa*r = -pco dr \r dr J 

integrate, and express the boundary value of co* in terms of the 
value of d\p/dr at the point adjacent to the wall. Using a central 
difference scheme, we obtain 

pww 

[+(x, R) - xP(x, rN_2)] 

2rN^R(R - rAr_1)
2 (11) 

Equation (11) was used for large-Reynolds-number calculations 
where the approximation of (10) becomes inaccurate. 

Similar procedures can be used to derive expressions for the 
vorticity on the plane impermeable end walls of the heat pipe. 
At the axis of the pipe the vorticity must vanish, but co* remains 
finite. The simple prescription of a linear variation of co* with 
r was found to produce satisfactory results for heat-pipe flows. 

The basic finite-difference solution procedure used in this in
vestigation is tha t described by Gosman, et al. [19], with special 
provisions for the calculation of the vorticity at the permeable 
boundaries and a difference formula that permits the use of non
uniform grid spacing in regions where greater resolution is de
sired. Pressures were calculated from the integrals of equations 
(2) and (3), expressed in terms of co*. The integration proceeded 
along the axis of the tube from x = 0 to x — L, followed by inte
gration from r = 0 to r = -ffi. A central difference scheme was 
used for dco*/d:c, except a t the end walls, where the appropriate 
forward or backward difference formula was used. Since the 
co* at the corners of the mesh are not required in the solution, 
and may even be singular points, they are not calculated, and 
the pressure cannot be obtained accurately near the corners. 
Further details are given in [20]. 

Slow-Motion Approximation. Consider the axisymmetric, steady 
slow motion of a vapor of homogeneous density and viscosity in 
the cylindrical heat pipe of Fig. 1. In terms of dimensionless 
variables based on R, VB, and p, equation (1) can be written 

d(ru) d(n>) 

dx dr 
= 0 or u = 

1 dj/ 

dr r dx 
(12) 

and for very small lie, equations (2) and (3) with inertial terms 
neglected yield 

in which 

Dty = 0 

• \r dr J 

(13) 

a«* Dty = r — I — — 1 + - ^ = -rco 
dr \r dr I da:2 

The boundary conditions remain those given in (4). 
As shown in [20], separation of variables yields 

* = £ ~2<-
, , „ [mr\2 (nir\ „ rJ^Xr) 

'( — l ) " ( i — x) sinh Xx — x sinh [X(L — x)] 

. sinh XL - ( -1)»XL . 

_ 1 / L \ . I'nirx\ 

/nwr\ \L J (mrr\ 

!n.. 
(14) 
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in which X = A.,- are the zeros of Jo(X), n = 1, 2, . . . , and all re
quirements are satisfied except the boundary condition \p(x, 1) = 
\j/w(x). The latter was taken as that for a symmetrical pipe 
with uniform evaporation and condensation, and the roots of the 
resulting characteristic equation for the coefficients Kn were 
determined by an iterative procedure. The values of ^ then 
given by (14) are compared below with the numerical solution 
of the full Navier-Stokes equations at small Re. 

Results 
Stability and Accuracy of Numerical Solutions. The method ex

hibited good numerical stability, and a fairly rapid rate of con
vergence of the iterative procedure was found so long as the 
proper relations were used for the vorticity boundary condition. 
The accuracy of the numerical solution was checked in three 
ways: (a) the mesh spacing was systematically varied and the 
results for different mesh sizes were compared to the extrapolated 
results for infinitesimal mesh spacing, (6) the results of calcula
tions for large L/R were compared with known similar solutions 
for both large and small Reynolds numbers, and (c) the results 
for small Reynolds numbers were compared with the slow-mo
tion solution a t all mesh points. I t appears from this and other 
work that the condenser results probably converged within 2 
percent. A 40 X 20 mesh, which was used for most of the re
sults reported, yielded large L/R results in the evaporator, which 
agrees with accepted similar solutions within several tenths of a 
percent. The comparison of the numerical results with the 
slow-motion solution (14) carried out to 30 terms in both n and 
Xj showed agreement better than 0.2 percent at all points; except 
those lying in the plane separating the evaporator from the 
condenser where the 30-term slow-motion solution fails to 
satisfy the boundary condition by about 1.3 percent, and its 
deviations from the numerical solution are of the same order. 

Results for Symmetrical Heat Pipes. A symmetrical heat pipe, 
in the context of this paper, is one in which the length of the 
evaporator is the same as the length of the condenser. Because 
the radial velocitj' at the wall of the pipe is assumed constant in 

each section, the stream function at the wall increases linearly 
from 0 to L/2 and then decreases linearly from L/2 to L. The 
calculations were performed in sequence, with the results of each 
problem serving as initial conditions for the next, in which only a 

small change of Reynolds number occurred. This procedure 
allowed the calculation of many cases at a small expense of com. 
puter time. 

When the Reynolds number is small, and L/R equals 20 Fig 
2(a), the axial velocity component (for r < R, 0 < x < L) is 

everywhere positive. The contours of pressure and the modified 
vorticity co* are nearly straight lines corresponding to a linear 

STREAM 
FUNCTION f 

AXIAL 
VELOCITY, PRESSURE. 
u /u (L /2 ) -p(R/LE)Z//>v| 

Fig. 2(b) Streamlines and contours of the modified vorticity « * , the non-
dimensional axial velocity component, and the nondimensional pres
sure — p( f t / l js ) 2 /pVs 2 for a symmetrical heat pipe with L/R = 20 , Re = 
4. Note that the axial distance is foreshortened to conserve space. 

STREAM 
FUNCTION V 

I "I I 

PRESSURE, 

p ( R / L E ) % y | 0 

Fig. 2(a) Streamlines and contours of the modified vorticity w*, the non-
dimensional axial velocity component, and the nondimensional pressure 
— P ( R / 1 . E ) 2 / P V E 2 for a symmetrical heat pipe with L/R — 20 , Re = 0 . 0 1 . 
Note that the axial distance is foreshortened to conserve space. 

AXIAL 
VELOCITY, PRESSURE. 

Fig. 2(c) Streamlines and contours of the modified vorticity « * , the non-
dimensional axial velocity component, and the nondimensional pressure 
— P(.R/LE)2/PVE2 for a symmetrical heat pipe with L/R = 20 , Re = 1000. 
Note that the axial distance is foreshortened to conserve space. 

374 / AUGUST 197 3 Transactions of the AS ME 

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(a) (b) (c) 

Re = 0.01 Re = 4 Re =1,000 
Fig. 3 Development of the axial velocity profiles u/u(x) for L/R = 2 0 
and (a) Re = 0 . 0 1 , (b) Re = 4, and (e) Re = 1000 

shear-stress distribution characteristic of a "fully developed" 
pipe flow. 

As the Reynolds number increases, deviations from Poiseuille 
flow become evident first in the condenser. Reverse flow gen
erally develops in the condenser at Reynolds numbers between 
two and four, which is consistent with the known disappearance 
of similar flows. No special a t tempt was made to narrow the 
range any further. In Fig. 2(6) the Reynolds number is four and 
reverse flow extends along the wall from o>* = 0 to the end of the 
condenser. The vorticity contours are no longer straight but are 
beginning to be swept downstream. Large vorticity gradients 
occur close to the end wall of the condenser. 

At the highest Reynolds number, Fig. 2(c), there is still a small 
region of reverse flow. The contours of o>* start to resemble the 
streamlines, showing that the effective viscosity due to numerical 
diffusion is not sufficient to prevent the calculations from ap
proaching the expected asymptotic limit. I t is apparent even 
in the distorted maps shown here that the pressure field is truly 
one-dimensional only in the limit of very small Reynolds num
bers. 

The development of the axial velocity profile is shown in Fig. 3 
for the same conditions. The profiles are each normalized to the 
local average axial velocity, which varies linearly with x. For 
the smallest value of Re, the distribution is nearly parabolic over 
most of the pipe, as expected. For Re = 4, the profiles change 
very little in the evaporator, but change continuously in the 
condenser. At x = 18 the shear stress is very nearly zero, and 
at larger x there is flow reversal. In this respect the phenomenon 
is like the separation of a boundary layer flowing along a solid 
wall. Reversal persists even when the Reynolds number is in
creased to 1000, and the entering velocity profile is very nearly 
the in viscid limit cos 7r/2 (r/R)2 of the similar solution for a semi-
infinite evaporator. The high-Reynolds-number calculations 
were repeated with initial distributions of ip and u>* appropriate 

to a uniform axial profile to determine the effect of the initial 
guesses, but no significant changes in the results were noted. 
Da ta for additional values of L/R and other results are given in 
[20]. 

Nonsymmetrical Heat Pipes. Calculations were made for non
symmetrical heat pipes with various lengths of evaporator, con
denser, and adiabatic sections. For Lc > LE such that the 
condenser Re is in the transitional range from one to two, the 
frictkraal pressure losses along the condenser tend to be bal
anced by the dynamic pressure recovery, and the entire con
denser operates at a nearly constant pressure. 

Some features of the many possible asymmetrical configura
tions are disclosed when the characteristics of evaporators and 
condensers are considered separately. Such a study was con
ducted. The many interesting results included the extent of 
the nonreversed flow as a function of Re, Lc/R, and the shape of 
axial profile entering the condenser. Nonsymmetrical pipe re
sults are given in [20]. 

Total Pressure Loss in Heat Pipes. Busse's interesting study [14] 
for uniform evaporation and condensation suggests that at small 
Re the overall pressure loss in the pipe is just that which would 
occur if Poiseuille flow prevailed throughout, regardless of the 
lengths of the evaporator and condenser. 

p(0) - p(L) = 8 - ^ M ^ [LE + Lc) (15) 

This result was derived by Cotter [18] and greatly simplified his 
overall analysis of the heat-pipe performance. In Fig. 4 we have 
plotted the pressure loss for the symmetrical-heat-pipe calcula
tions. In spite of reverse flow, which begins at Reynolds num
bers of the order of unity, Busse's result is a good approximation 
for Reynolds numbers up to 10 in such pipes. 

Conclusions 
The results of the investigation warrant the following con

clusions : 

1 For laminar flows in heat pipes of uniform cross section, the 
flow in the condenser will probably exhibit a region of reversal 
of the axial velocity when the condenser radial Reynolds num
ber exceeds two. Condensers with entering velocity profiles 
flatter than those that develop in simple cylindrical evaporators 
can avoid reversal. 

2 Accurate prediction of pressure loss will generally require 
solution of the complete two-dimensional equations if the radial 
Reynolds numbers in the condenser are greater than two or if 
the pipe is short. 

3 The pressure loss in the evaporator is often the dominant 
one in nonsymmetrical pipes, and it can be calculated accurately 
from results in [20] for all but the shortest evaporators. 

4 Estimates of the overall pressure loss may be made using 
Busse's analysis for Reynolds numbers less than about 10. More 
accurate estimates can be constructed by using separate results 
for evaporators and condensers [20]. 
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Steady Two-Dimensional Heat and Mass 
Transfer in the Vapor Gas Region 
of a Gas-Loaded Heat Pipe 
A numerical analysis is made of the steady two-dimensional heat and mass transfer in 
the vapor-gas region of a gas-loaded heat pipe. Consideration is given to a cylindrical 
heat pipe with typical evaporator, condenser, and noncondensible-gas sections and with 
negligible axial conduction through the wall and the liquid-wick matrix. The elliptical 
mass, momentum, energy, and species conservation equations have been solved in con
junction with the overall energy and mass conservation constraints and the thermo
dynamic equilibrium condition for three heat pipe cases with different working fluids 
and diameters. The results show that in certain gas-loaded heat pipes, such as liquid-
metal heat pipes, vapor-gas diffusion and two-dimensionality must be considered in the 
analysis. Extension of the present numerical framework to more general cases such as 
including the axial wall conduction is indicated. 

A 
Introduction 

MODIFIED version of heat pipes in which the tem
perature is controlled by having certain amounts of a noncon-
densible gas inside has found many applications [1-4].1 In a 
gas-loaded heat pipe, the gas volume and the condenser area are 
related to the overall heat transfer rate through the heat pipe. 
The gas volume varies either by changes in the system pressure 
[5] or by active or passive control systems [6]. A common 
assumption made in the consideration of a gas-loaded heat pipe 
is that the vapor and the gas inside the heat pipe do not mix 
and there exists a sharp vapor-gas interface between the con
denser and the noncondensible gas sections of the heat pipe. 
The assumption, however, has been questioned recently by sev
eral investigators and considerable axial energy conduction and 
mass transfer between the two sections have been reported [7-9]. 
Edwards and Marcus [8] made a one-dimensional analysis of the 
combined energy and mass transfer processes in the vicinity of 
the vapqr-gas front of gas-loaded heat pipes. They consid
ered the case with a relatively small heat pipe diameter and 
vapor-gas mixtures of relatively low binary mass diffusivity, 
and found that the axial energy conduction through the heat 
pipe wall was the dominant factor in determining the tempera
ture variations along the heat pipe. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division and presented at the 

Winter Annual Meeting, New York, N. Y., November 26-30, 1972, of 
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript 
received by the Heat Transfer Division August 14, 1972; revised 
manuscript received October 12, 1972. Paper No. 72-WA/HT-34. 

I t is to be demonstrated here that in some gas-loaded heat 
pipes the energy and mass diffusion between the vapor and the 
noncondensible gas could have an appreciable effect on heat 
transfer in the vapor-gas region and the temperature distribution 
along the gas-loaded heat pipe. In order to achieve a better 
understanding of the vapor-gas mixing phenomena, a numerical 
analysis has been made of the two-dimensional heat and mass 
transfer in the vapor-gas region of a simple cylindrical gas-
loaded heat pipe. The solution is based on the elliptic mass, 
momentum, energy, and species conservation equations with 
proper boundary conditions. A two-dimensional numerical 
analysis of heat and mass transfer in the vapor-gas volume of 
gas-loaded heat pipes was attempted by McDonald [9]. His 
heat pipe configuration with evaporation and condensation taking 
place only at the pipe flat ends, however, is not as realistic as the 
configuration in the present study. A recent paper by Somogyi 
and Yen [10] presents an approximate two-dimensional analysis 
of the vapor-gas diffusion effects in cylindrical gas-loaded heat 
pipes by solving the momentum and species boundary-layer 
equations. In adopting the boundary-layer approach as well as 
neglecting the nonisothermal effects and the pressure-temperature 
thermodynamic relation, their physical model is considerably 
more restrictive than the present one, but their results concerning 
the vapor-gas diffusion effects on gas-controlled heat pipe per
formance are in qualitative agreement with the present findings. 

In order to focus on the vapor-gas mixing phenomena in the 
present analysis, the effects of axial energy conduction through 
the heat pipe wall and the liquid-wick matrix are neglected, al
though they can be easily incorporated into the numerical frame
work (Appendix). The present results show that considerable 
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mass composition and temperature variations in both the axial 
and radial directions are present in some of the cases considered. 
The numerical results are also compared with the cross-sectional-
area averaged results and those obtained by neglecting heat and 
mass transfer between the vapor and the gas regions. 

General Considerations 
The physical model of a sharp vapor-gas front for gas-loaded 

heat pipes neglects the transfer of energy and mass between the 
vapor and the gas and the axial energy conduction through the 
heat pipe wall and the liquid-wick matrix. In this case the 
energy and mass balance relations can be written as 

Q L PHe(Ta, l\)dx = f 
VgALg 

PHC{1\ - Tac)dx (1) 

(2) 

where the total length of the condenser section, Lcg, is 

Lcg = Le + LQ (3) 

Also, a thermodynamic relation exists between the operating 
temperature of the vapor and the total pressure inside the heat 
pip^ 

and the noncondensible gas pressure is 

Pc = P(T») - p(Tac) 

(4) 

(5) 

These equations will be employed to obtain initial input values 
for the iterative numerical solution of the general case to be 
explained later. 

The. results of recent experimental studies [7, 11, 12], however, 
indicated that the axial energy conduction through the heat pipe 
wall and liquid-wick matrix, as well as the energy and mass trans
fer between the vapor and the gas inside the heat pipe should be 
taken into consideration when analyzing the performance of gas-
loaded heat pipes. In order to have a better picture of the rela
tive importance of various heat and mass transfer modes present, 
a simple order-of-magnitude comparison is made. Consider 
first the relative magnitude of the axial thermal energy transfer 
rate by the latent heat of the vapor that diffuses into the non
condensible gas region, to the energy transfer rate by axial con
duction through the heat pipe wall and liquid-wick matrix 

Bi = 
ApDh ~)hfa (dm\ 

kw \dT/ (6) 

where (dm/dT) can be obtained by averaging the medium slope 
of the thermodynamic equilibrium curve in the temperature 
range from To to Tac in each case [13, 14]. In the vapor-gas re
gion, the relative magnitude of energy transfer due to diffusion to 
that of conduction is 

B.i 
pDh/g 

k ( dm\ 

dTj (7) 

The foregoing two parameters have been calculated for six cases 
of gas-loaded heat pipe operation. The first three cases are the 
ones tested by Edwards and Marcus [8] while the other three 
characterize heat pipes with a typical stainless-steel wall but 
different working fluids and diameters. Table 1 demonstrates 
the preliminary information and values of the nondimensional 
parameters for the foregoing six cases. For all cases, average 
values of k and D were calculated from the basic thermodynamic 
relations [13]. I t is shown that only the first three cases are 
wall-conduction-dominated. Hessel and Jankowski [12] re
ported the results of experiments with sodium-argon over a tem
perature range close to Case No. 5 in Table 1, but with a stainless 
steel heat pipe that had a diameter of 5 cm. In their case Rt 

would be close to 5 which means a totally diffusion dominated 
gas-loaded heat pipe. In this and other cases where diffusion, 
energy transport by the vapor and the gas is appreciable as com
pared to axial conduction through the wall and liquid-wick, a 
careful analysis of heat and mass transfer in the vapor-gas region 
is indeed necessary. 

Analysis 
The physical assumptions employed for the present analysis 

are as follows: 

1 The vapor is at its equilibrium partial pressure correspond
ing to its temperature only at the vapor-liquid interface. Inside 
the vapor space, the vapor is either superheated or subcooled 
depending on its temperature and mass composition. Also, 
evaporation and condensation take place only at the vapor-
liquid interface. 

2 The steady vapor-gas flow is laminar and its pressure drop 
is negligible. 

3 The vapor and the gas as well as their mixtures are ideal 
gases and have constant physical properties. 

4 The evaporator and the condenser have constant ambient 

-Nomenclature-

A — vapor-space cross-sectional area 
do = vapor-space diameter 
D — vapor-gas binary mass diffusivity 

Do = outside heat pipe diameter 
h = enthalpy 

h/g = heat of vaporization 
H — overall heat transfer coefficient 
k = thermal conductivity 
L = length of the heat pipe 
m = vapor mass composition 
n = number of moles 

Mi = distance between the nodes on the 
boundary and its adjacent node 
on the normal to the boundary 

p — pressure 

P = perimeter, wd0 

Pr = Prandtl number, fiT/, 

Q = overall heat transfer rate through 
the heat pipe 

r = radial distance 
ro = vapor space radius 

B° = universal gas constant 
iJi = nondimensional parameter, equa

tion (6) 
Ri — nondimensional parameter, equa

tion (7) 
Re = radial Reynolds number, proVo/n 
Sc = Schmidt number, fJ,Tm 

twi = wick thickness 
T = temperature 

To = initial operating vapor temperature 
u — axial velocity 
v — radial velocity 
vo = evaporation or condensation ve

locity 

x = axial distance 
r = exchange coefficient 
yU = viscosity 
p = vapor-gas mixture density 
l/1 = stream function 
co = vorticity 

Subscripts 

a = ambient 
c = condenser 
e ~ evaporator 
g = noncondensible gas 
h ~ enthalpy 

m = mass 

s = value on the boundary 
v = vapor 

w = values for the heat pipe wall and 
liquid-wick matrix 
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Table 1 Typical values of Ri and R2 

ase 

1 
2 
3 
4 
5 
6 

Vapor-gas 
mixture 

Water-nitrogen 
Methanol-nitrogen 
Ammonia-nitrogen 
Water-air 
Sodium-argon 
Water-air 

To 
K 

305 
305 
305 
450 
900 
450 

Vo 
atm 

0.132 
0.528 

20.00 
9.530 
0.049 
9.530 

J ac 
K 

195 
195 
195 
350 
400 
350 

do 
cm 

1.05 
1.05 
1.05 
1.72 
1.72 
5.16 

Do 
cm 

1.45 
1.45 
1.45 
2.02 
2.02 
5.46 

twi 
cm 

0.1 
0.1 
0.1 
0.1 
0.1 
0 .1 

A„ 
cm2 

0.33 
0.33 
0.33 
0.30 
0.30 
0.84 

A 
cm2 

0.867 
0.867 
0.867 
2.320 
2.320 

20.90 

R, 

0.0112 
0.0207 
0.0174 
0.1920 
2.57 
0.6170 

Ri 

2.76 
0.64 
3.45 
1.53 

115.0 
1.53 

temperatures and constant overall heat transfer coefficients be
tween the liquid-vapor interface and the ambient. 

Governing Differential Equations. The governing differential 
equations consist of the mass, momentum, energy, and species 
conservation equations. For the numerical method of analysis 
employed in the present study, the mass and momentum con
servation equations are expressed in terms of stream function 
and vorticity as [15]: 

_d 

dx 

/w d i A 

\r dr) 

,pr dx 

_& 
" dr 

+ dr \_pr 
df 
dr". 

d_ 

dx 

+ oi = 0 

.3 A 
da: V r 

(8) 

dr 

d 

dr 

w d iA~| _ d 

r dx / J d.1 

('")]-s(^) 
dp 

dr 

dr 

U1. _)- VZ\^ ^ p 

da: 
= 0 (9) 

where 

d& 

dr = pur, 
diA 

da; = -pvr, 
dv du 

w = 
dx dr 

(10) 

The energy and species conservation equations are: 

\ dr J dr \ dxj. 

' d / d A d / d 
I TO ] I TO — 

_dx \ dr / dr \ da 

d 

da: 

da: 

Vhr ] 
dr 

dm~\ 

dzj 
d l~ dm~\ 

-* |_ r - r *.r 0 

(ID 

(12) 

Boundary Conditions. For a gas-loaded heat pipe, in order to 
determine the stream function, vorticity, temperature, and mass 
composition boundary conditions, the pressure inside the heat 
pipe must be known beforehand. Initially, the pressure is deter
mined by a simultaneous solution of equations ( l ) - (5) . This 
value of pressure is corrected during the calculation process by a 
successive approximation procedure in such a way that the system 
always satisfies the laws of conservation of energy and mass. 
Once a value is designated to the total pressure inside the heat 
pipe, the conditions at the boundary of the vapor-gas volume are 
determined as follows: 

The temperature at the vapor-liquid interface is determined 
by assuming a parabolic variation for temperature close to the 
interface. With a uniform grid, T, is determined from the rela
tion 

3Ti - 3T2 + Ts, (13) 

where Ti, Ti, and Tr are the temperature at nodes one, two, and 
three steps away from the wall. At the heat pipe flat ends and 
along the axis, the conditions are 

dT 

dx 

bT 

dr 
(14) 

The vapor mass composition at the liquid-vapor interface is 
obtained from the equilibrium data for vapor-gas mixtures, 

and also 

dm 

da7 

m = m{To, v) 

dm 
= 0, — 

; - O , L or 
= 0. 

(15) 

(16) 

The velocity components, u and v, at the boundary are deter
mined from the following relations: 

v(0, r) = v{L, r) = v{x, 0) = 0, 

«(0, r) = u(L, ?•) = u{x, r0) = 0, 
d?t 

d7 

(17) 
= 0 

The radial component of velocity at the pipe wall is determined 
by writing the energy balance relation for an axial element of 
the vapor-liquid interface, 

H[To(x) - Ta] +k 
bT 

dr 
' mphfn (18) 

The overall heat transfer coefficient H is usually a function of 
To(.x), Ta, and Tw but was taken as constant in the present 
analysis. 

The stream function \p o n t n e boundary is determined from 
the integration of equation (10), 

^(0, r) = iA(L, r) = f(x, 0) = 0, xj/{ x, n) = - J 
Jo 

pmvor0dx 

(19) 

The vorticity boundary conditions at the vapor-liquid inter
face and on the heat pipe flat ends are calculated by a relation 
based on the assumption that the vorticity is uniform close to 
the boundary [15]: 

w. = - 2 (& - +.) 
r,nip 

(20) 

A more complicated relation for calculation of w„ considering 
blowing and suction at the wall, has been proposed and used by 
several investigators [15, 16]. For the Reynolds number range 
of present analysis, the results of various relations for ois, when 
applied to a simple heat pipe, do not differ more than five percent 
in value. Also, a relation based on the assumption that the 
vorticity variation close to the axis is parabolic was used for 
determination of vorticity at the pipe center line. 

Numerical Method of Solution. Basically, the finite difference, 
iterative method of solution based on the upwind method of 
differencing [15] is used in the present analysis. Considering the 
previously specified boundary conditions and their interde-
pendency, a special solution procedure is employed as follows: 

1 The vapor volume is divided into rows and columns in the 
radial and axial directions and row and column numbers are 
assigned to the nodes of the grid that is formed. 
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Table 2 Three cases of the gas-loaded heat pipe 

Case 

4 
5 
6 

Re,,, Rec 

1 
1 
1 

M 
Kg 

4.373 X 10~4 

1.358 X 10-7 

4.021 X 10"3 

L 
cm 

60 
60 
60 

cm 

20 
20 
20 

Pr 

0.825 
0.800 
0.825 

Sc 

0.60 
0.15 
0.60 

H 
w/o,m2K 

4.66 X 1 0 -
4.45 X 10-
1.55 X 10" 

2 By solving equations (1), (2), (3), (4), and (5) the length 
of the condenser and the controlling gas sections, the initial pres
sure, the initial constant temperature of the vapor and the con
stant vapor mass composition in noncondensible gas region are 
determined. The initial gas temperature is assumed to be equal 
to the condenser ambient temperature and zero initial values of 
velocity components, stream function, and vorticity are assumed 
for all the nodes inside the grid. 

3 The velocity and stream function boundary conditions are 
determined from equations (17), (18), and (19) and the sets of 
algebraic difference equations for the stream function, tempera
ture, and mass composition are solved. This step is repeated 
25 times. 

4 The new temperature, mass composition, velocity, and 
stream function boundaiy conditions are determined and the 
sets of algebraic difference equations for the stream function, 
temperature, and mass composition are solved. This step is 
also repeated 25 times. 

5 The vorticity boundary conditions are calculated from 
equation (20) and the set of algebraic difference equations for 
the vorticity are solved. Steps 4 and 5 are repeated 25 times as 
before. 

6 After the iteration process is repeated 75 times, the four 
sets of algebraic difference equations are solved together and 
the new boundary conditions are calculated each time and the 
procedure is repeated until a converged solution is obtained. 
In this step, the pressure inside the system is adjusted after every 
5 times of iteration in such a way that the overall energy and 
mass balance relations are satisfied. This is done by the vapor-
gas equilibrium relation and the ideal gas law through equations 
(1) and (2). Also, the mass balance relation for the vapor is 
satisfied by adjusting the stream function boundary condition 
in such a way that the value of stream function, when calculated 
from equation (19), becomes equal to zero a t the end of the non
condensible gas section. 

Results and Discussion 
The results of the two-dimensional analysis of heat and mass 

transfer in the vapor-gas region of the gas-loaded heat pipes are 
presented. The analysis is based on the assumption that axial 
conduction through the heat pipe wall and liquid-wick can be 
neglected as compared to the heat transfer due to the latent heat 
of the vapor diffusing into the noncondensible gas region. There

fore, it was applied only to the last three cases of Table 1, the 
diffusion dominated situations. Table 2 contains necessary 
information on the typical cases of gas-loaded heat pipes that 
were analyzed. A comparison of the Prandtl and Schmidt 
numbers demonstrates the relative importance of axial heat or 
mass transfer in the vapor phase in each case. Figs. 1 and 2 
demonstrate the axial vai-iations of temperature and vapor mass 
composition for the three cases along the heat pipe. The radial 
variations of temperature and vapor mass composition at various 
locations along the heat pipe are presented in Figs. 3, 4, 5, 6, 7 
and 8. Finally, in Figs. 9 and 10, the axial variation of tempera
ture and vapor mass composition at the vapor-liquid interface 

35 4 0 45 35 . 4 0 

DISTANCE x, cm DISTANCE x , cm 

( a ) ( b ) 

45 35 40 45 

DISTANCE x , c m 

( c ) 

Fig. 2 Axial mass composition variation (a, Case 4; b. Case 5; c. Case 6) 
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Fig. 3 Radial variation of temperature. Case 4 
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Fig. 1 Axia l temperature variation (a. Case 4; b, Case 5; c, Case 6) Fig. 4 Radial variation of temperature, Case 5 
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Fig. 5 Radial variation of temperature, Case 6 
Fig. 8 Radial variation of vapor mass composition. Case 6 

Fig. 6 Radial variation of vapor mass composition. Case 4 

Fig. 7 Radial variation of vapor mass composition, Case 5 

as obtained from the two-dimensional analysis for the three 
cases, are compared with the cross-sectional-area averaged re
sults and those from the flat front theory. The flow results are 
quite similar to those for a simple heat pipe [16] and are omitted 
here. 

In a gas-loaded heat pipe, the vapor velocity components are 
very much close to zero in the vicinity of the vapor-gas front 
and transport of energy and mass in that region is essentially by 
thermal conduction and mass diffusion. The present results 
confirm the simple dimensional comparison as characterized 
by Ri and R2. In Case 4, Figs. 1(a) and 2(a), the conductivity 
and the diffusivity of vapor-gas mixture are relatively low (Ri = 
0.192 and Ri = 1.530). Therefore, very little energy and mass 
transfer take place between the vapor and the gas and there re
sults a sharp vapor-gas front. I t is expected from the sharp 
front that the axial mass composition distribution can be well 
approximated by the one-dimensional result (Figs. 2(a) and 10). 
It should be mentioned here that in Case 4 the axial energy con
duction through the heat pipe wall, if included, would have been 
the dominant mode of energy transfer across the vapor-gas 
region. 

The vapor-gas mixture mass diffusivity is relatively high in 
Case 5 (i.e., diffusion dominated case, Ri = 2.57). Thus as it 

35 40 45 35 40 45 35 40 45 
DISTANCE x,cm DISTANCE x, cm DISTANCE x,cm 

(a) lb) (c) 

Fig. 9 Comparison of the two-dimensional, cross-sectional-area 
averaged and flat front results 

0.4 

WATER VAPOR-AIR 

D PIPE WALL ' 
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h-B-a-g Q 
35 40 45 2 

DISTANCE x, cm 
(a) 

5 40 
DISTANCE x,cm 

(b) 

45 35 40 45 
DISTANCE x, cm 

(c) 

Fig. 10 Comparison of the two-dimensional, cross-sectional-area 
averaged and flat front results 

is seen from Fig. 2, the axial mass composition profiles are flatter 
for sodium-argon heat pipe than for water-air heat pipe in Case 
4. Despite the sharp axial temperature profiles between the 
condenser and the noncondensible gas regions {Ri = 115), Figs. 
2(6), 7, and 10 show that the axial mass composition distribution 
can not be approximated with the cross-sectional-area averaged 
results which may be considered as the results of a one-dimen
sional analysis. 

In Case 6, both the vapor mass diffusion and the energy con
duction through the vapor-gas mixture are effective in determina
tion of the temperature and mass composition distribution in 
the gas-loaded heat pipe (iJi = 0.62 and i?2 = 1.53). The two-
dimensional nature of the problem is evident in Figs. 1(c), 2(c), 5, 
and 8, and the result in Figs. 9 and 10 represents only the average 
axial temperature and mass composition distribution as com
pared to the two-dimensional result. 
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In general t.he result,~ of t.he present study demonstrate that 
energy and mass transfer between the vapor and the gas in a gas
loaded heat pipe, in a variety of cases, such as liquid metal 
gas-loaded heat pipes, may playa dominant role in determining 
the system performance. Furthermore, in many cases, the one
dimensional analysis of the energy and mass transfer is not 
sufficient fo), a critical study of the operational characteristics 
of gas-loaded heat pipes. The present study also demonstrates 
properly the effects and importance of various physical pal'am
eters 011 the performance of gas-loaded heat pipes. 
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APPENDIX 
In this Appendix a method is described to incorporate energy 

conduction along the heat pipe walJ and the liquid-wick matrix 
into the numerical framework for two-dimensional analysis of 
heat and mass transfer in the vapor-gas region of cylindrical gas
loaded heat pipes. 

The steady-state energy conservation equation is 

~ (lew OTw) -I- ~ ~ (kwr OTw) = 0 ox ox l' or or (A-I) 

where lew is the local conductivity of the heat pipe wall 01' liquid
wick matrix and Tw is the wall 01' liquid-wick matrix temperature. 
The boundary conditions fol' this equation are 

at x = 0 and L, o (A-2) 
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Fig. 11 Axial heat pipe element with grid 

at r 1'0, To(x) (A-3) 

and 

at l' = Ro, OTwi H(Ta - Taw) = kw- . 
or "~Ro 

(A-4) 

where H is the overall heat transfer coefficient between the out
side heat pipe wall and the ambient. 

By dividing the heat pipe wall and liquid-wick matrix into 
rows and colulllns and forming a grid as demonstrated in Fig. 11, 
temperature distribution in that region can be obtained from II 

solution of the set of algebraic difference equations written for 
all the nodes of the grid 

Tp = ANTN -I- AsTs -I- AETE -I- All'TlV -I- Ap (A-5) 

in which A's for each node P are found from equations (A-I), 
(A-2), (A-3), or (A-4). The same iterative method of solution 
can be employed for solving this set of equations along with other 
sets of equations. For this purpose steps 2 and 3 in the Numeri
cal lVlethod of Solution section should be replaced by the follow
ing: 

2 By solving equations (1)-(5), L e , L., po, p., and To are de
termined. The initial gas temperature is assumed to be equal to 
the condenser ambient temperature and zero initial values of 
velocity components, stream fUnction, and vorticity are aSSlimed 
for all the nodes of the vapor volume grid. The temperatures 
at the nodes of the wall and liquid-wick matrix grid are assumed 
equal to the vapor or the gas temperatures depending on their 
axial position. 

3 The set of difference equations for the wall and liquid-wick 
matrix, equations (A-5), are solved first. The velocity and 
stream function boundary conditions for the vapor volume are 
then calculated from equation (17), the following equation 

-lew OTwj -I- k OTI 
OJ' ro OJ' r~ro 

Vo = (A-G) 
mph!o 

and equation (19). Next, the sets of difference equations for the 
stream function, energy and mass in the vapor volume are 
solved. This step is repeated 25 times. 

By following this method, the effects of energy conduction in 
the heat pipe wall and liquid-wick matrix on heat and mass trans
fer in gas-loaded heat pipes can be determined in a two-dimen
sional manner. At the same time, the axial temperature vari
ations in the wall and liquid-wick matrix at the evaporator
condenser or evaporator-adiabatic and adiabatic-condenser 
sections of both simple and gas-loaded heat pipes can be deter
mined as a result of the analysis. A subroutine must be added 
to the original program in order to calculate the coefficient A of 
equations (A-5). Also, in dividing the heat pipe wall and 
liquid-wick matrix into rows and columns, a nonuniform grid 
with smaller radial distances in the first and last rows as demon
strated in Fig. 11 would increase the accuracy of the results. 
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On the Minimum Size of Large 
Dry Cooling Towers With Combined 
Mechanical and Natural Draft 
The gasdynamic performance equation for large-scale dry cooling towers is derived re
lating size, shape, fan power, and drag and heat-transfer performance of heat exchangers. 
Induced-, forced-, or natural-draft towers are special cases. The general result consists 
of a zero-order scaling formula involving a size function having a minimum for a, par
ticular combination of temperatures, together with a set of correction terms of first order 
in temperature rise. Thus systems that are nearly equivalent gasdynamically can be 
compared. Technical requirements for small tower size or fan power are expressed in 
terms of heat-exchanger parameters. 

B, 
Introduction 

Y THE TEAK 2000, it is expected [ l ] 1 that electric 
power generation will have increased by a factor of more than 
four within the U. S. alone. By then it will be clear, if it is not 
so already, that our inland water resources (except the Great 
Lakes) are inadequate to provide once-through condenser cooling 
at acceptable levels of thermal pollution and that? cooling towers 
will be used extensively. However, it is by no means clear what 
the future cooling arrangements will be like. 

In the present paper we shall assume that evaporative cooling 
will not be acceptable in the future, in view of the condensing 
plumes to be expected in cold weather and in view of the substan
tial water consumption, amounting to about 30 cfs for a 1000-
MW power plant. Rather, some form of dry heat exchange 
will, we assume, come to dominate the field. Heeren and Holly 
[2] discuss the present state of large-scale dry cooling methods; 
Smith and Larinoff [3] discuss in optimistic terms the prospects 
for dry mechanical-draft cooling; and Christopher and Forster 
(4] have described the dry natural-draft tower now in service at 
Rugeley, England, designed to dissipate the 575-106 Btu /hr re
jected from a 120-MW power plant of quite high efficiency. 

Dry cooling towers are considered much more expensive than 
wet [5], because of the size or fan power required, the cost of heat 
exchangers, and the poorer cooling potential that characterizes 
any dry system working toward dry-bulb rather than wet-bulb 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (with

out presentation) in the JOUBNAL OF HEAT TBANSPBE. Manuscript 
received by the Heat Transfer Division October 23, 1972. Paper 
No. 73-HT-S. ' 

temperature. However, the technical limitations of these devices 
are not well understood. In this paper, a theoretical performance 
equation is developed for a dry tower with combined mechanical 
and natural draft, expressed, finally, in terms of customary heat-
exchanger parameters, tower dimensions, and fan power. 

The purpose of this theoretical development is to provide a 
technical basis for minimizing tower size, power, or cost. One 
may assume that large tower size is per se objectionable, aes
thetically and economically, and we need to know the relevant 
limits of technical feasibility. Fan power, in mechanical systems, 
plays the same role as height in the natural ones, and one would 
wish to minimize fan power because of noise as well as cost. 

The study of minimization will not be completed in this paper; 
subsequent papers will give an application of the present theory 
to a practical case, extend the theory to questions of heat-ex
changer size, and show the' derived limits of feasibility under 
various constraints. Economic analysis, which, taking external 
costs into account, must finally govern cooling-system design, 
is beyond the scope of this present study. 

In the analysis to follow, tedious but straightforward mathe
matical details will be omitted; they can be found in [6, 7]. 

The Gasdynamic Performance Equation 
Basic Assumptions and Equations. Fig. 1 is a sketch of the 

simple flow system we assume, to which we shall apply the laws 
of inviscid gasdynamics, assuming one-dimensional flow in a 
vertical duct. That is, we will consider the tower slender enough 
that gradients of flow quantities transverse to the flow direction 
are unimportant. At arbitrary locations within this duct we 
place heat-exchange systems and fan systems (any devices that 
add momentum to the flow). The geometrical proportions 
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Fig. 1 Sketch of tower geometry 

shown are purely schematic; only the sequence of events is made 
specific. Ambient, stagnant sir (subscript 0) is drawn from the 
ground-level stratum of the atmosphere. After entering the 
tower, the air is assumed to accelerate smoothly and isentrop
ically to the first heat-exchanger zone beginning at CD. Any 
tower entrance losses can usually be assigned to the heat ex
changer itself. 

The air leaves the heat exchanger at © after having acquired 
heat at a rate Q and suffered a momentum loss prescribed by Co, 
a drag coefficient. These changes are considered to occur 
abruptly, across zones negligibly thin in comparison to tower 
height. The heated air then proceeds isentropically to the fan 
at location ® where mechanical power II is imparted to the 
flow. The fan zone from (A) to ® is also considered to be thin — 
an actuator sheet. The flow proceeds through a second heat 
exchanger (for which the parameters will be denoted by primes) 
between ® and (3). This particular sequence of tower elements 
is the simplest that can include the special cases of natural draft 
(one heat exchanger only) and forced- or induced-draft (omitting 
the first or second heat exchanger, respectively). 

The air finally proceeds isentropically to the tower exit at 
©, where its pressure is matched to that of the ambient at
mosphere at the level of @. That is, the entire dynamic head 
at the top of the tower is assumed to be lost in the mixing pro

cesses of the plume above ©. Otherwise, total pressure losses 
are assumed limited to the heat-exchanger zones. Wall friction 
in the tower is explicitly neglected. These seem reasonable 
assumptions for such a large, relatively short duct. 

This duct flow will be analyzed in terms of small perturbations 
of state quantities and small jVIach number. Leading terms will 
constitute a simple scaling law, and terms of the next highev 

order will be retained as corrections. The leading and correction 
terms together will constitute the desired performance equation 

Except in crossing the three actuator sheets, the air flow pr0 . 
ceeds isentropically, subject to the state and Euler equations 

p a p> V pRT — + VdV + 
P 

= 0 

which may be integrated to yield 

7 -yv 
— = (constant) 
P 

(7 - 1)02/ 

Of course, at each station of Fig. 1, the mass flow 

rh = pVA 

(1) 

(2) 

(3) 

is the same. The area at each station is denoted by A. 
Focusing attention on the first heat exchanger, energy in the 

form of heat (Q) is added to the flow there; 

T ' + 2C" 7 ' * - Tl 

1 

ZL>V 

VS = 
mCp 

(4) 

and momentum is extracted by drag, expressed in terms of Cv: 

Wt 

P2 

next inti 

1\ * = £ -

Ai 
- pi -

m 

Z i = 
1 

oduce the following definitions: 

1 PB = 1 - Pi 
Pi 

M* = 

vscD 

( 7 -

T/2 

- DC, r 

(5) 

(6) 

In writing the Mach number M, we recall that for a perfect gas 
sound speed a is given by 

yRT = yp/p = (y - 1)CPT (7) 

We then may write the energy and momentum equations (4) 
and (5) in the forms 

an + ~—- [(1 + aH)MJ - MS] = 
z mCpTi 

(8) 

•Nomenclature-

A = area 
Ac = heat-exchange surface and free

flow areas of heat exchanger 
a — sound speed, equation (7) 

= drag coefficient of heat ex
changer, equation (5) 

C„ = specific heat of air at constant 
pressure 

heat-transfer-resistance coeffi
cient, equation (31) 

counterflow equivalence, equa
tion (28) 

acceleration due to gravity 
initial temperature difference, 

Fig. 2 
K = ratio of friction factor to Stan

ton number, equation (38) 
I = characteristic length, equation 

(24) 

CD 

E = 

F = 

g = 
I = 

M = Mach number 
rh = mass flow rate 
P = dimensionless approach, Fig. 2 

= pressure 
= rate of heat exchange 
= temperature 
= flow velocity averaged across 

duct 
= generalized height, equation 

(27) 
= height above tower base 

= dimensionless temperature rise, 
with subscripts defined in 
equations (6), (13), and (22) 

= dimensionless pressure rise, 
with subscripts defined in 
equations (6) and (13) 

= ratio of specific heats 

8 = dimensionless height, equation 
(17) 

e = small quantity, equation (17) 
1) = isentropic efficiency of fan 
K = polytropic coefficient for at

mosphere 
IT = fan mechanical power 
TV = dimensionless fan power, equa

tion (13) 

p — density 
a = dimensionless fan thrust, equa

tion (13) 
ip = size function, equation (39) 

Subscripts A, B, and 0 through 5 denote 
positions in the tower according to Fig. 1 

Prime denotes upper heat exchanger 
Carat denotes division by I 
Asterisk denotes the minimum of i/', Fig. 

384 / A U G U S T 1973 Transactions of the ASME 

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



PH - yMS *££-$"«>• (9) 

Corresponding expressions apply at the second heat exchanger. 
Applying equation (2) between the first heat exchanger and 

the fan, and introducing equations (1) and (7), yields 

X—tjtf , . _ (T _ l)-Z-(yA-y%) 
2 aS 

X 
7 ~ 1 

1 + J—— MA
2 (10) 

From equation (10), the corresponding relations for the other 
isentropic steps (0-1, B-S, 4-5) can be inferred. 

Moving to the fan location, the energy and momentum equa
tions are 

T* + kv*-TA-kVAt~jk 
m m 2 

VB + TA B ~ VA ~~ IT A = Ti 
Ji-A -c±A -&-A 

(ID 

(12) 

where II represents the total rate of energy delivery to the air 
at the fan location, in other words, the power delivered to the fan 
blades, part of which does useful mechanical work and part of 
which may be dissipated as heat. The useful work is that done 
by the thrust force 2 exerted by the fan on the air. 

We introduce definitions corresponding to equation (6): 

TA 
- 1 

VA 

n 
mCpTA AAPA 

which yield, corresponding to equations (8) and (9), 

aF + ^~~ [(1 + aF)MB
2 - MA

2] = ir 

1 — PF 

(13) 

(14) 

(15) 

in place of equations (11) and (12). 
Finally, we assume a quiescent, polytropic atmosphere outside 

the tower, with the exponent K replacing 7 and V = 0 in equa
tion (1). The pressure difference between top and bottom is 
given by an equation analogous to equation (10): 

m = i (K 1) ~ , ?/5 
ClS 

(16) 

The final draft equation will be obtained by suitably matching 
this outside pressure change to the inside one derived from equa
tions (9), (10), and (15), an equation corresponding to equation 
(9) for the second heat exchanger, and equations comparable 
to equation (10) for the three remaining isentropic steps. To 
complete this development, the Mach numbers at the various 
stations must be related, and further information about per
formance parameters must be included. Allowing a to differ 
from y permits the atmosphere to be nonadiabatic over the 
vertical distance of tower height and might also allow the effects 
of wind to be represented conveniently. 

The Perturbation Scheme. We will assume that all changes 
occurring in the tower are small compared with the corresponding 
original quantities and that Mach numbers are all small. For 
convenience, we will write 

7 1 
-M2 (7 - l)(72//«o2 (17) 

with subscripts being added to denote particular locations. In 
effect, we will develop a draft equation as a power series in 6i, 
which is a measure of the tower mass flow: 

7 1 
mV(piaiAi)2 

(18) 

We next must assign comparative orders of magnitude to all 
the small quantities we have introduced. I t is simplest to state 
at this point the relationships that will later prove to be self-
consistent, namely, 

aH, all 5m = o(ei)1/2 

all e,„, pH, T, a, aF, &F = o(ei) 
(19) 

We will derive our draft equation only to order t\l'-. Further 
development would be feasible, but not practically important. 

Using equation (1) when appropriate and equations (3), (6), 
and (13), the various Mach numbers and pressure ratios can be 
related to the desired order of accuracy. For example, equation 
(10) becomes 

7 + 1 
(VA\ y AS ( 7 + 1 , \ AS 

= I — ) T-„ = I 1 + °A J — + o(ei2 

\P2 / A A2 \ 7 - 1 / AA2 
(20) 

Next, ctF, &F, and a should be expressed in terms of x. 
it is shown that 

aF = 7r + o(ei2) 

0, = 
7 

7 - 1 
7J7T + 0(ei2)[ 

In [7], 

(21) 

7 - 1 
7J7T + 0 ( € i 2 ) 

where rj is the isentropic efficiency of the fan, comparing ideal to 
actual power needed to accomplish given changes of static and 
total pressure. 

The Draft Equation. Now we may chain-multiply the various 
pressure ratios to carry out the matching of the external pressure 
drop, equation (16), with the internal one. We omit the tiresome 
algebraic details of this process; they appear in [7] for a slightly 
more general case, which includes a second fan between @ and ©. 

In carrying out the expansion it becomes clear [7] that con
vergence is improved by redefining an, equation (6), to avoid 
having to expand the quantity (1 + ctj?)-1. For each heat 
exchanger, we define 

aE= 1 - Ti/T* or (1 +• a , / ) " 1 = 1 an (22) 

The final result, which confirms the ordering of equation (19), 
is written with the leading terms on the left and corrections of 
order €i ' 2 on the right: 

CD -\—T^; CD 
A; 

. + **-(•. 
AS \ 6I ei + 

rpr\ 

+ 
7 

2 K ( 7 - 1) ei 

AS 
AS 

^ = fc, 
AS 

CD + ASCD' 

aE 

AS AS 
AS AS 

+ 
AS 

AS 7 - 1 

+ — (5r,A - 1?55„) + 
«i 

7 + 1 
7 - l ' 

(7 - K ) [ 2 T - (7 + 1)K] <5S„
3 

6/c2(7 - l ) 2 
€l 

-a„[ — +~,CB') + o(£l) (23) 
6i AS 
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For convenience, we use double subscripts to denote height 
differences: 5 „ m ^ o , „ — 5„. 

The meaning of equation (23) is obvious; temperature rise 
as and height above the heat exchanger 55i or 553, or, alterna
tively, effective fan power rjT, provide the draft to overcome heat-
exchanger drag (6ICD) and provide any acceleration in the tower 
associated with area contraction (6u4i2/A3

2). The remaining 
leading-order term, depending on y — ic, suggests the possibility 
of a natural draft augmentation if the atmospheric lapse rate 
should be greater than adiabatic. However, this term will gen
erally be quite small numerically. 

Equation (23) may be simplified by introducing the idea that 
the tower is of either induced or forced draft; tha t is, one or the 
other of the heat exchangers is to be dropped. Actually, of 
course, the extra heat exchanger could be used to represent heat 
dissipation and drag of the fan motor. Next, we may introduce 
a length scale I, recalling that Q = mC-pTi^an + o(aHei)] « 
mCvTa(l — 8H)(XH: 

li V1 (24) 

we will denote by subscript H the parameters of the heat ex
changer, whether at ® or ®. With these changes, equation (23) 
becomes 

CL 

+ 
y -

My 

l - 25* 
— c 

1 + OLH 

K Sao2 / . 

T) T = V 

$SH + 
qg

2(l + a j ) )?II 

(7 - 1 ¥ Q 

y + 1 
7 - l ' 

CD — an 

U//2 

2 AH' TV , 

y~zr\ 17 + 1 7 [ ( 1 ~ ^ "~ 7 ? a B i ° - " 1 

(7 - K)[2y - (7 + I k ] Sj, 

6K 2 (7 - l ) 2 e, 
+ o(6i) (25) 

We leave the correction factor (1 — 28H)/(1 + a/f) unexpanded 
on the left side of the equation for reasons of convergence ex
plained in [7]. 

Interpretation and Examples. We now choose a numerical ex
ample to gain a feeling for the importance of the various quanti
ties introduced, and then we discuss further the meaning of 
equation (25). We first consider one of three natural-draft 
(II = 0) towers, each 500 ft in height, above a heat exchanger at 
ground level, serving a 1000-MW plant of 33 percent thermal 
efficiency. Thus, Q = 0.64 • 106 Btu/sec. We suppose further-
that the air-temperature rise is from 60 to 85 deg F, and thus 
with Cp = 0.24 Btu/lb-deg F, the mass flow rh must be about 
107,000 lb/sec. The value of CD is taken to be 15, and Ab/AH = 
0.5. With p» = 0.076 lb/ft3 and y = 1.4, the following derived 
quantities may be calculated: 

aH = 0.048 I = 37'ft 56o = 0.0052 

0 6 o = 1 3 . 5 AH = 1.55-106ft2 d = 1.30-10~6 

The last term on the left of equation (25) is then 2 . 5 [ ( 7 / K ) — 1], 
which is to be compared with CD = 15. From the atmospheric 
lapse rate, K can be inferred; typical values would range between 
1.2 and 1.4. The correction tei-m would then range be
tween 0.42 and 0, tending to diminish draft at most by about 2 
percent. The error terms on the right of equation (25) depend on 
the small quantities CUE and 53, nominally of the same order: 

CDSM = 0.08 

- & • + ' ) -
- 0 . 2 3 

AH 
- 5 , 

At2 7 - 1 
= - 0 . 1 0 

These quantities, which are to be compared with CD in equation 

(21), contribute very small corrections totaling —0.25. Of 
course, the lower the tower drag CD, the more important these 
corrections would be. The last term on the right is neglected, 
The separate correction factor remaining on the left of equation 
(25), approximately 1 + OLII + 28n, gives a correction (aH + 
28H)CD = 0.86. 

Now we consider a mechanical-draft tower of negligible height. 
Clearly, equation (25) says that the equivalent draft height of a 
mechanical-draft tower is simply proportional to the ratio of fan 
power delivered to the air to the heat rejected. Typically 
choosing y = 1.4, the proportionality factor is about a//2/[(7 — 
l)g] = 97,100 ft. Thus if the draft height is 500 ft, the power/ 
heat ratio is only 0.51 percent. The corrections in this case 
would include the quantity — rjiraE/ei = — (0.87)?/, but only 
if the heat exchanger is below the fan (induced draft). 

In the zero-order equation, the fan location is immaterial, and 
no distinction appears between forced and induced draft. Fur
thermore, the duct area at the fan location (that is, the fan 
diameter) is not a parameter, either to zero order or to first 
order of corrections. So long as the required power is provided 
there seems to be no need to have a fan of heroic diameter; cost 
considerations would presumably favor a compact design, and 
the present analysis would justify such an approach. 

The first appearance of fan location as a parameter is in the 
correction term (1 — 7))(7r/ei)S5/i. This expression describes 
the portion of fan power dissipated as heat, multiplied by height 
from the fan to the top of the tower. They may be interpreted 
as representing an additional buoyancy of the heated air column 
above the fan. However, this effect is very small and is ordinar
ily negligible. 

The only distinction between forced and induced draft appears 
in the correction term — (ir/ei)r/aB]ower, which includes the tem
perature rise of only the lower heat exchanger; as for induced 
draft; and 0 for forced draft. This correction, which is a penalty 
for induced draft equivalent to an increase of about 6 percent in 
CD, may be understood by considering that the air entering the 
fan is warmer in the induced-draft case; hence the fan is some
what less effective. For the same mass flow and pressure differ
ence, the velocity is a bit larger, and hence a greater power is 
needed to provide the necessary flow work. Thus one would 
conclude that for low towers, the forced-draft arrangement 
would be slightly favored gasdynamieally, neglecting natural-
draft contributions. 

Of course, one might also consider the fact that the air is 
slightly warmed passing through the fan, equation (21). 
Thus for the same air temperature leaving the heat exchanger, 
the value of as would be smaller by an amount of order 
TV, which in turn is of order e, equation (19). Accordingly, for 
the same total heat transfer, the mass flow m would need to be 
larger by an amount also of order e. These corrections would 
favor the induced-draft arrangement; however, they are much 
smaller than the term of order a cited in the previous paragraph, 
and in fact are too small to be included in our draft equation, 
which we have terminated at order a. 

If the natural-draft contribution is substantial, additional 
differences between induced and forced draft require consider
ation. Suppose, for ease of comparison, that the heat-exchanger 
areas and drags and the fan areas are the same in the two cases. 
Then the right side of equation (25) for forced draft is less than 
that for induced draft by the amount [(7 + l ) / ( 7 — 1)] (830 — 
5io)Cz>. The parentheses signify the difference of elevation of the 
heat exchanger in the two cases. Obviously, this difference be
tween corrections corresponds to a loss of natural draft in the 
forced case if the heat exchanger is at an elevated height. For 
this effect, favoring induced draft, to exceed the propulsive-
efficiency effect favoring forced draft, the quantity [(7 + 1) / 
(7 — l)](t>3o — 81a) would have to exceed about 5 percent. In 
that case, difference of exchanger heights would have to exceed 
about; 810 ft, which is not a reasonable possibility. Our con
clusion, then, still stands: that the forced-draft arrangement 
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has a propulsive efficiency slightly superior to that of the in
duced-draft tower by about 5 peicenl, which is a typical value 
of as-

Other, perhaps more compelling, advantages of the induced-
draft arrangements may exist; our consideration is limited to 
gasdynamics. 

Scaling Relationships. Keeping in mind the various correction 
terms discussed previously we write equation (25) in zero-order 
form: 

YA„ 
A? CD 1 

AH
2 <XHS « A 3 

where Y is a generalized draft height: 

a<? 77II 
' fa 

(7 -• Dal Q 

(26) 

(27) 

We may consider the expression YAS
2 to be a measure of tower 

size,2 while the factor an^/Ca expresses the influence of heat-
exchanger performance. Clearly, if a is large, the tower need 
not be so large for a given total heat-exchange rate. If CD is 
large, the tower must be large to produce adequate draft. Of 
course, CD depends on the heat-transfer rate of the exchanger, 
and hence upon a. Thus a and CD are interrelated performance 
factors that will be studied in subsequent paragraphs. 

Clearly, for given drag coefficient and temperature rise, a sub
stantial flow contraction between the heat exchanger and the 
exit would be desired. In effect, for large CD, size based on heat-
exchanger flow area AH is fixed. However, visual impact should 
depend more on Ar,, at the top of the tower, and it is that quantity 
that presumably should be minimized. 

I t is interesting that gasdynamic size is much less sensitive 
to height than to lateral dimension. If one is especially anxious 
to reduce height, it is a happy circumstance that if height is re
duced by a factor of two, the lateral dimensions need be increased 
only by the factor 21/4, or 19 percent, to keep gasdynamic equiva
lence. Of course, this idea must not be applied too enthusias
tically, because a tower that is too low and wide will fail to meet 
our present assumption of one-dimensional flow, and the pressure 
condition at the exit will not be met, that is, draft will be lost. 
Study of these practical limitations of tower shape is beyond our 
present scope. 

Minimum Tower Size 
Heat-Exchanger Analysis. We must now relate CD/<X.3 more di

rectly to the characteristics of beat exchangers. In doing this, 
we follow the usual engineering analysis described in the book of 
Kays and London [9] or that of Kreith [10]. The total heat-
transfer rate may be written as 

Q = UAFATE (28) 

where U is an overall heat-transfer coefficient, A is now the heat-
exchanger surface area, and ATE is a suitable average tempera
ture diffeience between air and water, assuming that the ex
changer is of the counterflow type. F is a factor to correct for 
the exchanger being of a different type, say crossflow. 

Fig. 2 sketches our temperature notation in a manner ap
propriate for counterflow. The initial temperature difference I 
is that between the hot water entering the cooler (Tn) and the 
cooling air entering the exchanger (jf'i, very nearly equal to To). 
The water is then cooled through a range BI to a temperature 
TWI, which is still above rl\ by the amount of approach PI. The 
air, meanwhile, is warmed by an amount ctnT\, or, a being rede
fined, ail, and it leaves the exchanger at rl\. The usual loga
rithmic mean temperature difference then may be written 

2 In his basic paper on natural-draft evaporative tower design, 
Chilton [8] finds the relationship height• (area)2 = constant for a 
family of towers. 

water i n , 
a i r out 

' a p p r o a c h " 

water out, 
air in -

Fig. 2 Temperature diagram of hypothetical counterflow heat exchanger 
defining terms and notation 

ATE 
1 ai - P 

In (1 - a,)/P\ 
on = a.s (29) 

Turning now to the overall conductance UA, we neglect the 
wall resistance and write 

1 1 
UA = = — AJia 

1 1 E 

+ 

(30) 

rjoAJia AJiw 

where we have defined 

8 = 1 ( 1 + ^ 
Vo \ Awha 

(31) 

and ha and h,„ are heat-exchange coefficients for the air and water 
sides of the device. The corresponding exchanger surface areas 
are A„ and Aw. The area (especially on the air side) may in
clude fins, and a fin efficiency factor qo is needed. For air-water 
heat exchangers, the water-side resistance is usually small. 
Thus the quantity E might be nearly one, in which case, simply, 
UA ^ rjoAJia. 

We now must plunge into a thicket of definitions having to do 
with heat-exchanger performance in quest of the quantities h and 
CD. First, we shall need to distinguish between four different 
areas associated with the air side: Aa is the total heat-transfer 
surface in contact with the air. Ai is the area of the stream tube 
entering the exchanger. Af is the frontal area of the exchanger, 
across its first row, for example. Af and Ai are not necessarily 
the same. If the exchanger is at an oblique angle to the on
coming flow, Af would be larger than Ai by the factor of the 
secant of the angle. Finally, Ac is the free-flow area, which is 
some fraction of Af and represents the minimum flow passage 
for the particular combination of tube and fin sizes and spacings 
in question. We will assume that if the heat exchanger is 
obliquely oriented, its performance is the same as in normal orien
tation, but with the velocity of approach being that normal to the 
exchanger face. Tha t is, the air is assumed to turn so as to flow 
normally through the cooler body. This assumption is appro
priate for any high-drag device, and especially for one having 
high resistance to flow parallel to its face, as would many fin-tube 
exchangers. 

The following equations define a hydraulic radius and the 
Nusselt, Stanton, Reynolds, and Prandtl numbers: 

?';, = 

ACL 

Ta 
ha = — Nu 

4»V, 
S t = : 

Nu 

R e : 

Re Pr 

piVAn 

Mi 
P r : 

CvlHi 

h 
(32) 
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Table 1 Size function \p a r , d its minimum 

ai 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.84 
0.9 
0.95 

«/* 

r 

0.2 
214.9 

57.76 
27.84 
17.17 
12.22 
9.63 
8.28 
7.81 
7.91 
8.56 

10.24 

0.800 
7.73 

0.3 
183.1 
49.04 
23.54 
14.44 
10.22 
7.99 
6.80 
6.34 
6.36 
6.78 
7.94 

0.813 
6.33 

0.4 
162.2 
43.32 
20.73 
12.67 
8.93 
6.94 
5.87 
5.42 
5.41 
5.70 
6.58 

0.822 
5.40 

Approach, 

0.5 
146.9 
39.17 
18.69 
11.40 
8.00 
6.20 
5.21 
4.77 
4.75 
4.97 
5.67 

0.829 
4.75 

0.6 
135.2 
35.96 
17.13 
10.42 
7.29 
5.63 
4.72 
4.29 
4.26 
4.42 
5.01 

0.835 
4.26 

P 

0.7 
125.7 
33.38 
15.87 
9.63 
6.73 
5.18 
4.32 
3.92 
3.87 
4.00 
4.50 

0.840 
3.88 

0.8 
117.8 
31.25 
14.84 
8.99 
6.27 
4.81 
4.00 
3.61 
3.56 
3.67 
4.10 

0.844 
3.57 

0.9 
111.1 
29.45 
13.96 
8.45 
5.88 
4.50 
3.74 
3.56 
3.31 
3.99 
3.77 

0.848 
3.31 

1.0 
105.4 
27.89 
13.21 
7.98 
5.54 
4.24 
3.51 
3.14 
3.09 
3.16 
3.49 

0.851 
3.07 

The exchanger length L is measured normal to Ac- If the ex
changer were a single tube, the hydraulic radius rh would be 
one-fourth the diameter of the tube. Hence, Arh appears in the 
role of a diameter in subsequent definitions. By Vc we mean the 
normal velocity associated with Ac, that is, 

PiVcAo piViAi (33) 

Coefficients of viscosity and heat conduction for air are denoted 
by fx and k. 

Expressions for <XH and C c We may anticipate finding /(„ via 
St, given as a function of Re and Pr in the charts of [9] for various 
configurations and types of heat exchangers. However, our 
purpose is not to design a heat exchanger. We have a less ambi
tious goal: to find an expression for an to introduce into equa
tion (26). We may write, approximately, 

Q = piVcAcCPlTiaH 

Combining equations (28), (30), (33), and (34), we obtain 

E Tx 
CiH = S t 

(34) 

(35) 

Our gasdynamic definition of Co is given in equation (5). 
Conventionally, the pressure drop across a heat exchanger is 
described by a friction factor / defined on page 33 of [9]. For 
small Mach numbers, 

p 2 - Pi i*r't' 
and equations (5) and (36) give 

m f 
(36) 

(37) 

The friction factor / is available on the same charts as St, and 
inspection of these shows that usually / may be taken as propor
tional to St over an extended range of Re. We adopt such a 
Reynolds analogy between friction and heat transfer: 

/ = K St (38) 

Generally, K ranges between two and six. 
A Size Function. We are now in a position to express the quan

tity CD/OLE3 as a function of the cooling-tower parameters. First, 
we eliminate St between equations (35) and (38). Then we 
introduce equation (29), first defining a size function ^(ai, P ) 

In |(1 - at)/P\ 

«/2( l - P ~ an) 

and equation (26) becomes 

(0 »' KE\p 

F + 

(39) 

(40) 

I t is interesting that as a function of ai, \p has a minimum; 
this is clear from the fact that \p is infinite at both oti = 0 and 1. 
The function \p is displayed in Table 1 and in Fig. 3. 

In general terms, we may understand Fig. 3 as follows: Gen
erally, the closer the approach (the smaller P) , the larger the 
tower, because of the greater heat-transfer area or stronger draft 
required. Similarly, if cti —>- 1, the air can only approach the 
entering hot-water temperature in a very large-area tower. On 
the other hand, if ai —*• 0, the air is only slightly warmed and its i 
buoyancy vanishes, and, more importantly, the mass flow must ; 
become infinite to carry away heat at the required rate; botfui 
these tendencies imply an infinite flow area. Usually, one would | 
specify a cooling range, and I would be given; thus P would be : 
known. The air warming, ai, would depend on design, how
ever. From Fig. 3 we see that with P fixed, there is a minimum 

8 0.2 a.4 0.6 
Air temperature rise, a r 

Fig. 3 Size function ip as a function of air-temperature rise for various 
values of the approach; dashed line denotes locus of minima 
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of \p occurring at an ai of about 0.8 for all P. Particular mini
mum values (denoted by an asterisk) are given in Table 1. A 
log-log plot of these minimum values of \p versus P shows clearly 
that 

yp* = 3.2P~°-6' (41) 

is an excellent approximation to the exact function. 
The Ideal Minimum-Size Tower. Equation (40) will be applied 

to various practical situations in a subsequent paper.3 Here we 
ask what the ideal goal might be. The more nearly counter-
flow performance is obtained, the smaller the tower; ideally, F = 
1, Also ideally, fin ineffectiveness and water-side resistance 
would both vanish, so that E = 1. Since ai* ranges between 
0.80 and 0.85, (a /*)~ 3 ranges between 1.95 and 1.63, depending 
on P- Choosing an average value, the approximate ideal would 
be: 

( ^ V YAj = 3.2KP-°-a ( J 5 ) + 1-8 (42) 

The two remaining quantities, K and As/Ac, have no best 
values, but rather should be as small as possible. Of course, a 
small value of K favors draft, and K might conceivably be as 
low as three. As an example, if I = 35 deg, TV = 520 deg, ap
proach = 16.5 deg, then P = 0.47 and \p* = 4.9. For a tower 
dissipating 0.64 • 106 Btu/sec, we found I = 37 ft. With these 
choices and K = 3, equation (40) would show that three ideal 
dry towers for a 1000-MW plant would have to be about 330 ft 
in scale, if As/Ac = 1. Now, (Aa/Ac)* can be considerably less 
than one, and it is difficult to place a practical lower limit on 
that quantity. The ratio A:,/Ac can be made small both by 
choosing a substantial flow contraction and by oblique heat-
exchanger arrangements. I t is easy to imagine Aa/Ac to be in 
the vicinity of 0.3, in which case the size scale would be reduced 
from 330 ft to 235 ft. 

Concluding Remarks 
In a subsequent paper, the practical implications of equation 

(40) will be pursued further, especially in regard to heat-exchanger 
size. For the moment, we may emphasize that the present 
analysis is intended to provide a technical basis for reducing the 
overall size (or power) of dry towers, and the result makes clear 
that heat-exchanger design is crucial in terms of both drag and 

3 See [6] for application to the Forgo-Heller type of dry tower at 
Rugeley, England [4]. 

temperature rise. Accordingly, the scaling law has been ex
pressed in terms of heat-exchanger parameters, and various re
quirements for minimum tower size are immediately revealed. 

However, it is not obvious how such requirements could 
economically be met in a realistic situation, or what technical 
compromises would typically be necessary. We will find that 
the combination of parameters describing the best heat exchanger 
will vary greatly, according to the particular way in which the 
system size is to be defined and then minimized. For example, 
water-side heat transfer and pumping power requirements may 
be considered important. 

In closing, we should recall that this study emphasizes the in
ternal gasdynamics of dry cooling towers; external factors need 
further study. Specifically, entrance losses and wind effects 
at the exit should be more closely specified in practical applica
tions. 
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Heat and Momentum Transfers: 
Multiple-Disc Rotor Units 
An investigation has been carried out to determine the performance characteristics of a 
multiple-disc rotor device used as a combined fan/heat exchanger. The advantages of 
such a system, when applied for example to an air-conditioning system, stem primarily 
from the simplicity of design and compact nature of the equipment. The assessment of 
the particular lest unit as a fan was done under normal atmospheric conditions using air 
as the working fluid. A speed range from 550 to 1290 rpm was used in these tests. 
The maximum efficiency of the momentum transfer from the rotor to the fluid was about 
14 percent. The unit capability as a heat exchanger using air flow under normal 
atmospheric conditions may be judged by the maximum heat transfer effectiveness of 
about 40 percent. Rotor speeds were varied in the range 700 to 1600 rpm, and at each 
rotational speed the ratio of the mass flow in the cool stream to that in the hot stream was 
varied from 0.48 to 1.30. Two different techniques were used in an endeavor to predict 
the performance of the experimental unit. Of these, the more successful was that based 
on the assumption that a turbulent boundary layer covered the rotating disc. However, 
the simpler approach, using calculated friction factors, may well prove acceptable for 
some engineering applications. The results from each of the prediction techniques are 
given for comparison with the test results. 

Introduction 

L I HE FIBST USE of a multiple-disc rotor is credited to 
N. Telsa, who took out a U. S. patent [ l ] ' o n a disc turbine about 
1913. No published engineering investigation of the turbine 
was made, although the semi-technical publications of the time, 
i.e., Scientific American [2] and Engineering (London) [3] did 
report the invention. But it was not until about 1930 that the 
fundamental research on fluid flow around discs was carried out 
by Von Karman [4], Cochran [5], and Goldstein [6]. Between 
the Tesla turbine and the present generation of multi-disc devices 
came a family of so-called friction disc pumps. These pumps had 
a single-disc rotor, which was vaned on the periphery. These 
pumps were widely used in lubrication, control, filtering, and 
booster systems, as the occurrence of peak efficiencies at low 
specific speed made them especially suitable for these applications. 

There is at present a revival of interest in the use of disc rotors 
for the conversion of motive shaft power to kinetic energy of the 
bulk fluid, perhaps because of the inherent simplicity of design 
and fabrication when compared with the more conventional rotors 
in standard turbomachinery. In the past, the overriding reasons 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (with

out presentation) in the JOURNAL OP HEAT TRANSFER. Manuscript 
received by the Heat Transfer Division, August 8, 1972. Paper No. 
73-HT-Q. 

for not using the multi-disc rotor has been the low efficiency of 
momentum exchange; but in applications where stability of 
operation and high reliability are paramount, this class of rotors 
provides tangible advantages, e.g., development of a disc pump 
for space-exploration operation is reported by Hasinger and 
Kehr t [7 ] . 

Review of Work Related to Disc Rotors 

Analytical solutions of the equation of change are successful 
only under conditions of laminar flow and with simple boundary 
assumptions. As, in practice, the bulk of fluid machinery operates 
in the turbulent range and under geometrical constraints leading 
to complicated boundary conditions, it is necessary to find other 
methods of predicting unit performance. One method that has 
been used successfully involves the formulation and solution of 
the integral momentum and energy equations written for specific 
control volumes. An example of this method arises in the 
theoretical analysis of an "enclosed disc." 

Work on the enclosed-disc aspect of the general rotating-disc 
problem has been concentrated on a smooth disc rotating in a 
cylindrical housing. Prominent contributors to this body of 
knowledge are Schultz-Grunow [8], Okaya and Hasegawa [9], 
Dorfman [10], Soo [11], and Daily and Nece [12]. In particular, 
Daily and Nece made a lucid review of the available theoretical 
and experimental information available. 

In the field of practical disc rotor machinery research, several 
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workers have proposed models for the single-vaned rotor disc 
pump that have met with varying degrees of success in the pre
diction of system performances. Among these, the earliest 
models of direct interest were proposed by Iversen [13], Senoo 
[14], Wilson, et al. [15], and Balje [16]. 

The works of Rice [17] and Hasinger and Kehrfc are directly 
concerned with smooth disc rotors. The former reported on the 
use of this shear-force machinery as a water pump and as an air 
compressor, and the latter workers reported on more sophisticated 
shear-force pumps to handle fluids in rocket propellant pumps and 
boiler feed pumps. In both cases the induced flow is through the 
hub of the rotor, as the pumps are of the radial-flow variety. 
The method of analysis adopted by Rice involved a solution of the 
differential equations of motion. No correlation was given be
tween the theoretical and the experimental data in the published 
paper, although it was stated that numerical and experimental 
results were obtained. The radial-flow shear-force analysis of 
Hasinger and Kehrt is restricted to the laminar-flow regime, al
though the suggestion is made that in the turbulent range the re
sults may be approximately true if adjustment is made to the 
viscosity term. 

Description of Fan Heat Exchanger under Consideration 
Details of the fan/heat exchanger rotor and housing are shown 

in the photographs in Fig. 1. The heart of the unit, the rotor, is 
made up of 16 smooth aluminum discs fabricated by spinning. 
The average thickness of the discs is 1.59 mm (0.0625 in.), and 
the discs sit loosely on a mild-steel shaft. Aluminum ring spacers 
with a boss diameter of 305 mm (13.75 in.) are placed between 
every two discs to position the discs on the shaft. The housing 
itself is made from 20 SWG 0.914-mm (0.036-in.) sheet metal. 
A geometric constraint on the housing design is that there should 
be provision for rectangular ducting to be attached to carry both 
the heated and cooled fluid streams. The ducts leading to and 
from the test unit are of the same size as the inlet and outlet cross 
sections on the fan/heat exchanger. The throat sections, how
ever, are of arbitrary design, and it is certain that for any future 
designs, more attention should be paid to the influence of throat 
shape on the overall fluid-flow pattern. A geometrical ad
vantage of the unit is that the inlet and outlet cross sections are 

naturally rectangular. As air-conditioning ducts are usually 
rectangular in cross section, the need for complex-geometry 
transition pieces is obviated. 

Semi-Theoretical Models 
Simple Friction-Factor Model. For air flow through a control 

volume V under temperatures and pressures close to atmospheric 
conditions, the energy equation may be written (ignoring poten
tial energy changes) as 

Qcv - W, 

•SJ 
p- + 
p 

pV cos ad A 

)'™-J>£) pVdA 

For the operation of the unit as a fan, it is reasonable to assume 
adiabatic conditions, i.e., Qcv = 0. 

Also, the static pressures in the inlet and the outlet ducts may 
be assumed to be uniform across the cross section and equal to the 
pressure measured at a static wall tapping in the duct wall. 

These simplifications enable us to write: 

J A. W P JAi W 
pVdA = m Vo - Pi 

The pressure gain across the unit, ApQi = p„ — pi, may be found 
by considering the entrance loss Aptn and the exit loss Ap 

out &S 

well as the pressure gain achieved by the smooth disc rotor, 
Apgain. The pressure-loss terms may be written in terms of a loss 
coefficient C as 

HL = (Apin + Apout) G 
FA 
2 J 

where V is the velocity in the inlet duct. 
The simple friction-factor model proposed initially by the 

fan/heat exchanger designer Dunkle [18] relies on the following 
assumptions: (a) uniform pressures and tangential velocity dis
tributions exist at stations 3 and 4, Fig. 2; (6) movement of the 
disc in the fluid stream is at an overall effective velocity based on 

•Nomenclature-

A = area (when used 

expressions, e.g. 

in integral 
>X 

dA, r 
c 

' h) (sc 

C.V. 
Dh 

f 
9 

H 
HL 

MT 

V 

4. 
Q 
r 

Re 

RHT 

A represents surface area of 
the C.V.) 

= coefficient (defined as appro
priate) 

= capacity rate of hot and cold 
fluid streams, respectively 

= control volume 

= hydraulic diameter 
= friction factor 
= gravitational-field constant 

= pressure head 
= pressure-head losses 
= torque on disc 
= pressure 

= net rate of thermal energy in
put to C.V. 

= flow rate 

= radius 
= Reynolds number (r2oi/v) 

= heat transfer fraction 

Rm = ratio of mass flow in cool fluid 
stream to that in hot stream 

T = absolute temperature 
Tz = torque 
T, = static temperature 
Tt = total (stagnation) tempera

ture 
U,V — velocity 

-\-Wcv = rate of work done by fluid in 

control volume 
r, 8, z = coordinates of cylindrical-

ourvi linear system used 
V), vz = components of a general ve

locity vector v in the cylin
drical curvilinear coordi
nate system 

a = angle between velocity vector 
of fluid leaving C.V. and 
the normal to surface of the 
C.V. 

cc = proportionality sign 
f3 = proportionality constant 

y, co = angular velocities 

8 — boundary-layer thicknesses 
e = proportionality factor 

I = 
p = 

Vm = 

VTc = 

VTh = 

VXT = 

T = 

M = 

V — 

A = 

AT = 

Subscripts 

i = inlet 

ratio o)/v 
density 
momentum transfer efficiency 

of rotor 
temperature effectiveness for 

cold fluid in heat exchanger 
temperature effectiveness for 

hot fluid in heat exchanger 
heat transfer effectiveness of 

heat exchanger 

shear stress 
dynamic viscosity 

kinematic viscosity 
final — initial 
difference between disc-sur

face and bulk-air tempera
tures 

m = mean radius 
o = outlet 
r = radial 
6 = tangential 
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Using an equivalent-diameter concept, the friction raetor in the
rectangular duct may be found from equations such !IS that pro
posed by von Karman to relate friction factor f 1.0 the flow
Reynolds number Re

where the subscripts 3 and 4 refer to inlet and outlct condit.ions Itt
the sections defined in Fig. 2.

To estimate the shear forces T,,, and To, it has been fmther as
sumed for ease of analysis that circumferential flow between two
rotating discs is equivalent to flow through a high-aspect-ratio
rectangular duct, from Dunkle [18]. For a rectangular duet, thc
shear stresses and the friction factor are related by

Metal/Felt Finger Seals

Fig. 2 (a) Two-duct fan configuration and four-duct fan/heat exchanger
configuration; (h) schematic side view of rotor and finger seals

Fig. 1 Photographs of smooth-disc rotor system: (a) rotor and finger
seals; (h) rotor housing 1

V] = 2.010g1o (ReVf) - 0.8

the rotational speed of the disc at the radial mid-point of the
annular section (outer radius To, inner radius Ti); (c) secondary
flows are unimportant. The use of these simplifying assump
tions is to allow ease of calculation of the overall unit performance
without requiring knowledge of the internal flow structure.

A force balance in the axial direction required to find the pres
sure increase then gives

Using these steps, the pressure-gain term toP.a;'. IIllly be calcu
lated.

Boundary-Layer Model. Work on axisymmetric flow arouud a

disc rotating in a cylindrical housing points to /111 altcrnative
way of evaluating shear forces on the rotating-disc surfaces. This
method actually involves the solution of the integral 1Il0nHmtUll1
equations written here:
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r* = {'TV.-1- r^cL- rrv™* 
P Jo • P Jo dr Jo d r 

,.2 Zl = _ f VrVodz + f r 2 7 r — dz 
P Jo Jo dr 

For solution of the equations, assumptions regarding the spatial 
distribution of fluid velocities and wall shear stresses need to be 
made. Dorfman's assumptions regarding these distributions 
are used here because of the success of their application to the 
enclosed-disc problem. 

Vr = «•(« - 7)(z/<5),/7(l - z/d) 

V0 = r(w - 7)[1 - (z/5)1/'] + ry 

r„ = 0 . 0 2 2 5 p ^ ( ^ ) 1 A 

By substitution of these expressions and their derivatives into 
. the momentum equations, solutions may be found in the form 

e Z =
 115<g + 8> 

1799£ + 1582 

. 0 .0225^ / A ( w _. T ^ A ( i + py/i^'A 
s = _ 

where 

A = 720 < 1 1 9 f + m ) 

The torque applied on the fluid by the rotating disc may be writ
ten 

T = j I rre-rdddr 

Once TO has been evaluated, from the above calculations the 
torque T may be given quantitative form. 

The work clone on the fluid by one side of the disc is given by 

W = r (w - 7 ) 

Substitution of this expression into the energy equation then 
allows the overall pressure rise across the system to be evaluated. 

For the present system, while geometric axisymmetry occurs, 
flow quantities do show circumferential variations. For example, 
the static pressure rise across the unit points to a circumferential 
pressure gradient. There would consequently be a boundary-
layer-thickness increase in the circumferential direction, which 
has not been taken into account in the formulation of the solution. 
In the present model, the boundary-layer thickness is assumed to 
be substantially constant for any one-flow condition tested in the 
prediction of fan performance. 

Introduction to the Experimental Program 
I t should be noted that the rotor and the housing of the test 

system are of the fixed-geometry variety. As Daily and Nece 
have shown, geometry does influence the flow around enclosed 
discs, so that the results of the experiments can only be directly 
extrapolated to systems that are geometrically similar. How
ever, these same results can indicate whether the momentum and 
heat exchanges between the rotor and the fluid for a smooth disc 
device are, for example, comparable with the conventional bladed-
rotor turbofans and the commonly used shell-and-tube heat ex
changers. 

To obtain a complete understanding of the momentum and 
heat transfer around the rotating discs, it would be necessary to 
map experimentally the temperature, pressure, and velocity fields 
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in the discs, fluid, and housing. As the actual measurement of 
local velocity, pressure, and temperature distributions would be 
highly complex, attention has been focused on the bulk momen
tum and heat exchanges afforded by the unit. The net momen
tum and thermal energy transfers are obtained by measuring 
dynamic and thermal quantities at the sections where the fluid 
enters and leaves the system. 

Some understanding of the internal-flow structure has been 
made possible by carrying out a qualitative study using a flow-
visualization technique. This has assisted in gauging the 
validity of the hypothetical model of internal flow. For reasons 
of availability and convenience, the fluid medium studied was air 
under normal atmospheric conditions. As it was possible to test 
the multi-disc rotor system as a pure fan, or as a fan/heat ex
changer, the main experimental program was for convenience 
subdivided into four sections: (1) measurement of velocity and 
temperature distributions in the fluid streams at entrance and 
exit; (2) flow visualization to obtain a qualitative picture of the 
internal-flow structure; (3) analysis of the system under operation 
as a fan—flow and pressure measurements taken to obtain fan 
characteristics; (4) analysis of the system under operation as a 
fan/heat exchanger —measurements of bulk heat exchange across 
the fluid streams to obtain heat exchange effectiveness. 

Experimental Program 
Fan-Mode Operation. To realize the full blowing capacity of the 

fan, one set of inlet and outlet sections was blanked off, Fig. 2(a), 
In this two-duct configuration the induced air travels almost one 
complete revolution before being expelled from the rotor. A 
schematic arrangement of the disc rotor and finger seals is also 
shown in Fig. 2(6). Duct velocity profiles were obtained using a 
traversing pitot tube connected to a Prandtl micromanometer. 
I t should be noted that the duct equivalent diameter was ap
proximately 25 cm (10 in.) and that consequently fully developed 
flow conditions would not be expected at the measuring station, 
which was approximately six diameters from the outlet. A ven-
turi air meter designed and manufactured to standard specifica
tion was installed to measure the volume flow rate of the air, and 
the pressure rise across the unit was monitored by a total pitot 
tube at the entrance and by a static wall tapping at the exit from 
the unit. Control of the flow was achieved by a sliding vee 
baffle plate in the exit duct. Fan characteristics were taken for 
several rotational speeds. 

Heat Exchanger Mode Operation. The full four-duct arrangement 
was used for these tests by removing the blanking plates and in
serting the finger seals and the separation pieces. In addition, a 
heater-duct section was attached to the top ducting. This heater 
section was capable of providing up to 12 kw to one air stream. 
Temperature profiles were obtained using half-shielded copper-
constantan thermocouples mounted on a micrometer traversing 
attachment. 

Flow Visualization. Some early flow-visualization tests were 
made to chart the air-flow pattern between the discs on the rotor. 
One of the spun aluminum discs was removed and replaced by a 
clear acrylic disc of the same dimensions. The end cover plate 
was also replaced by a sheet of clear acrylic. Flow patterns were 
obtained photographically using a high-speed Polaroid film and a 
flash-bulb arrangement to illuminate the area between the discs 
through a slot cut in the housing. Smoke was generated in a 
conventional way and injected through a small probe at various 
points around the rotor housing. 

Measurement Techniques 
Pressure Measurements. All static-pressure measurements were 

taken using square-edged wall tappings installed normal to the 
wall, and all dynamic pressures were taken using pitot tubes, as 
the response time of the instrumentation was relatively unim
portant for the steady-state testing carried out. 
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Temperature Measurements. Half-shielded thermocouples niadn 
from copper-constantan wire 0.127 mm (0.005 in.) in diameter 
were individually calibrated and used to measure the total fluid 
temperature at the required stations. 

Discussion of Experimental and Theoretical Findings 
The velocity profiles at the inlet to and the outlet from the 

fan/heat exchanger are shown in Fig. 3. These velocities were 
measured along the vertical medians of the inlet and outlet ducts 
The inlet velocity profile exhibits characteristics similar to those 
in normal duct turbulent air flow. As the measurement station 
is only approximately three diameters downstream from the air 
intake point, a fully developed profile would not be expected 
The outlet velocity profile contrasts quite radically with the uni
form distribution of the inlet one: in the region away from the 
walls the bulk fluid travels with a velocity that varies linearly 
with the distance from the horizontal surfaces of the duct. It is 
known that the dropoff in velocities close to the duct walls is in
duced by the decelerating effect of the duct boundary on the 
flow. However, the linear velocity variation in the outlet profile 
would be a direct result of the rotor. This implicitly ratifies an 
assumption made in the modeling procedure that the fluid be
tween the discs travels with a tangential velocity component that 
increases linearly with radial distance from the disc center. The 
difference in these bulk-velocity profiles also indicates that the 
rotor unit transfers energy to the fluid by reorientation of the 
kinetic-energy distribution in the inlet and outlet flows as well as 
by increasing the pressure of the outgoing fluid. 

Flow-Visualization Results 
From our point observations of the flow using the smoke probe, 

a general qualitative picture may be drawn of the flow structure. 
When operating at low load conditions on the fan characteristics, 
it may be said that the air at each point between the discs travels 
in the same direction as the discs. Here a radial distribution of 
the tangential air velocity in the form Ve = /3wr would be an 
appropriate assumption. At the other extreme, under high loads, 
considerable backflow occurs near the hub of the rotor. For 
these loads the distribution of V$ previously assumed would be 
erroneous. A further point worth noting is that the turbulent 
nature of the flow was clearly illustrated, as at a short distance 
from the probe turbulent diffusion so diluted the injected smoke 
that the definition of its path became impossible. 

Fan Characteristics 
The basic fan characteristics obtained at various rotor speeds 

are presented in Fig. 4. The drop in pressure rise across the unit 
with increasing volume flow rates is evident. With increase in 
rotor speed it is possible to extend the operating range of pressure 
gain and flow rate. The chain dotted line represents the predicted 
performance based on the turbulent-boundary-layer model, and 
it is interesting to note the increased divergence of theory and 
practice in the low-flow-rate range. Because of the radial flow 
and backflow shown in the flow-visualization tests, the assump
tion of solid-body flow between the discs would not be valid 
under the low-flow (high-load) condition. Furthermore, the in
creased pressure gradients would allow an increasing boundary-
layer thickness, which would depend on both the tangential and ra
dial coordinates of the point in question. Under the high-flow 
(low-load) conditions, on the other hand, the tangential velocity of 
the fluid with little or no radial component of velocity and the 
linear outlet velocity profiles lend credibility to the assumption of 
solid-body rotation of the bulk fluid. In addition, the low pres
sure rise closely satisfies the assumption of negligible tangential 
pressure. 

In the same figure, the solid line indicates the performance of 
the unit as predicted by the basic friction-factor model. I t can 
be seen that the correlation of the experimental results is reason
able, especially at the higher volume flow rates. 
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"From the flow-rate efficiency curves, Fig. 5, it is clear that as 
injected, the efficiency of momentum transfer is low, with the 
naximum efficiency being of the order of 14 percent (at the maxi

ma Speed tested). The torque available at the disc to drive the 
air through the unit has been calculated from the hypothetical 

flow model. 

TESTS RESULTS - HEAT EXCHANGE EFFECTIVENESS 

Heat Exchanger Characteristics 
The results of the experimental work aimed at assessing the 

heat exchange capability of the unit are tabulated in Fig. 6. The 
effectiveness is shown in two forms: the standard temperature 
effectiveness ijr and the heat exchanger effectiveness IJHT. 

For a perfectly insulated heat exchanger, one may write 

CC(T, ci Tci) = Ch{Ti,t — Thi) 

so that the overall heat transfer effectiveness can be simultane
ously evaluated from the equations 

VHT = 
Ce {Tci — Td) 

v^min \-£ h TA) 

Rotor Speed 
(rpm) 

700 
700 
700 

Av. 700 

1020 
1020 
1050 
1030 

Av. 1030 
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Av. 1305 
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1580 

Av. 1570 
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1 
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. 3 9 

. 3 7 

. 3 2 
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. 36 

. 33 
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. 3 4 

. 3 3 

V HT 

. 3 3 

. 2 8 
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. 2 9 
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. 3 7 

. 29 

. 30 

. 3 2 
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. 32 

. 3 1 

VHT 
Ce (Th 

Cmin (T/il 

Tn) 

Tcl) 

Because of the heat losses from the present system, the equiva
lence of the two defining equations is not justified. As the main 
interest in this series of tests has rested on the thermal energy 
transfer to the cold stream, the first equation will be used to 
evaluate 7]HT-

Although it is realized that leakage of the working fluid through 
the flexible seals would affect the test results, it is felt that this 
leakage flow would be negligible because of the small available 
pressure differential. 

It can be seen from the tabulation given in Fig. 6 that the heat 
exchange effectiveness TJHT varies from a minimum of 26 percent 
for the test run at 1030 rpm (Rm = 120) to a maximum value of 
40 percent for the test run at 1030 rpm (Rm = 0.50). The varia
tion of TJHT with rotational speed for any fixed value of Rm is 
slight over the range of speeds tested, but there is a marked de
crease of r}HT with increasing Bm for all the speeds tested. 

As can be seen from the curves plotted in Fig. 6, however, there 
appears to be a minimum point for each of these curves in the 
region where Iim varies from 1.0 to 1.2, after which there is a re
covery of r]HT with increasing Rm. 
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Fig. 6 Heat exchanger test characteristics 

Conclusion 
The test unit functioned successfully in the dual role of a fan 

and a heat exchanger. Under the test conditions imposed, the 
maximum efficiencjr as a fan was of the order of 14 percent, and 
the maximum effectiveness as a heat exchanger was of the order 
of 40 percent. I t is clear that in either individual capacity the 
efficiencjr figures are relatively low. I t should be stressed that 
the main advantages of the unit lie in the design simplicity and 
the compact nature of the plant, which is capable of assuming the 
combined duties of a heat exchanger and two fans (or pumps). 

The unit under test was built purely to assess the feasibility of 
operation and ease of construction of the composite shear fan/heat 
exchanger. No particular attention was paid to obtaining a 
high-performance unit. Some possible improvements would in
clude the following: (1) increased hub-to-disc diameter for the 
rotor to take advantage of the high shear conditions toward the 
periphery; (2) increased number of discs per unit length of shaft 
to provide a greater shear area; (3) improved finger seals; (4) 
consideration of the advantages to be gained by multi-staging 
near the hub under high-load conditions. This flow phenomenon 
may well account for some of the discrepancy between the experi
mental and the predicted results. The best correlation was ob
tained using a model based on turbulent-boundary-layer theory, 
although the simpler model developed may well be adequate for 
most engineering purposes. 
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Experimental Measurement of Heat Transfer 
to a Cylinder Immersed in a Large 
Aviation-Fuel Fire1 

Presented are the results of an experimental effort to quantify some of the heat transfer 
parameters pertaining to the luminous flame that results from the uncontrolled combus
tion of an 8-ft X 16-ft pool of JP-5 aviation fuel. The temperature and effective total 
radiant heat flux, both as temporal mean quantities, were measured as functions of 
position within the quasi-steady burning flame as it existed in a quiescent atmosphere. 
A grid of infrared radiometers and radiation-shielded thermocouples served as the 
primary sensing equipment. A determination was made of the perimeter-mean con
vection coefficient applicable to a horizontally oriented, smooth, 8.530-in-dia circular 
cylinder immersed at a particular location within the JP-5 flame. The value of this 
coefficient was the result of a solution to a nonlinear, inverse conduction problem in 
which the convective heat flux at the cylinder surface was estimated by utilizing a measured 
temperature history inside the cylinder. An expression relating this coefficient to more 
general flame/cylinder systems was developed. 

Introduction 

L I HE IMMEDIATE GOAL of the research effort was to 
gain practical information about the heat flow boundary condi
tions applicable to an object enveloped by a large, luminous 
aviation-fuel fire. The present investigation dealt specifically 
with the luminous flame resulting from the uncontrolled combus
tion of an 8-ft X 16-ft pool of JP-5 jet fuel. This fuel has a 
kerosene base, and its composition is defined in the military 
specifications labeled MIL-T-5624G, 25 September 1962, and 
MIL-T-5624G amendment 1, 21 November 1966. Some of the 
properties of JP-5 are compiled in [1] .2 All the experimental re
sults of the testing program have application to flames in quiescent 
atmospheres. The first phase of experimentation included the 
measurement, on a temporal mean basis, of the temperature and 
the effective total radiant heat flux, both as functions of position 
in the flame. The second phase concerned the determination of 

1 Portions of this paper were based on an MS thesis submitted by 
the first author to the University of Pittsburgh, Pittsburgh, Pa. 

2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division of THE AMERICAN 

SOCIETY OF MECHANICAL ENGINEERS and presented at the ASME-
AIChE Heat Transfer Conference, Atlanta, Ga., August 5-8, 1973. 
Manuscript received by the Heat Transfer Division April 15, 1971. 
Paper No. 73-HT-2. 

the perimeter-mean convection coefficient relevant to a smooth 
8.530-in-dia circular cylinder immersed at one particular location 
and orientation within the flame. 

The choice of instruments and the configuration of the test 
vehicles were based upon the premise that for flames in a quiescent 
environment, quasi-steady burning exists during the relatively 
long time interval between the end of flame buildup and the be
ginning of flame exhaustion. As used previously, the term quasi-
steady burning implies that from a practical standpoint the tem
poral means of certain flame properties can be considered essen
tially invariant with time. 

Because of the work of others [2-4], it was also assumed that 
with an 8-ft X 16-ft fuel pan the regression rate of the fuel surface 
during the quasi-steady burning interval would approximate the 
burning rate applicable to a larger fuel pan. Thus the purpose 
of the testing was to determine some thermal energy transport 
characteristics tha t would apply to one particular size of uncon-
fined JP-5 flame. However, it is believed that the results might 
also be useful in describing larger JP-5 flames. 

Mathematical Model 
Consider an infinitely long, spatially fixed, circular cylindrical 

tube that is oriented within a moving fluid medium such that the 
flow direction is normal to the axis of the cylinder. Both the 
fluid approach velocity and the fluid free-stream temperature are 
constant. Diffuse thermal radiation of constant intensity is in-
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cident on the entire outer tube boundary. During the limited 
time interval in which the cylinder is immersed, assume that one 
perimeter-mean surface heat transfer coefficient can be used.in 
quantifying the convective mechanism of heat transfer between 
the fluid and the outer cylindrical surface. Regard the inner 
tube surface as being insulated such that no heat flows across this 
boundary. At some particular time shortly after the initial 
immersion of the cylinder, the wall temperature distribution of 
the tube is known. Finally, consider only radial heat conduction 
as having significance to the problem. 

Since the radii of curvature of the inner and outer tube bounda
ries are relatively large, the partial differential equations describ
ing the foregoing problem can be satisfactorily constructed on the 
basis of a cartesian coordinate system. Thus a flat-plate analog 
can represent a section of the cylindrical tube, and the governing-
equation can be written as 

1 dT __ 1 bk dT c^T 

a dt k dx dx dx2 (1) 

The boundary conditions, with heat flow into the plate defined as 
positive, are as follows: 

at x = 0, — k — = aqu 
dx 

eaTs* + h(Ta - T.) (2) 

at 
dT 

dx 

The initial condition is 

at t = 0, T = T(x); 0 < x < I 

(3) 

(4) 

To facilitate a determination of the transient temperature dis
tribution within the flat-plate analog, equations ( l)-(4) can be re
cast into a simple finite difference system which allows an explicit 
method of solution. The equations comprising the difference 
formulation can be found in [5]. In the difference scheme, the 
width of all interior sub-volumes is Ax, and the time increment is 
At. The initial temperature distribution becomes a set of dis
crete temperatures, T,,o, which represent the temperature of each 
plate node point at time t — 0. 

If for a certain situation the parameters k(T), a(T), e, a, qir, 
JP„, and JP;,O are all known, and if Ax and At are chosen such that a 
proper stability criterion is maintained, a finite-difference solution 

for some particular time t* can be determined once a value for HIP 
convection coefficient is established. Of course, such a calculated 
nodal temperature distribution would be erroneous unless, by thP 

remotest chance, the value chosen for the convection coefficient 
happened to be that particular one having application to the 
situation under analysis. However, if at time t* the tempera
tures of several node points within the flat-plate analog are ex
actly known, the degree of disparity between the known and com
puted temperatures at the specified nodes can be used as the cri
terion for evaluating the applicability of the estimated value of h 

The degree of disparity, at any specific time t*, between the 
mathematically predicted and the known temperatures at four 
monitor node points can be quantitatively expressed as 

E (T« - Tmi)> (6) 

At any time t*, the plate temperature distribution calculated by 
the finite-difference technique is entirely dependent upon the 
guessed value of h only after all other system parameters have 
been specified. For this special case, the degree of disparity « 
can be thought of as a function of h alone; that is, -q — i](h). 
Thus, to identify the convection coefficient having application to 
a specific situation, it is necessary only to determine the value of 
h tha t minimizes 17(A). 

In the solution to this optimization problem, the true minimum 
will not be determined; rather, it will be established that the true 
minimum lies within an uncertainty interval either to the right 
or left of the calculated minimum. By using the Fibonacci search 
technique devised by Kiefer [6], the interval of uncertainty is 
reduced to less than 1 percent of the original search interval after 
the placement of only 11 search points. 

Experimental Apparatus ant) Procedures 

The construction of the fuel pan that was used in both phases 
of the testing program is indicated in Fig. 1. Also, the defining 
coordinate system to which all the experimental results will be 
related is shown in this figure. 

A carriage was constructed to transport the test-instrument 
packages into and out of the flames. Instrument packages 
mounted on this carriage included equipment to sense the flame 
temperature and the radiant heat flux. Flame temperatures 
were measured by thermocouples constructed from standard-

•Nomenclature-

a = total hemispherical absorptivity 
b = a constant whose value depends 

on cyl nder profile and Reyn
olds number 

h = convection or surface heat trans
fer coefficient 

im = perimeter-mean convection coef
ficient applicable to a cylinder 
subject to the transverse flow 
of a fluid 

thermal conductivity of a solid 
thermal conductivity of a fluid at 

the film temperature 
diameter or width of a cylinder 

taken perpendicular to the flow 
direction 

thickness of the flat-plate analog 
n = an exponent whose value depends 

on cylinder profile and Reyn
olds number 

P17 = Prandtl number of a fluid at the 
film temperature 

k = 
h, = 

L = 

I = 

ft 
qtr 
qr 

Re 
T 

Ti,o = a 

J- mi 

Ts 

T„ 

t = 

approximate convective heat flux 
incident total radiant heat flux 

approximate net total radiant 
heat flux 

Reynolds number, LV^pj/p./ 

temperature 
any one of the computer-calcu

lated values representing, at a 
specific time, the temperature 
of a monitor node point within 
the central-section wall 
set of discrete temperatures 
representing an initial tem
perature distribution 

any one of the monitor node tem
peratures measured within the 
central-section wall at a specific 
time 

surface temperature of a solid 
free-stream fluid temperature 

time 

t* = a particular time 
y „ = free-stream fluid velocity 
X = a coordinate defined in Fig. 1 
x = depth within the flat-plate analog 
Y = a coordinate defined in Fig. 1 
Z = a coordinate defined in Fig. 1 
a = thermal diffusivity 

At = time increment 
Ax = space increment 

e = total hemispherical emissivity 
7) = degree of disparity, defined in 

equation (5) 
pi — density of a fluid at the film tem

perature 
fj./ = absolute viscosity of a fluid at the 

film temperature 
<r = Stefan-Boltzmann constant 
4> = a ratio given by L/L0 

Subscripts 

0 = actual test situation 
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Fig. 1 Coordinate system definition and fuel pan construction 

grade, 28-gage chromel-alumel wires mounted in '/s-in-dia stain
less-steel sheaths and insulated with magnesium oxide. They 
were shielded against radiation losses by three concentric, open-
ended, circular cylindrical tubes fabricated from 0.003-in-thick 
stainless-steel foil. The radiant heat flux within the flame was 
measured by Gardon-type radiometers [7]. The sensing element, 
a circular constantan foil, was coated with colloidal graphite and 
was recessed into the copper body so as to give a 20-deg viewing 
angle. A 1-mm-thick sodium chloride crystal was located 
directly in front of the foil. This crystal effectively eliminated 
the response of the sensor to convective heat flux while allowing 
infrared radiant energy in the 1- to 15-/J, wavelength region to 
pass readily through to the sensor. When a radiometer was used 
in the flame environment, soot-particle precipitation onto the salt 
window was prevented by purging the viewing portal with a very 
low velocity nitrogen gas stream. Each radiometer was cali
brated both before and after a field test in order to determine 
whether or not its sensitivity had been altered by the flame en
vironment. This procedure revealed that no important changes 
in radiometer sensitivities were caused by immersion in the 
flame. 

The configuration of the radiometers and thermocouples 
mounted in instrument packages that were used in the first 
experimental phase is described in [5]. The experimental ap
paratus used in the second testing phase consisted of an ex
tensively instrumented three-component cylinder. 

The specific function of the central section of this cylinder was 
to respond to the JP-5 flame in a manner analogous to the hypo
thetical response of the infinite cylindrical tube when that tube is 
subjected to the moving fluid medium described in the mathe
matical model. The wall thickness, outside diameter, and length 
of the type-304 stainless-steel central section were 0.840, 8.530, 
and 12.0 in. respectively. To provide the central section with a 
surface having an emissivity and absorptivity each equal to 0.99, 
it was coated with a layer of JP-5 soot having a thickness of 0.001 
to 0.002 in. At each end of the central section there was an in
sulation plug that thermally isolated the central section from 
the instrument sections. 

To determine temperature-time histories, four sets of monitor 
thermocouples were embedded within the central-section wall. 

The thermocouple junctions of each set were located at the outer 
cylindrical surface and at 0.08, 0.42, and 0.60 in. from the outer 
boundary. The four thermocouple sets were angularly removed 
from each other by 90 deg. Premium-grade 30-gage chromel-
alumel wires were utilized in ihe construction of the monitor 
thermocouples (see [5] for fabrication details). 

The instrument sections were designed to perform two specific 
functions. First, they were to yield the radiant heat flux that 
could be considered incident on the surface of the central section. 
Second, they were to indicate the temperature that could be 
considered to apply to the local flame region about the central-
section periphery. Each instrument section contained four 
radiometers and four flame thermocouples. 

When the completely assembled test cylinder was in its cor
rectly deployed position, the cylinder was parallel to the long axis 
of the 8-ft X 16-ft fuel pan, and its centeiiine was 4 ft above the 
initial fuel surface. Also, the axial midpoint of the cylinder was 
directly above the geometric center of the fuel pan. As were the 
instrument packages used in the first phase of the experimental 
program, the test cylinder was introduced into a fire 90 sec after 
fuel ignition. 

Results and Analysis 
Some results obtained from the field tests performed in the first 

phase of the experimental program are presented in Figs. 2 and 3. 
Flame characteristics in the X~Z plane for Y equal to 8 ft are 
shown in Fig. 2. In Fig. 3, flame characteristics in the Y-Z plane 
at X equal to 4 ft are presented. To construct the isotherms in 
these figures, it was first assumed tha t the flame temperature 
varied linearly between those points where the temperature had 
actually been measured. Then the assumption of symmetry was 
invoked. In each figure, the temperature and total incident 
radiant heat flux, both as temporal mean quantities that were 
determined by a radiometer-thermocouple pair, are indicated for 
particular spatial locations. 

Although it would have been highly desirable to have computed 
each temporal mean value on the basis of experimental replication, 
the information associated with any particular spatial location was 
determined within the quasi-steady burning interval of a single 
pan burn. The time periods over which the instrument outputs 
were averaged ranged from a minimum of 20 sec to a maximum of 
120 sec. If the flame temperature and incident radiant heat flux 
relevant to a given point and determined from a 2-min time span 
were designated R and RR, respectively, then the temperature and 
flux for the same point but averaged over any 20-sec interval 
within the 120-sec time period would be within R ± 0.02/2 and 
RR ± Q.05RR, respectively. 

Flame characteristics in the X-Z plane for Y equal to 3, 4, 6, 
and 12 ft are presented in [5]. The weather conditions during the 
tests were as follows: wind was nonexistent; relative humidity 
was 100 percent; ambient temperature ranged from 54 to 73 deg 
F ; barometric pressure varied between 29.77 and 30.12 in. of 
mercury. 

Within the 1500 deg F envelope of the test flames, the magni
tude of the radiant flux incident on the face of a radiometer was 
nearly equal to the flux tha t would be given by a blackbody 
radiator at the local flame temperature as measured by the 
thermocouple in the neighborhood of the radiometer. For each 
of the investigated points that had a temperature 1500 deg F or 
higher, the ratio of the measured flux to the calculated flux was 
computed. If perfect correlation between these two quantities 
had existed, all the ratios would have been unity. However, 
good correlation did exist and 21 of 24 points had ratios that fell 
within 1.00 ± 0.27. 

Observation of the oscillograph records indicated that within 
the flame volume bounded by the Z = 3-ft plane and the Z = 9-ft 
plane the deviations from the means of the measured flame proper
ties were noticeably periodic. The oscillatory aspect of the test 
flames was also visibly apparent in this region. Here, intensely 
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burning balls of fire regularly appeared. A frame-by-frame 
analysis of the motion-picture records indicated that the gross 
upward velocity of the fire balls could be estimated as being 
between 12 and 18 fps. 

it is believed that the primary results obtained from the s(jcond 
phase of the experimental program have relevance to flames in a 
quiescent environment, even though the field test was conducted 
in a very slight surface wind. In Fig. 4 the position of the test 
cylinder in the wind-translated flame is schematically shown. 
The weather conditions at test time were as follows: wind was 1 
mph; relative humidity was 100 percent; ambient temperature 
was 38 deg F; barometric pressure was 30.21 in. of mercury. 
During flame envelopment, a soot deposit of about 0.001 in. 
developed on the entire outer surface of the test cylinder. Hence 
the JP-5 soot layer on the central section had an average final 
thickness of slightly more than 0.002 in. 

The point in time that was considered t = 0 actually occurred 
20 sec after the test cylinder reached its correct position about the 
fuel pan. Data from the radiometers and flame thermocouples 
were analyzed for two specific time intervals, t = 0 to t = 20 sec 
and t. = 0 to t = 150 sec. By taking the appropriate averages of 
the results yielded by the individual flame thermocouples and 
radiometers, it was possible to determine the flame temperature 
and incident radiant heat flux that could be considered applicable 
to each of the foUl' areas on the central section where the wall 
temperature was being monitored. These four specific areas are 
indicated in Fig. 4 by the letter symbols A, B, C, and D. For 
both time periods of interest, Table 1 shows the incident radiant 
heat flux and flame temperature relevant to each of the four 
central-section surface areas. 

Shown in Fig. 5 is the wall temperature distribution at t = 0 
for each of the four important central-section locations. The 
symbols in the figure represent the temperatures given by the 
central-section monitor thermocouples; the curves represent 
extrapolations through the symbols. In order to establish the 
four sets of points through which these curves could be drawn 
with reasonable ease and confidence, the surface temperature at 
location B and the four temperatures at the inner cylindrical 
surface were determined by careful physical-mathematical 
estimation. A detailed description of this procedure can be 
found in [5]. 

It had been anticipated that in a quiescent environment and at 
any given time the test deployment scheme would have yielded an 
essentially uniform total heat flux passing through the outer sur-

Journal of Heat Transfer 

face of the central section. However, because an unavoidable 
slight surface wind caused an unsymmetric flame/cylinder system, 
this expectation was not realized. A single wall temperature 
distribution could not satisfactorily characterize the thermal 
response of the central section at a particular time after flame 
envelopment. Hence, separate convection coefficients applicable 
to two different time intervals were determined for each of the 
locations A, B, C, and D that were identified in Fig. 4. These 
time intervals were from t = 0 to t = 20 sec and from t = 0 to I = 
150 sec. 

The computer-optimized temperature distributions that be~t 
fit the monitor node temperatlll'es at t = 20 sec are shown in Fig. 
6. Adjacent to and responsible for the Clll'ves in this figure are the 
values of the convection coefficients that minimized YJ(h) for each 
particular central-section location. To determine the two 
perimeter-mean convection coefficients applicable to the central 

Table 1 Incident radiant heat fluxes and flame temperatures pertinent 
to specific test-cylinder surface areas 

Location Measured Incident Measured Flame 
Reference Radiant Flux ~(q. t Temperature ~ (Tool. 
Letter IBTU!ft2sec] IT [OF] 

Results for the 0 to 20 second time interval 

A 12.71 1658 

B 4.20 1281 

C 1.56 1097 

D 9.08 1474 

Results for the o to 150 second time interval 

A 11.67 1623 

B 4.00 1266 

C 1.48 1114 

D 8.71 1472 
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Fig. 5 Initial temperature distribution 
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section, the values of h relevant to each of the time intervals were 
averaged together. This operation yielded 9.88 and 8.07 Btu /hr -
ft2~deg F for the 20-sec and 150-sec time periods respectively. 
However, during the small time interval, the actual test circum
stance was definitely more like the hypothetical situation de
scribed in the mathematical model. Hence the value of 9.88 
Btu/hr-ft2-deg F is considered more reliable. 

To put the calculated values of the average convection coeffi
cients in proper perspective, an investigation was made of the 
relationship between these coefficients and other average coeffi
cients deterriiined for an 8.530-in-dia circular cylinder having 
certain individual gases flowing normal to its axis. Each gas was 
considered to be undergoing no chemical reactions. The ap
proach velocity of the flowing gases was considered 15 fps. This 
was the average of the visibly determined gross upward velocity 
of the previously described fire balls. The general correlation 
equation (from [8]) that was used to determine the comparative 
perimeter-mean convection coefficients was 

Table 2 

= 1.12 b ( ^ f ) " (Pr,)" (6) 

For circular cylinders, b and n are, respectively, 0.174 and 0.618, 
when Be is between 4000 and 40,000; for Re between 40,000 and 
250,000, b and n are 0.0239 and 0.805, respectively. 

The gases used for comparative purposes were chosen because 
they were felt to be representative of the kinds of gases that 
could have been detected in the local flame volume surrounding 
the central section of the test cylinder. Each of these gases 
considered in the comparison had its properties evaluated at a 
pressure of 1 atm and a temperature of 812 deg F. This tem
perature was the time-averaged film temperature pertinent to the 
entire central-section surface during the 20-sec time interval. 
The computed values of the perimeter-mean convection coeffi
cients associated with the various gases are presented in Table 2. 

In order to predict accurately the thermal response of an object 
immersed in a luminous uncontrolled JP-5 flame, it is advisable to 
consider that both radiation and convection have significance in 
the overall mechanism of heat transfer. To emphasize this 
statement, a comparison was made utilizing the approximate 

Chemical 
Formula 

N2 

CO 

H20 

™4 
C2H6 

C3 H8 

C4 H10 

C4M10 

C5H12 

C5 H12 

C6H14 

C6H14 

C7H16 

Substance 

dry air 

nitrogen 

carbon monoxide 

water vapor 

methane 

ethane 

propane 

butane 

isobutane 

pentane 

isopentatie 

hexane 

isohexane 

heptane 

hm 
[BTU/hr ft2"F] 

2.80 

2.75 

2.69 

3.43 

5,59 

6.80 

8,29 

10.18 

10.59 

12.24 

12,07 

13.08 

13.14 

14.15 

Chemical 
Formula 

c?Hl6 

C8H1B 

Vl8 

C
8
H,8 

C2 H2 

C2H4 

C3 H6 

C6 H6 

CH40 

C2 H6° 

SV 
C4H10° 

W 
C2H„0 

Substance 

2-methylhexane 

octane 

isooctane 

2-methylheptane 

acetylene 

ethylene 

propylene 

benzene 

methanol 

ethanol 

propanol 

butanol 

acetone 

ethylene oxide 

v 1 
[BTU/hr ft^-pj 

14.65 

15.18 

16.21 

•16.05 

4.39 

5.91 

7.15 

9.9(5 

4.88 

6.62 

8.30 

9.58 

7.14 

5.28 

convective and net radiant heat fluxes, qc and qr, that passed 
through the central-section surface at locations A, B, C, and D 
and acted during the 20-sec time interval. To calculate each qc 

and qr, the following equations were used: 

<7< = h 

qr = 0.99 qir 

T, (t = 0) + Ts (t 

T, (t = 0) + Ts (t 

tend)\ 

= Jend) \ 4 

(7) 

(8) 

The term Ts (t ~ 0) represents the initial surface temperature at 
one of the central-section locations; the term Ts (t = temi) repre
sents the computer-optimized surface temperature for a given lo
cation at t = 20 sec. The ratios qc/(qc + qr) applicable to 
locations A, B, C, and D were found to be 0.173, 0.483, 0.628, and 
0.275, respectively. Results similar to these but relevant to 
cylindrical ordnance enveloped by large JP-5 fires have also been 
determined by the authors and are available in [9]. 

n 1 r LOCATION CURVE SYMBOL 

A • 

B • 

C » 
D i 

[h IN UNITS OF BTU/HR-FT'-'FJ 

-.1 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

DEPTH WITHIN CYLINDER WALL IN INCHES 

Fig. 6 Temperature distribution at t — 2 0 sec 

Discussion of Errors 
For each field test performed in the two-phase experimental 

program, assume that temperature sensors and total incident 
radiant heat flux indicators, both optimally accurate instruments, 
had been used in place of the radiation-shielded thermocouples 
and the Gardon radiometers. I t is believed that the " t rue" 
temporal mean temperatures and fluxes indicated by such optimal 
instruments would hav,e been within ± 5 percent and ± 1 0 percent 
respectively of the time-averaged local flame temperatures and 
total incident radiant heat fluxes indicated by the instruments 
actually employed. The statement of error about the temporal 
mean heat-flux measurements is made with the realization that 
the calibration technique allowed a radiometer to respond 
accurately only to those test situations where diffuse radiation of 
constant intensity was uniformly incident on a radiometer face. 
For all the points within the luminous flame envelope tha t were 
investigated during the first testing phase, the average percentage 
standard deviations associated with the temporal mean tempera
tures and fluxes were 6 and 30 percent, respectively. In the 
experiment to determine convection coefficients, the average 
percentage standard deviations associated with the temporal 
means yielded by individual flame thermocouples and radiometers 
were respectively 2 and 37 percent for the 20-sec time interval and 
6 and 38 percent for the 150-sec time period. 

The finite-difference formulation used in determining the con
vection coefficients applicable to the four central-section locations 
did not consider the angular heat conduction within the cylinder 
wall. Hence some error in the local values of the convection 
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coefficients was introduced by forcing the computer-optimized 
temperature distributions to be functions of only one space 
dimension. The net quantity of heat leaving or coming to a 
given location via angular conduction governed the sign and 
magnitude of the error associated with the calculated value of h 
applicable to that locality. However, the errors in the two 
calculated values of the perimeter-mean convection coefficients 
were much less dependent upon the neglect of angular heat 
conduction in the central-section wall. This was because the 
artificially high and low values of the computer-determined local 
coefficients tended to compensate one another when they were 
averaged together to get each perimeter-mean convection coeffi
cient. 

In order to establish some t}rpe of confidence limit for the best 
value of the perimeter-mean convection coefficient, a perturbation 
analysis was conducted. The objective of this analysis was to 
determine logical high and low values of h applicable, during the 
20-sec time interval, to each of the four central-section locations. 
Pursuant to this goal, the independent variables relevant to a 
given locality and the 20-sec time period were perturbed from 
their best experimental or literature values by amounts equal to 
plus or minus their uncertainty intervals. To be consistent in the 
analysis, the odds were considered 5 to 1 that the true value of 
each independent variable would have been within m ± w, where 
in represents the best value of any particular independent variable 
and w represents its uncertainty interval. 

To determine the limiting values of h for a given location, the 
appropriate set of perturbed independent-variable values was 
read into the computer program as data. The computer program 
then minimized the degree of disparity between the perturbed 
monitor node temperatures and the geometrically similar mathe
matically predicted nodal temperatures. The magnitude of h 
that accomplished this optimization process became a limiting 
value for the convection coefficient applicable to the given loca
tion. Averaging the four low and the four high local coefficients 
yielded 5.17 Btu/hr-ft2-deg F and 15.80 Btu/hr-ft2-deg F, respec
tively. Thus the limiting values of the perimeter-mean convec
tion coefficient relevant to the 20-sec time period can be con
veniently expressed as 9.88 ±|;?§ Btu/hr-ft2-deg F. 

Possible Generalizations 
I t would be beneficial to be able to relate the best experimental 

value of the perimeter-mean convection coefficient to flame/cylin
der systems more general than the one investigated. In particu
lar it would be of considerable advantage to relate this coefficient 
to various sizes of circular and noncircular cylinders that might 
be immersed within JP-5 flames somewhat larger than the test 
flame. I t will be shown that such extrapolations are indeed 
possible, but only after certain very restrictive assumptions have 
been made. 

There is some evidence [10-13] that equation (6), with the 
appropriate sets of n and b values, should adequately correlate 
the data for the convective heat transfer between an immersed 
cylinder and a flame region having no substantial dissociation-
recombination reactions. Hence, assume that simple convection 
theory, as represented by equation (6) with b equal to 0.0239 and 
n equal to 0.805, is applicable to the system composed of the 
circular test cylinder and the luminous JP-5 test flame. This 
assumption implies that the Reynolds number for this particular 
situation is between 40,000 and 250,000. To conclude whether or 
not it is reasonable to expect that the Reynolds number falls 
within such a range, this distinctive form of equation (6) was 
solved for the Reynolds number after hm, L, P17, and k/ had been 
numerically designated. The value representing hm was the 
experimentally determined perimeter-mean convection coefficient 
for the 20-sec time interval. The value taken for L was the 
outside diameter of the circular test cylinder. On the basis of 
considering the flame gases about the test cylinder as a nonreact-
ing mixture of combustion products, kf and P17 were estimated as 

Table 3 
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0.174 
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-0 .362 

From 

0.068 
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0.054 

0.264-

0.041 

0.543 

To 

1.356 

0.203 

0.543 

0.102 

1.356 

0.264 

0.203 

1.356 

0.203 

3.391 

having the values 0.0350 Btu/hr-ft-deg F and 0.740, respectively. 
For these particular system parameters, the Reynolds number 
was found to be 73,725. Hence, providing that the estimates 
made for P17 and kf are satisfactory, it seems reasonable to 
expect that the form of equation (6) applicable to the actual test 
situation is the correlation pertinent to circular cylinders and a 
Reynolds number range of 40,000 to 250,000. 

In order to extend the use of the perimeter-mean convection 
coefficient found for the 20-sec time interval, assume further that 
appropriate forms of equation (6) also apply to noncircular cylin
ders when they are immersed in a JP-5 flame. The values of b 
and n for a variety of cylinder profiles and ranges of Reynolds 
numbers are shown in Table 3 (from [8, 14]). Now take the 
ratio of two forms of equation (6). Let one form be the correla
tion that has been shown to be pertinent to the actual test situa
tion. Thus for the actual test situation, the following parameters 
are specifically defined: hm0 = 9.88 Btu/hr-ft2-deg F, L0 = 8.530 
in. bo = 0.0239, and n0 = 0.805. Let the other form of equation 
(6) be a considerably more general one that can be constructed by 
the use of any set of n and b values found in Table 3. This 
general form of equation (6) is to apply to the situation where a 
cylinder of a somewhat arbitrary shape and size is enveloped by a 
large JP-5 flame. Attach no additional identifying subscripts to 
the parameters in the general equation. In order to achieve a 
high degree of similarity between the actual test situation and the 
general situation, assume that the cylinder of a somewhat arbi
trary shape and size is immersed within any region of a large 
JP-5 flame where V„ = V„o, kf = kfo, ps = p/o, tif = M/o, and 
P17 = P170. This assumption allows h„„ the perimeter-mean 
convection coefficient relevant to the arbitrary cylinder, to be 
written as 

h,„ 
h"4) fe)""1 (Beo)n" (9) 

Because of the restrictive assumption about equal free-stream 
velocities and identical film-temperature-dependent fluid proper
ties, the Reynolds number for the general system, Re, is given by 
(L/Lo) Reo. Since the values of 6 and n in equation (9) are valid 
only for a single cylinder configuration and a specific range of 
Reynolds numbers, it should be apparent that L for a given 
cylinder shape can take on only those values that keep Re within 
the limits for which b and n apply. Hence equation (9) must be 
subjected to the constraint 
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Re (lower) L_ < Re (upper) 

Reo ~ Lo~ Reo 

If equation (9) and inequality (10) are to be useful in providing 
quantitative estimates, it is necessary to specify a value for Re0. 
Hence on the basis of previous estimates, assume that the 
Reynolds number for the actual test situation was 73,725. For 
convenience, let L/L0 be known as <j>. By utilizing the assump
tion about Re0, equation (9) and inequality (10) can be evaluated 
for each cylinder configuration and Reynolds-number range 
indicated in Table 3. Expressions for hm as a function of <j> are 
shown in the sixth column of Table 3, while the allowable range of 
4> is given in columns seven and eight. 
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S. E. HAALAND1 and E. M. SPARROW2 

Neutral stability results for Prandtl numbers of 6.7 and 0.733 
were obtained by solving disturbance equations that take account 
of the nonparallelism of the basic flow. ' Compared with the re
sults for the conventional parallel-flow model, the neutral curves 
are shifted to higher Grashof numbers and higher wave numbers 
but maintain their characteristic shapes. The effect of varying 
the plate inclination from doionward-facing to upward-facing is 
to increase the susceptibility of the flow to instability. The 
critical Grashof numbers are substantially lower than the Grashof 
numbers of experiments where instability was due to natural 
disturbances. 

Introduction 

NATURAL CONVECTION on vertical and inclined surfaces belongs 
to a class of flows where (a) the streamwise velocity component 
vanishes in the free stream and (b) the transverse velocity com
ponent is directed toward the surface and has a finite value in the 
free stream. The linear stability of this class of flows was ex
amined in general by Haaland [1 ] / and the governing equations 
for plane-wave instability of buoyant boundary layers were 
formulated. This formulation is reproduced in [2], where it was 
applied to the stability of a buoyant plume. 

I t has been demonsti'ated that for the stability problem the 
convection of disturbance quantities by the transverse velocity 
of the basic flow cannot be neglected; that is, the conventional 
parallel-flow model is not uniformly valid in the entire domain 
in which the stability problem is defined. The transverse ve
locity terms cause the disturbance vorticity and temperature to 
be contained within the boundary layer of the basic flow. This 
containment has been termed the bottling effect. The formula
tion given in [1] for buoyant boundary layers includes the just-
mentioned transverse convection terms as well as all other terms 
arising from the x-dependence of the basic flow. 
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The objective of the present note is to report on neutral sta
bility results obtained by applying the formulation of [1] to nat
ural convection on isothermal vertical and inclined surfaces. 
Owing to space limitations, only a very brief outline of the analy
sis will be given here. 

In [1], the formulation of the stability problem was carried 
out for plane-wave disturbances that were represented as an 
amplitude function times exp [ifax — 8i)], where the wave 
number a is complex and the frequency 6 is real. The distur
bance amplitudes (stream function </>, vorticity co, temperature 
r ) are governed by equations (15)-(17) of [2], which are special
ized to the present problem by taking 

0 0 - 2 = — 1 Qx/g g«/g = ( i ) 

where d = 0 corresponds to the vertical plate, and 6 > 0 and <0, 
respectively, denote upward-facing and downward-facing in
clined plates. The boundary conditions are that cj> = <j>' = 
r = 0 at 7] = 0 (plate surface) and i) = <». 

The basic flow solution that was used as input to the 
disturbance equations is described in detail in [1]. There it was 
shown that the buoyancy force normal to the plate surface in
duces a streamwise pressure gradient that is of order (tan 0) /R 
relative to the streamwise buoyancy force (R is a characteristic 
Reynolds number). Therefore, for \d\ < 45 deg and for the 
range of R values encountered in the solutions (R > 22), the in
duced streamwise pressure gradient was neglected. 

The solution of the disturbance equations made use of analyti
cal solutions at large t\ in conjunction with numerical integration 
for intermediate and small 77. Numerical values from the large 
t) solutions served as starting values for the numerical integra
tion, which proceeded toward the wall. 

Numerical results were obtained for d between —45 and 45 deg 
for Pr = 6.7 and for 6 = 0 and 30 deg for Pr = 0.733. Some re
sults were also obtained for the conventional parallel-flow model 
whereby the transverse velocity and the other terms connected 
with the .T-dependence of the basic flow are omitted. 

Results and Discussion 

Figs. 1 and 2 contain a comparison of neutral stability re
sults from the present, more complete formulation (solid lines) 
and from the conventional parallel-flow model (dashed lines). 
The Prandtl numbers for the figures are 6.7 (Fig. 1) and 0.733 
(Fig. 2). The ordinate variable ar is dimensionless and represents 
the real part of the wave number. The abscissa variable is a 
characteristic Reynolds number R that is related to the Grashof 
number Gr as follows 

Gr = R*/64 = Bg cos 6(T„ - TJx3/v* (2) 

The relation between the dimensionless quantity ctr and its di-
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Fig. 1 Neutral stability results from nonparallel and parallel flow models, 
Pr = 6.7 Fig. 3 Neutral stability results for various plate inclinations, Pr = 6.7 
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Fig. 2 Neutral stability results from nonparallel flow models, Pr = 0 .733 

mensional counterpart a,-' also involves the Grashof number, 
that is, 

a, = (V^/GA-K' (3) 

The uniformly dashed curves of Figs. 1 and 2 were computed by 
the present authors, whereas the short-long dashed curves are 
from Nachtsheim [3]. 

Examination of the figures shows that accounting for the non-
parallelism of the basic flow causes a shifting of the neutral 
curves to higher Grashof .numbers and higher wave numbers. 
At a fixed wave number, the largest changes in Grashof number 
are encountered on the lower branch of the neutral curve. The 
critical Grashof numbers increase by about a factor of five owing 
to the nonparallelism of the basic flow. I t is interesting to note 
that in spite of the shifting, the neutral curves retain their char
acteristic shapes. Thus the multi-lobe nature of the curves 
for Pr = 0.733 is preserved as is the simple form of the curves for 
Pr = 6.7. 

The authors have also examined neutral curves in which a 
dimensionless counterpart of the frequency (3 is plotted against 
ar. These neutral curves are substantially less affected by the 
accounting of the nonparallelism of the basic flow than are those 
of Figs. 1 and 2. At a given wave number, the maximum change 
in the dimensionless frequency was found to be on the order of 10 
percent. 

A presentation of neutral stability results for Pr = 6.7 en
compassing the range of plate inclinations from —45 to 45 deg 
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Fig. 4 Critical Grashof numbers for Pr = 6.7 and instability Grashof 
numbers from experiments with water 

is made in Fig. 3. The curves are displaced toward lower Grashof 
numbers as one proceeds from downward-facing inclined plates 
(6 < 0) to upward-facing inclined plates (8 > 0). Furthermore, 
for the upward-facing plates, the range of unstable wave numbers 
is substantially greater than for downward-facing plates. Taken 
together, these findings indicate that the flow adjacent to up
ward-facing plates is more susceptible to instability owing to 
small disturbances. 

In Fig. 4, the critical Grashof numbers for Pr = 6.7 (solid line 
for nonparallel-fiow model; square symbols for parallel-flow 
model) are compared with instability Grashof numbers of experi
ment [4] (blackened points). The experiments were performed 
using a heated plate situated in water, and instability was 
identified by visual observations made feasible by an electro
chemical reaction. Instability was due to natural disturbances. 

I t is seen from the figure that the critical Grashof numbers lie 
well below the experimental results. This is in accord with all 
known results for natural disturbances in boundary-layer flows, 
where appreciable amplification is necessary before any distur
bance can be detected. 

For inclination angles of 17 deg and greater, longitudinal vor
tices were observed in [4]. The existence of these vortices does 
not preclude the possibility that the initial instability was due 
to plane-wave disturbances. Also, one cannot rule out the possi
bility that both forms of instability coexisted. 
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deviation of temperature, 6, from the conductive state become 
(see Fig. 1): 

Finite Amplitude Longitudal Convection Rolls 
an inclined Layer 

R. M. CLEVER1 

For the case of a large Prandtl number, buoyancy driven flow in an 
inclined fluid layer, it is shown that all longitudinal-coordinate-
independent solutions of the governing equations are obtainable from 
a knowledge of the existing results for two-dimensional convection in 
a horizontal layer, heated from below. The rescaling here yields 
results which compare favorably with those of existing experimental 
heat transport values. 

Introduction 

The instability of the basic state in an inclined layer of a large 
Prandtl number fluid flow is known to manifest itself in the form 
of longitudinal rolls (see De Graff and van der Held [l] ,2Kurzweg 
[2] and Har t [3]). Also, the linear stability equations governing 
such a tilted flow are essentially the same as those for the Benard 
problem, and linear stability results for the general problem can 
therefore be obtained by a mere rescaling (see reference [2]). 
While such a rescaling of the three-dimensional stability equa
tions is not possible for a finite amplitude flow, it is demonstrated 
here that any two-dimensional solution of the stability or base 
flow equations governing a horizontal fluid layer, heated from 
below, also governs the corresponding longitudinal-independent 
solutions for an inclined layer. 

For a horizontal layer Busse [4, 5] has shown that stationary, 
finite amplitude, two-dimensional solutions of the equations of 
motion are stable in a small part of the wavenumber range up 
to a Rayleigh number R of 22,600. Above this Rayleigh number 
all two-dimensional solutions become unstable. I t will be 
shown tha t these, and any other two-dimensional solutions of 
the equations of motion for the horizontal case, correspond to 
an ^-independent solution (see Fig. 1) of the equations of motion 
for an inclined fluid layer. 

Analysis 

The Basic Equations. The Navier-Stokes equations in the 
Boussinesq approximation are used for a description of the con-
vective motion in an inclined layer. Using the layer thickness, 
d, as length scale, d2/tc as time scale, and 11/AT as temperature 
scale, the equations governing the velocity vector v and the 
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V-v = 0 

V2v + 0.(6 + R*) - V r = 
1 Dv 

PDt 

and 

where R = 

V20 - (k-v)-ffi = 
D9 

Dt 

(1) 

(2) 

(3) 

agATd3 

is the Rayleigh number and P = V/K is the 

Prandtl number. VF includes all terms that can be expressed 
as gradients. 

A general description of a velocity field satisfying (1) can be 
written as: 

v = hd> + vp (4) 

where the vector differential operators 8 and E are defined by 

50 = V X (V X kd>) (5) 

and 

z\p = V X (W) (6) 

For large Prandtl number fluid the stationary x-independent 
equations of motion become: 

d „ „ ( V ^ - S) = 0 

d „ { d „ V ^ + d\ = 0 

V20 - iidSyd> = d^ejdyd - dyl,4>dj 

(7) 

(8) 

(9) 

where S - 6 cos y, R = R cos y, and \p = ^ / t a n y. 
In these equations the nonlinearity associated with \f> in equa

tion (9) is absent. The temperature deviation, 6, from conduc
tion is governed by equations (7) and (9) only, which are inde
pendent of y and equivalent to the Benard equations. The 
boundary conditions are also equivalent for the infinite layer. 

Discussion 

For a large Prandtl number, buoyancy driven system it has 
been demonstrated that all stationary ^-independent solutions of 

\' (Sin y , 0, Cos y) IS IN THEX, Z PLANE 

Fig. I Geometry and coordinate system 

Journal of Heat Transfer AUGUST 1 9 7 3 / 407 

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



References 
1 Haaland, S. E., "Contributions to Linear Stability Theory of 

Nearly Parallel Flows," PhD thesis, Fluid Mechanics Program, 
University of Minnesota, Minneapolis, Minn., 1972. 

2 Haaland, S. E., and Sparrow, E. M., "Stability of Buoyant 
•noUndary Layers and Plumes, Taking Account of Nonparallelism of 
•lie Basic Flows," JOTJBNAL OF HEAT TRANSFER, TRANS. ASME, 
Series C, Vol. 95, No. 3, Aug. 1973, pp. 295-301. 

3 Nachtsheim, P. R., "Stability of Free Convection Boundary 
Layer Flows," NASA TN D-2089, 1963. 

4 Lloyd, J. R., and Sparrow, E. M., "On the Instability of Nat
ural Convection Flow on Inclined Plates," Journal of Fluid Mechan
ics, Vol. 42, 1970, pp. 465-470. 

deviation of temperature, 6, from the conductive state become 
(see Fig. 1): 

Finite Amplitude Longitudal Convection Rolls 
an inclined Layer 

R. M. CLEVER1 

For the case of a large Prandtl number, buoyancy driven flow in an 
inclined fluid layer, it is shown that all longitudinal-coordinate-
independent solutions of the governing equations are obtainable from 
a knowledge of the existing results for two-dimensional convection in 
a horizontal layer, heated from below. The rescaling here yields 
results which compare favorably with those of existing experimental 
heat transport values. 

Introduction 

The instability of the basic state in an inclined layer of a large 
Prandtl number fluid flow is known to manifest itself in the form 
of longitudinal rolls (see De Graff and van der Held [l] ,2Kurzweg 
[2] and Har t [3]). Also, the linear stability equations governing 
such a tilted flow are essentially the same as those for the Benard 
problem, and linear stability results for the general problem can 
therefore be obtained by a mere rescaling (see reference [2]). 
While such a rescaling of the three-dimensional stability equa
tions is not possible for a finite amplitude flow, it is demonstrated 
here that any two-dimensional solution of the stability or base 
flow equations governing a horizontal fluid layer, heated from 
below, also governs the corresponding longitudinal-independent 
solutions for an inclined layer. 

For a horizontal layer Busse [4, 5] has shown that stationary, 
finite amplitude, two-dimensional solutions of the equations of 
motion are stable in a small part of the wavenumber range up 
to a Rayleigh number R of 22,600. Above this Rayleigh number 
all two-dimensional solutions become unstable. I t will be 
shown tha t these, and any other two-dimensional solutions of 
the equations of motion for the horizontal case, correspond to 
an ^-independent solution (see Fig. 1) of the equations of motion 
for an inclined fluid layer. 

Analysis 

The Basic Equations. The Navier-Stokes equations in the 
Boussinesq approximation are used for a description of the con-
vective motion in an inclined layer. Using the layer thickness, 
d, as length scale, d2/tc as time scale, and 11/AT as temperature 
scale, the equations governing the velocity vector v and the 

1 Postgraduate Research Engineer, Energy and Kinetics Depart
ment, School of Engineering and Applied Science, University of Cali
fornia, Los Angeles, Calif. 

2 Numbers in brackets designate References at end of technical 
brief. 

Contributed by the Heat Transfer Division of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by the 
Heat Transfer Division, March 26, 1973. 

V-v = 0 

V2v + 0.(6 + R*) - V r = 
1 Dv 

PDt 

and 

where R = 

V20 - (k-v)-ffi = 
D9 

Dt 

(1) 

(2) 

(3) 

agATd3 

is the Rayleigh number and P = V/K is the 

Prandtl number. VF includes all terms that can be expressed 
as gradients. 

A general description of a velocity field satisfying (1) can be 
written as: 

v = hd> + vp (4) 

where the vector differential operators 8 and E are defined by 

50 = V X (V X kd>) (5) 

and 

z\p = V X (W) (6) 

For large Prandtl number fluid the stationary x-independent 
equations of motion become: 

d „ „ ( V ^ - S) = 0 

d „ { d „ V ^ + d\ = 0 

V20 - iidSyd> = d^ejdyd - dyl,4>dj 

(7) 

(8) 

(9) 

where S - 6 cos y, R = R cos y, and \p = ^ / t a n y. 
In these equations the nonlinearity associated with \f> in equa

tion (9) is absent. The temperature deviation, 6, from conduc
tion is governed by equations (7) and (9) only, which are inde
pendent of y and equivalent to the Benard equations. The 
boundary conditions are also equivalent for the infinite layer. 

Discussion 

For a large Prandtl number, buoyancy driven system it has 
been demonstrated that all stationary ^-independent solutions of 

\' (Sin y , 0, Cos y) IS IN THEX, Z PLANE 

Fig. I Geometry and coordinate system 

Journal of Heat Transfer AUGUST 1 9 7 3 / 407 Copyright © 1973 by ASME

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the equations governing finite amplitude convection in a hoi'i-
zbntal layer, heated from below, correspond to an equivalent set 
of solutions (in terms of the transverse convective mechanism) 
when the layer is inclined. The additional velocity component 
present in the inclined case, due to nonvanishing solutions to 
equation (8) for \j/, does not alter the basic transverse heat trans
port mechanism as expressed by solutions to equations (7) and 
(9) for </> and 0. Although differences in the equations governing 
stability of such finite amplitude flows in inclined layers do not 
allow this rescaling, there is experimental evidence that such 
^-independent flows are physically realizable solutions of the 
equations of motion. 

De Graff and Van der Held [1] and Har t [3] have experimen
tally observed longitudinal convection rolls for Rayleigh numbers 
of the order 104. Transition to other forms of convection occurs, 
depending on the angle of inclination, at Rayleigh numbers of 
this order. For angles of inclination near vertical, the transition 
to longitudinal rolls is inhibited by the appearance of a steady 
^-independent circulation. Although Hart [3] has observed a 
transverse instability for angles of inclination near vertical, the 
theoretical investigation of Gershuni and Zhukhovitskii [7] has 
shown that instability in the form of longitudinal rolls will pre
dominate even for angles of inclination near vertical in the case 
of a large Prandtl number fluid. Since aforementioned experi
ments were carried out with air and water as the contained fluid, 
the observation of hydrodynamic instabilities for angles of in
clination near vertical do not allow any definite conclusions as 
to the preferred mode for a large Prandtl number fluid. 

In Fig. 2 the heat transport measurements of De Graff and 
Van der Held [1] and Dropkin and Somerscales [6], for a variety 
of tilt angles, are shown in the rescaled variables. Here the 
Nusselt number should appear as a function of R only, when the 
flow is in the form of longitudinal rolls. The results indicate 
that, within experimental error, the heat transport results do lie 
on a single line, in agreement with the assumption that the trans
port mechanism is x-independent. Although the results of the 
former authors are for air with a Prandtl number of 0.74, the heat 
transport measurements of others have not revealed a large 
Prandtl number effect a t these rather low Rayleigh numbers. 
Additionally, the rescaling seems to be valid beyond Rayleigh 
numbers at which transition to other forms of convection has 
been observed. Although Busse [5] has shown, in the horizontal 
case, that for R > 22,600 transition to bimodal convection must 
take place, the dominant heat transport mechanisms seem to be 
due to the primary .-r-indei^endent convection as discussed by 
Busse and Whitehead [8] and Malkus [9]. This dominance 
would lead to the universality shown in Fig. 2, if it continued in 
the inclined layer. 
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A Technique For Visualization of the Very Slow 
Motion of Water in Enclosed Spaces 

R. E. POWE,1 S. H. YIN,2 J. A. SCANLAN,3 

and E. H. BISHOP* 

D U R I N G THE COURSE of a study of buoyancy driven flow due to 
natural convection between a body and its finite enclosure, it 
became desirable to visualize the flow patterns which were 
occurring. This presented no great difficulties for air as the gap 
working fluid since cigar smoke has been used successfully on a 
number of previous occasions [1, 2].5 However, no suitable 
visualization techniques were found to be available when water 
was utilized as the test fluid. In order to be useable, tracer 
particles must possess at least the following minimum charac
teristics : 

1 they must be neutrally buoyant over a wide temperature 
range, and this characteristic must not be highly time dependent; 

2 they must have a high apparent reflectivity in order to be 
visible and photographable; 

3 they must not adhere to solid surfaces; and 
4 they must follow and indicate the actual physical flow 

phenomena. 
Several types of tracer particles which are commonly used in 

the forced flow of water were evaluated for the current study, but 
none of these proved suitable for the low velocities, and the par
ticular problems, encountered in natural convective flows. These 
tracers included hydrogen bubbles, aluminum powders, poly-
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the equations governing finite amplitude convection in a hoi'i-
zbntal layer, heated from below, correspond to an equivalent set 
of solutions (in terms of the transverse convective mechanism) 
when the layer is inclined. The additional velocity component 
present in the inclined case, due to nonvanishing solutions to 
equation (8) for \j/, does not alter the basic transverse heat trans
port mechanism as expressed by solutions to equations (7) and 
(9) for </> and 0. Although differences in the equations governing 
stability of such finite amplitude flows in inclined layers do not 
allow this rescaling, there is experimental evidence that such 
^-independent flows are physically realizable solutions of the 
equations of motion. 

De Graff and Van der Held [1] and Har t [3] have experimen
tally observed longitudinal convection rolls for Rayleigh numbers 
of the order 104. Transition to other forms of convection occurs, 
depending on the angle of inclination, at Rayleigh numbers of 
this order. For angles of inclination near vertical, the transition 
to longitudinal rolls is inhibited by the appearance of a steady 
^-independent circulation. Although Hart [3] has observed a 
transverse instability for angles of inclination near vertical, the 
theoretical investigation of Gershuni and Zhukhovitskii [7] has 
shown that instability in the form of longitudinal rolls will pre
dominate even for angles of inclination near vertical in the case 
of a large Prandtl number fluid. Since aforementioned experi
ments were carried out with air and water as the contained fluid, 
the observation of hydrodynamic instabilities for angles of in
clination near vertical do not allow any definite conclusions as 
to the preferred mode for a large Prandtl number fluid. 

In Fig. 2 the heat transport measurements of De Graff and 
Van der Held [1] and Dropkin and Somerscales [6], for a variety 
of tilt angles, are shown in the rescaled variables. Here the 
Nusselt number should appear as a function of R only, when the 
flow is in the form of longitudinal rolls. The results indicate 
that, within experimental error, the heat transport results do lie 
on a single line, in agreement with the assumption that the trans
port mechanism is x-independent. Although the results of the 
former authors are for air with a Prandtl number of 0.74, the heat 
transport measurements of others have not revealed a large 
Prandtl number effect a t these rather low Rayleigh numbers. 
Additionally, the rescaling seems to be valid beyond Rayleigh 
numbers at which transition to other forms of convection has 
been observed. Although Busse [5] has shown, in the horizontal 
case, that for R > 22,600 transition to bimodal convection must 
take place, the dominant heat transport mechanisms seem to be 
due to the primary .-r-indei^endent convection as discussed by 
Busse and Whitehead [8] and Malkus [9]. This dominance 
would lead to the universality shown in Fig. 2, if it continued in 
the inclined layer. 
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became desirable to visualize the flow patterns which were 
occurring. This presented no great difficulties for air as the gap 
working fluid since cigar smoke has been used successfully on a 
number of previous occasions [1, 2].5 However, no suitable 
visualization techniques were found to be available when water 
was utilized as the test fluid. In order to be useable, tracer 
particles must possess at least the following minimum charac
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1 they must be neutrally buoyant over a wide temperature 
range, and this characteristic must not be highly time dependent; 

2 they must have a high apparent reflectivity in order to be 
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3 they must not adhere to solid surfaces; and 
4 they must follow and indicate the actual physical flow 

phenomena. 
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Fig. 1 Particles in spherical annulus with Rayleigh number of 4 X lOG
cnd Prandll number of 10

nl hylene particles, polystyrene particles, small hollow glass
spheres (commercially called Eccospheres, which have previously
benll used by Brooks [3J), and a dye formed by passing an electric
Cllrrent through a thymol blue pH indicator solution as suggested
by HakeI' [4J.

[Il view of the foregoing, it became necessary to develop a
vi~ualization technique which would be specificially applicable to
t·he very slow motion of water in confined spaces. This was
ncco1llplished in the following manner. First, the desired quan
tily of distilled water wa.s boiled for deaeration purposes in order
to minimize undesirable bubble collection on the solid boundaries
of I he flow system, a,s such bubbles would partially obstruct the
vic\\' of the flow pattern. Next, the boiled water was cooled to
appl'oximately 80 deg F, and about five drops of "Ajax" liquid
delm'gent were added pel' gallon of water. Gentle stirring of the
cOlllainer was then necessary to form a homogeneous mixture,
hut care had to be taken to avoid introducing ail' bubbles into the
~yslem during this process. Finally, after the mixture had re
mained stationary for several hours, numerous small, neutrally
hlloyant particles could be observed in a lighted plane through
lhe mixtlll'e. The ability of these particles to follow the flow in a
~ph()1'ical annulus, operating under steady-state conditions, is in
dicated in Fig. 1 where the two spheres ij,re held at different telu
pemtures. The exposure time used in obtaining the photograph
in this figlll'e was approximately 10 sec.

III using the foregoing method it was found that several prob
lelll.~ could be encountered if care were not taken. The concen
l.l'iIlion of particles was affected by the quantity of detergent
added. Too little detergent resulted in so few particles that the
cOlllplete flow pattern could not be determined; too much deter
g(!III: caused the water to appear milky gray in color, and this re
dllcnd the contrast significantly, thereby yielding poor photo
gl'aphic results. Also, it wa,s discovered that when the tempera
lllre' of the mixture which was finally used exceeded approxi
IlJat.ely 120 deg F, the number of particles was considerably re
dllced, thereby greatly reducing the usefulness of this technique
fol' flow visualization at elevated temperatures. Although several
additional brands of detergents were tested, only one, in addition
to Ajax, was found which yielded any particles, and it was of a
1II11(,h poorer quality for flow visualization purposes.

III an attempt to learn more of the exact nature of the tracer
pal'ticles, samples of the mixture were passed through filters of
various sizes, and the particles remaining on these filters were
slndied microscopically. It was detennined that those particles
had primary dimensions on the order of 5 to 15 microns and were
ltip;Jtly angular in nature, which accounts for their excellent optical
reflectivity. It is hypothesi7.ed that these particles result from
olle of two sources: they may be an abrasive material which is
pllrposely added to the detergent to aid in cleaning, or they may

Journal of Heat Transfer

be impurities encountered in the manufacturing process. In
either case they are excellent tracers for the current application.

In summary, this paper has ~escribed a technique developed
for the visualization of relatively slow motion of water in confined
spaces. The specific example given was the buoyancy-driven
convection of water in spherical annuli, but the technique should
be applicable to any situation wh.ere the velocities are relatively
low, and the temperatures do not exceed approximately 120 deg F.
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Free Convective Heat Transfer From Horizontal Cones

P. H. OOSTHUIZENl

Introduction

'WHILE extensive analytical and experimental studies of free
convective heat transfer rates from bodies of other shape are
available, relatively little attention has been given to such heat
transfer from cones. Several analytical studies of free con
vective flow from vertical cones are available, e.g., see references
[1 and 2],2 and some experimental meaSUl'ements of mean heat
transfer rates fronl vertical cones are presented in reference [3]:
However, no analytical 01' experimental studies of mean heo.t
transfer rates from horizontal cones appear to be available. The
present study was, therefore, undertaken since practical situa
tions involving heat tral1sfer by free convection from bodies
that are essentially horizontal cones do arise. The apparatus
and method of measuring the heat transfer rate are simila,l' to
those used in reference [3].

Apparatus and Method

:Mean heat transfer rates have been measured from a series of
eight cones, the dimensions of these cones being given in Table
1. D is the diameter of the base of the cone, L is its vertico.l
height and cP is its included a~gle. The diameters of the tips
of the cones were small compared to their other dimensions and
the effect of this finite tip size was, therefore, assmued to be
negligible.

The cones were made of solid almuinum with caps made of
fiberbom'd insulating material fitted to their bases. Small
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Fig. 1 Particles in spherical annulus with Rayleigh number of 4 X lOG
cnd Prandll number of 10
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spheres (commercially called Eccospheres, which have previously
benll used by Brooks [3J), and a dye formed by passing an electric
Cllrrent through a thymol blue pH indicator solution as suggested
by HakeI' [4J.

[Il view of the foregoing, it became necessary to develop a
vi~ualization technique which would be specificially applicable to
t·he very slow motion of water in confined spaces. This was
ncco1llplished in the following manner. First, the desired quan
tily of distilled water wa.s boiled for deaeration purposes in order
to minimize undesirable bubble collection on the solid boundaries
of I he flow system, a,s such bubbles would partially obstruct the
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hut care had to be taken to avoid introducing ail' bubbles into the
~yslem during this process. Finally, after the mixture had re
mained stationary for several hours, numerous small, neutrally
hlloyant particles could be observed in a lighted plane through
lhe mixtlll'e. The ability of these particles to follow the flow in a
~ph()1'ical annulus, operating under steady-state conditions, is in
dicated in Fig. 1 where the two spheres ij,re held at different telu
pemtures. The exposure time used in obtaining the photograph
in this figlll'e was approximately 10 sec.

III using the foregoing method it was found that several prob
lelll.~ could be encountered if care were not taken. The concen
l.l'iIlion of particles was affected by the quantity of detergent
added. Too little detergent resulted in so few particles that the
cOlllplete flow pattern could not be determined; too much deter
g(!III: caused the water to appear milky gray in color, and this re
dllcnd the contrast significantly, thereby yielding poor photo
gl'aphic results. Also, it wa,s discovered that when the tempera
lllre' of the mixture which was finally used exceeded approxi
IlJat.ely 120 deg F, the number of particles was considerably re
dllced, thereby greatly reducing the usefulness of this technique
fol' flow visualization at elevated temperatures. Although several
additional brands of detergents were tested, only one, in addition
to Ajax, was found which yielded any particles, and it was of a
1II11(,h poorer quality for flow visualization purposes.

III an attempt to learn more of the exact nature of the tracer
pal'ticles, samples of the mixture were passed through filters of
various sizes, and the particles remaining on these filters were
slndied microscopically. It was detennined that those particles
had primary dimensions on the order of 5 to 15 microns and were
ltip;Jtly angular in nature, which accounts for their excellent optical
reflectivity. It is hypothesi7.ed that these particles result from
olle of two sources: they may be an abrasive material which is
pllrposely added to the detergent to aid in cleaning, or they may
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be impurities encountered in the manufacturing process. In
either case they are excellent tracers for the current application.

In summary, this paper has ~escribed a technique developed
for the visualization of relatively slow motion of water in confined
spaces. The specific example given was the buoyancy-driven
convection of water in spherical annuli, but the technique should
be applicable to any situation wh.ere the velocities are relatively
low, and the temperatures do not exceed approximately 120 deg F.
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'WHILE extensive analytical and experimental studies of free
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available, relatively little attention has been given to such heat
transfer from cones. Several analytical studies of free con
vective flow from vertical cones are available, e.g., see references
[1 and 2],2 and some experimental meaSUl'ements of mean heat
transfer rates fronl vertical cones are presented in reference [3]:
However, no analytical 01' experimental studies of mean heo.t
transfer rates from horizontal cones appear to be available. The
present study was, therefore, undertaken since practical situa
tions involving heat tral1sfer by free convection from bodies
that are essentially horizontal cones do arise. The apparatus
and method of measuring the heat transfer rate are simila,l' to
those used in reference [3].

Apparatus and Method

:Mean heat transfer rates have been measured from a series of
eight cones, the dimensions of these cones being given in Table
1. D is the diameter of the base of the cone, L is its vertico.l
height and cP is its included a~gle. The diameters of the tips
of the cones were small compared to their other dimensions and
the effect of this finite tip size was, therefore, assmued to be
negligible.
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Table 1 

one 
mber 

1 
2 
3 
4 
5 
6 
7 
8 

D 
in. 

0.58 
1.22 
1.67 
1.87 
2.50 
0.90 
0.50 
0.70 

L 
in. 

8.0 
8.0 
8.0 

12.0 
16.0 
7.9 
8.0 
4 .7 

4> 
deg 

3.8 
8.9 

11.5 
8.9 
8.9 
6.6 
3 .5 
8.6 

holes were drilled longitudinally into the cones at various locations 
and thermocouples inserted into these holes were used to measure 
the temperature during the tests. These tests were carried out 
with the cones mounted horizontally, one at a time, in an en
closure which was open at the top and bottom and was large 
compared to the dimensions of the cones. 

The mean heat transfer rates from the cones were determined 
by heating them to a temperature of just over 300 deg F and 
then measuring the rate at which they cooled, these measure
ments being continued until the temperature had dropped to 
about 130 deg F. The thermocouples indicated that, for all 
the cones, the temperature remained effectively uniform during 
the cooling, the temperature variation between the points at 
which it was measured being less than 1 deg F. Therefore, the 
total mean heat transfer coefficient at any time could be calcu
lated in the usual way from the measured variation of temperature 
with time. The mean convective heat transfer rate could then 
be found by making an allowance for radiant heat transfer. 
This allowance was found to be small in all cases. In this way, 
then, the variation of the convective heat transfer coefficient 
over a range of temperatures was derived for each cone. Since 
the cooling took at least 15 min, the maximum cooling rate 
varying from about 20 deg F per min at the higher temperatures 
to about 5 deg F per min at the lower temperatures, it seems 
unlikely that unsteady effects had any influence on this variation. 

Results 

The convective heat transfer rates from horizontal cones can, 
of course, be correlated in the following way. 

N a = function (Gc, P r, <j>) (1) 

where 

N o = Nusselt number, hD/k 
h = mean heat transfer coefficient 

D = base diameter of cone 
GD = Grashof number, $g(T„ - Ti)D3/v2 

(Tw — Ti) — temperature difference between cone and sur
rounding air 

P r = Prandtl number 
4> = included angle of cone. 

The remaining symbols k, |8, g, and v have their conventional 
meaning. 

Now, for the range of temperatures covered by the present 
tests, the Prandtl number of air remains almost constant. For 
the present tests, therefore, equation (1) reduces, effectively, to 

No = function (GD, c/>) (2) 

The variation of N B with GD for all the cones tested is shown 
in Fig. 1. I t will be seen from these results that , at least for the 
range of values of 0 covered by the tests, the variation of No with 
GD is independent of (j>. This result suggests that the flow over 
every cross section of the cone is effectively two-dimensional, i.e., 
there is effectively no flow in the axial direction along the cone 
surface. If this is so, then the flow over each cross section of the 
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Fig. 1 Variation of Nusselt number with Grashof number 

cone is the same as the flow over a cylinder of the same diameter 
and, therefore, a correlation equation for the heat transfer rate 
from a cone can be deduced from known correlations equations 
for free-convective heat transfer from cylinders in the following 
way. If h is the average value of the heat transfer coefficient 
for a section of the cone of diameter d, this section being a dis
tance x from the vertex of the cone, then the average heat trans
fer coefficient, h, for the whole cone is, of course, given by 

I 2 Ch -
h = I TTclhdx 

irDL 
(3) 

If it is assumed, therefore, that h is given by the correlation 
equation for a cylinder e.g., if the correlation proposed in refer
ence [4] is used, h will be given by 

N( i 0.35 + 0.25(G<iPr)»-126 + 0.45(GdP,-)» (4) 

where Nd and Gd are the Nusselt and Grashof numbers respec
tively based on the local diameter d, then equation (3) gives the 
following equation for the mean heat transfer rate 

N d = 0.7 + 0.35(GflPr)»-126 + 0.51 (GDPr)
0-' (fl) 

The variation of No with GD for air given by this equation is 
shown in Fig. 1. I t will be seen that it agrees with the experi
mental results for the cones to a similar degree of accuracy to 
that with which equation (4) agrees with the range of experi
mental results available for cylinders. 
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The Effect of Thermal Contact Resistance on Heat 
Transfer Between Periodically Contacting Surfaces 

j # R. H O W A R D 1 and A. E. SUTTON2 

An analog-computer study is made of one-dimensional heat 
conduction through two bars whose axes are in line and whose 
adjacent ends make and break contact periodically. The work 
attends a previous study to take account of imperfect thermal con
tact at the contact interface. The effect of frequency and duration 
of contact are also discussed. 

Nomenclature 

/ = frequency 
n( ) — function of ( ) 

I = length of bar 
li = length of bar material representing thermal resistance 

due to periodic interruptions of heat flow 
Q — heat transfer rate (energy per unit time) under periodic 

contact conditions 
Qc = heat transfer rate (energy per unit time) under perma

nent contact conditions 
t = time 

T = temperature 
x = distance 
a = thermal diffusivity 

X = length of bar representing thermal contact resistance 
Te = time surfaces are in contact per cycle 
TO — time surfaces are separated per cycle 

Introduction 

H E A T TRANSFER across the interface between two solids held 
permanently in contact has been the subject of much study. 
Various surveys of literature have been made [1-4],3 and the 
subject continues to be studied. 

The work in [5] described a one-dimensional heat transfer 
study along two identical bars whose axes are in line. The remote 
ends of the bars were at different, but fixed, temperatures and the 
adjacent ends were brought into contact and separated according 
to a continuous regular cycle. When the adjacent ends of the 
bars made contact, it was assumed that the thermal contact 
resistance was zero, and when they were separated there was no 
heat flow across the gap between the ends of the bars. 

The foregoing work has been extended to examine the effect of 
finite thermal contact resistance at the interface when the bars 
make contact. 

Formulation 

An exact solution to- the three-dimensional heat diffusion 
equation 

1 dT 
V2T = - — (1) 

a bt 

is not practical, due to the physical shape of the boundary at the 
contact interface and the numerous boundary conditions to be 
satisfied. Even when the surfaces are permanently in contact 
and the right-hand side of equation (1) is zero, e.g., see [6, 7], 
approximations had to be made. 
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An approximate representation is possible using the one-
dimensional heat diffusion equation 

£>2T 1 dT 

ot2 a dl 

by assuming that during the period of contact the thermal con
tact resistance between the contact surfaces is due to a thin film 
whose thermal resistance is equal to the steady-state thermal 
contact resistance of the real surfaces. For simplicity, the heat 
capacity of the film is assumed to be negligible. A solution in the 
quasi-steady state is to be obtained. 

Boundary and Initial Conditions. Since the bars are identical, 
events in only one bar, the hotter one, need be considered. The 
origin is taken at the hottest end of the bar, where the tempera
ture is fixed at TA- The temperature at the midpoint of the film 
is taken as zero, the length of bar as I, and half the thermal con
tact resistance equivalent to length X of the bar material. The 
boundary conditions are then 
1 at a; = 0 

T = TA, at all times 

2(a) at x = I during the contact period 0 < ( < TC 

dT T 

bx X 

2(6) at x = I when the surfaces are separated TC < t < (n + r„) 

dx 

Dimensional Analysis. The existence of an additional variable, 
namely thermal contact resistance characterised by a length X 
of bar material, gives rise to a dimensionless group additional to 
the two quoted in [5]. If U is the length of bar material equiva
lent to the thermal resistance due to the periodic interruption of 
the heat flow, the groups become 

(?) - • [™ ffl] 
for sufficiently large values of bar length I such that 

( — J > 2 . 5 6 T T (4) 

see [5]. 
The inset at the top of Fig. 1 shows the time-average tempera

ture distribution in the hotter bar when the surfaces are per
manently in contact and when in the quasi steady state. 

Simulation. Finite-difference approximations to the heat dif
fusion equation (2) and the boundary conditions were made, 
the mesh being identical to that used in [5]. The diagram of 
the circuit used will not be shown here as it differed from that 
described in [5] only at the section used to simulate the boundary 
condition at the contact interface. 

Results and Discussion 

The relationship between the dimensionless groups is shown 
plotted in Fig. 1, demonstrating the validity of equation (3). 

Heat flow through the system may conveniently be expressed 
by the ratio Q/Qc, where Q is the heat transfer rate under periodic 
contact conditions and Qc is the heat transfer rate under perma
nent contact conditions with zero thermal contact resistance. 

Qc l+X + h 

Fig. 2, which is derived from equation (5) and Fig. 1 at a 
fixed frequency / and given diffusivity a, illustrates by example 
the importance of thermal contact resistance under periodic con
tact conditions. 
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A numerical method of solution shows extremely good agree
ment with these analog-computer results, showing that any 
errors due to the use of a nonuniform mesh for the finite-differ
ence equations are small. 

Conclusion 
Thermal contact resistance between two periodically contact

ing surfaces can be the most significant factor in controlling the 
heat flow, particularly when the ratio of contact time/periodic 
time, JTC, is high. 
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Transient Heat Flow in Half-Space Due to an 
Isothermal Disk on the Surface1 

NED R. KELTNER2 

Nomenclature 

a = interfocal distance in oblate sphe
roidal coordinates 

R = radius of disk 
( = time 
t* = dimensionless time, at/R2 

T = temperature 
To = disk temperature 
a = thermal diffusivity 
5 = penetration depth 
•q = angle coordinate in oblate spheroidal 

coordinates 
£ = radial coordinate in oblate sphe

roidal coordinates 
(f> = polar coordinate in oblate spheroidal 

coordinates 

SOLUTIONS of the transient heat diffusion equation for the case 
of a uniform step temperature change over a disk on the surface 
of a half-space are obtained by applying the heat balance integral 
technique [1, 2]3 in oblate spheroidal coordinates. These solu
tions are compared to an existing late time, asymptotic solution 
[3] and to a finite difference solution [4]. 

Oblate spheroidal coordinates are used to eliminate the mixed 
boundary conditions which occur on the surface if the problem is 

Fig. 2 Effect of contact time/periodic time on heat f low with various 
thermal contact resistances 
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A numerical method of solution shows extremely good agree
ment with these analog-computer results, showing that any 
errors due to the use of a nonuniform mesh for the finite-differ
ence equations are small. 

Conclusion 
Thermal contact resistance between two periodically contact

ing surfaces can be the most significant factor in controlling the 
heat flow, particularly when the ratio of contact time/periodic 
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«et up in cylindrical coordinates. The range of coordinates 
nertinent to a half-space is 0 < £ < >», 0 < ?j < 1, and 0 < $ < 
ojr. The surface, £ = 0, is a disk on the surface of the half-space 
0f radius a/2, where a is the interfocal distance of the ellipsoids 
and hypei'boloids. The surface, ij = 0, is the remainder of the 
half-space surface. 

If the axial symmetry of the temperature field is assumed, the 
diffusion equation in oblate spheroidal coordinates is [4, 5] 

4 jj>_ 

a bt 
(1) 

To obtain the heat balance integral solution, it was further 
assumed that T was a function of £ and t* only; i.e., the isotherms 
are oblate spheroids. Under the assumption that T = T(£, t*), 
equation (1) becomes 

0?* + — i - r «+»§; 5T 

dt*' 
(2) 

To remove the r] dependence, equation (2) is integrated with 
respect to f\ over 0 < y\ < 1. This gives* 

ii [d + £2) a£ a£_ 
(1 + 3£2) bT 

3 £><*' 
(3) 

The heat balance integral equation is obtained from equation 
(3) by integrating once with respect to £ over (0, 8). When the 
limits are applied to the left side of the integrated equation, and 
the integral on the rigtuVhand side is rearranged by Leibniz' 
rule for the differentiation of an integral, the equation becomes 

, ar"l .(1 + P)*J f = 5 
(1 + £2) 

bT 1-. 
dr [jrm^HH*'],£<•> 

From the definition of the penetration layer and the initial con
dition, both T and d r / d £ evaluated at £ = 5 are zero; thus 
equation (4) becomes 

"a£ ..-^LC^H (5) 

Next, a suitable form for the temperature distribution must be 
assumed. To obtain a suitable approximation in nonplanar 
geometries, references [1, 2] suggest that a product of a poly
nomial and some form of the steady-state temperature distribu
tion be used. The steady-state solution is [6] 

m, v) = —° cot-' j. 
•K 

(6) 

This form is used with second and third-degree polynomials to 
obtain expressions for the step responses. 

Second-Degree Approximation 

The assumed temperature distribution in this case is 

T = (a + b£ + c£2) cot"1 £ (7) 

The coefficients in equation (7) are evaluated from the following 
conditions: 

T(0) = T„, T(8) = 0, (£>27d?)f = j = 0. (8a), (86), (8c) 

By using these conditions with equation (7), 

4 This equation can also be developed by performing a heat balance 
on an oblate spheroidal shell and then letting the thickness go to zero. 
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HM:) m n = ~ (i - ^ + T, ) cot-'*. 0) 
By using equation (9), equation (5) becomes 

3 6 + 0 • i* LX(i+8e) 0 - ?+*)oot_i **]• 
(10) 

After carrying out the integration and then performing the 
differentiation, all the terms containing 5 are collected on the 
right-hand side; this gives the separated differential equation 
relating 8 and t*; 

3dt* = cot"1 8 + 
~/383 8\ 

/ _ 1 _ 8> _ 8*\ 
V 30 3 ~ 1 0 / 1 0 / 10 

t a n " 1 8 1 

28 + (1 + 52) 

38* 4 log(l + 5; 

15 52 
')"| d8 

•) 

(11) 

The solution of equation (11) to obtain 8 as a function of t* will 
be discussed later. 

Third-Degree Modified Polynomial Approximations 

If the temperature distribution is assumed to have the form 

T = (a + b£ + c£2 + d£3) cot"1 £, (12) 

two third-degree approximations can be developed on the basis 
of the conditions employed to evaluate the coefficients. The 
third-degree approximation requires the use of four boundary 
conditions to evaluate the coefficients in equation (12). The first 
three conditions used are the same as for the second-degree 
approximations (equations [8]). For the fourth condition, 
either of the following equations, which are obtained from 
equation (3), can be used: 

(d*T/b?)i: = s = 0 or ( d 2 r / b ^ ) f = 0 = 0. (13a), (136) 

The third-degree approximation developed here will use equa
tion (136) for the fourth condition. Equation (13a) was used in 
reference [4] to develop another third-degree solution; however, 
it provides a poorer approximate solution to the problem than 
the two solutions presented here. 

If equations (8) and (136) are used in equation (12) to evaluate 
the coefficients, the expression for 7\£, t*) takes the form 

T(i 
T2 ; 

\_W 0(7T 

3£ 
+ 5) ir8(ir 4- 8) 

(TT + 48)^1 

7T(53(T + 8) J + cot- 'f . (14) 

Following the procedure used in the second-degree solution, 
the separated differential equation is 

Sdi* I + 2TT<5 + 
/ 3TT2\ 

(1 + T) 
21TT<5S 65* 

52 H 1 
10 5 

8 co t - 1 8 

+ 
4(TT + 25) 

55 
log(l + 52) 

+ — | tan-1 5 + 

3TT2 3TT 

1 h 
453 52 

1 37T 

" 5~2 " 48 ~ 

1^1 
4 

7TT252 

+ 

/ 3vr2 \ l 

(3 +
 T)S 

*\ "I 4 / 7 r l _ ^ _ 2 + -
/ (1 + 52) \ 28' 45 1! 

_ 25 

5 

37TT5 

5 

15 

10 ' 20 ' " / ] " (TT + 5)[3TT2 + 45(TT + 5)] 

Equations (11) and (15), which relate 5 to t*, were integrated 

A U G U S T 1 9 7 3 / 413 

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



£1 8 

IT 0 

D 2nd 
A Finite Difference -Ref. 4 

o 3rd Degree 

v Asymptotic Solution - Ref. 3 

0.01 0.1 

Dimensionless Time, t" 

Fig. 1 Values of (d7/a£)£ = 0 versus I * 

j j 

1.0 

References 

1 Goodman, T. R., "Application of Integral Methods of Trai 
sient Nonlinear Heat Transfer," in Advances in Heat Transfer, Vol l" 
Academic Press, New York, 1964. ' ' 

2 Ozisik, M. N., "Approximate Methods in the Solution of Hoit 
Conduction Problems," Boundary Value Problems of Heat Conduction 
International Textbook, Scranton, Pa., 1968. ' 

3 Norminton, E. J., and Blackwell, J. H., "Transient Heat F W 
From Constant Temperature Spheroids and the Thin Circular Disk " 
Quarterly Journal of Mechanics and Apjulied Mathematics, Vol 17 
Part 1, 1964. ' ' 

4 Keltner, N. R., "Heat Transfer in Intrinsic Thermocouples^ 
Application to Transient Temperature Measurement Errors," V\\Q 
dissertation, University of New Mexico, Albuquerque, N. Mex., 1973 

5 Hanish, S., et ah, "Tables of Radial Spheroidal Wave Func
tion," Vols. 1-6, Naval Research Laboratory, Washington, D. f 
NRL-Reports 7088 to 7093, 1970. 

6 Tranter, C. J., Integral Transforms in Mathematical Physici 
Second ed., Wiley, New York, 1962. 

7 Bailey, C. B., and Jones, R. E., MATHLIB, A Brief User's 
Guide to the Sandia Mathematical Program Library, Sandia Labora
tories, Albuquerque, N. Mex. SC-M-720142, Apr., 1972. 

Table 1 Values of T/To from equation (9) (No. I ) , equation (14) (No. 2 ) , 
the late time, asymptotic solution of reference [3] (No. 3) , and the finite 
difference solution of reference [4 ] (No. 4) 

No. 0.05 0.15 0.25 0.50 1.0 2.0 5.0 

0.01 

0.10 

1.00 

10.0 

0.822 
0.836 
0.895 
0.824 
0.917 
0.931 
0.933 
0.929 
0.948 
0.958 
0.957 
0.956 
0.961 
0.966 
0.965 
0.965 

0.528 
0.527 

(a) 
0.505 
0.764 
0.794 
0.809 
0.789 
0.850 
0.875 
0.872 
0.870 
0.884 
0.899 
0.894 
0.894 

0.310 
0.272 

(a) 
0.264 
0.631 
0.664 
0.695 
0.655 
0.759 
0.795 
0.789 
0.786 
0.812 
0.834 
0.826 
0.826 

0.032 

(a) 
0.027 
0.375 
0.386 

(a) 
0.373 
0.567 
0.613 
0.602 
0.598 
0.652 
0.686 
0.671 
0.670 

0.106 
0.064 

(a) 
0.057 
0.315 
0.349 
0.332 
0.304 
0.426 
0.467 
0.444 
0.443 

0.102 
0.094 
0.098 
0.083 
0.211 
0.244 
0.217 
0.218 

.048 

.049 
(a) 
.041 

<«' Solution unreliable for t*/^ > 1[3]. 

numerically by using an adaptive Simpson's rule algorithm [7]. 
The integration was performed over successive small ranges of 
the S variable; for both equations, power series expansions of 
certain terms were required to evaluate the integrands in the 
region near 5 = 0 and to show that they behave properly [4]. 

Results and Discussion 

The values of 5 versus t* were used in equations (9) and (14) to 
evaluate T(£) at several values of t* and also to evaluate 
(dT/d£)f = o which is related to the heat flux across the disk. 
For comparison, T and (d2'/d£)j = o were also evaluated by using 
the asymptotic solution of reference [3] and a one-dimensional, 
finite-difference model developed in reference [4]. 

The results in Table 1 show that both heat balance integral 
solutions provide good agreement with the temperatures pre
dicted by the other methods. The results in Fig. 1 show that the 
value of (djf'/5^)f = o obtained from equation (14) provides the 
best agreement with the values predicted by other methods, 
particularly for t* > 0.1. At earlier times, the asymptotic 
solution falls well below the third degree, and finite difference 
results; however, this probably results from the asymptotic 
solution being a "late-time" solution [3]. 
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Transient Heat Conduction in an Infinite Plate 
With a Transverse Circular Cylindrical Hole 

C. D. MICHALOPOULOS1 and J. J. SECO2 

The flow of heat in an infinite plate with a transverse circular cylin
drical hole is considered. The boundary conditions are zero tem
perature on the cylindrical surface and arbitrary but axisymmelric 
temperature distributions on the plane surfaces. The solution is ob
tained by means of Laplace and an unconventional Hanltel trans
forms. Numerical results are given in graphical form for a plate 
with a step temperature distribution on one face and zero temperature 
on the other. 

Introduction 

PROBLEMS of heat conduction in regions bounded internally by 
a circular cylinder have been considered by several investigators 
through the years. Nicholson [ l ] 3 applied the Weber expansion 
[2] to the solution of a heat conduction problem for an infinite 
medium with a circular cylindrical hole. Goldstein [3] and 
Carslaw and Jaeger [4] considered two-dimensional problems in 
diffusion and heat conduction with circular symmetry. Black-
well [5] analyzed the radial-axial heat flow in an infinite solid 
bounded internally by a circular cylinder and in an infinite plate 
with a transverse circular cylindrical hole. 

In the studies of [1, 3,4, and 5] the results are given in integral 
form or as series. No numerical results are presented. The 
purpose of this study is to obtain transient and steady-state 
axisymmetric solutions (with numerical results) of the heat con
duction equation for an infinite plate with a transverse cylindrical 
hole. 

The solution herein utilizes an unconventional Hankel trans
form which is based on an expansion formula discovered by 
Weber [2] in 1873. Orr [6] rediscovered Weber's formula in 1909 
by a method of contour integration. The formal proof of the 
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Table 1 Values of T/To from equation (9) (No. I ) , equation (14) (No. 2 ) , 
the late time, asymptotic solution of reference [3] (No. 3) , and the finite 
difference solution of reference [4 ] (No. 4) 

No. 0.05 0.15 0.25 0.50 1.0 2.0 5.0 

0.01 

0.10 

1.00 

10.0 

0.822 
0.836 
0.895 
0.824 
0.917 
0.931 
0.933 
0.929 
0.948 
0.958 
0.957 
0.956 
0.961 
0.966 
0.965 
0.965 

0.528 
0.527 

(a) 
0.505 
0.764 
0.794 
0.809 
0.789 
0.850 
0.875 
0.872 
0.870 
0.884 
0.899 
0.894 
0.894 

0.310 
0.272 

(a) 
0.264 
0.631 
0.664 
0.695 
0.655 
0.759 
0.795 
0.789 
0.786 
0.812 
0.834 
0.826 
0.826 

0.032 

(a) 
0.027 
0.375 
0.386 

(a) 
0.373 
0.567 
0.613 
0.602 
0.598 
0.652 
0.686 
0.671 
0.670 

0.106 
0.064 

(a) 
0.057 
0.315 
0.349 
0.332 
0.304 
0.426 
0.467 
0.444 
0.443 

0.102 
0.094 
0.098 
0.083 
0.211 
0.244 
0.217 
0.218 

.048 

.049 
(a) 
.041 

<«' Solution unreliable for t*/^ > 1[3]. 

numerically by using an adaptive Simpson's rule algorithm [7]. 
The integration was performed over successive small ranges of 
the S variable; for both equations, power series expansions of 
certain terms were required to evaluate the integrands in the 
region near 5 = 0 and to show that they behave properly [4]. 

Results and Discussion 

The values of 5 versus t* were used in equations (9) and (14) to 
evaluate T(£) at several values of t* and also to evaluate 
(dT/d£)f = o which is related to the heat flux across the disk. 
For comparison, T and (d2'/d£)j = o were also evaluated by using 
the asymptotic solution of reference [3] and a one-dimensional, 
finite-difference model developed in reference [4]. 

The results in Table 1 show that both heat balance integral 
solutions provide good agreement with the temperatures pre
dicted by the other methods. The results in Fig. 1 show that the 
value of (djf'/5^)f = o obtained from equation (14) provides the 
best agreement with the values predicted by other methods, 
particularly for t* > 0.1. At earlier times, the asymptotic 
solution falls well below the third degree, and finite difference 
results; however, this probably results from the asymptotic 
solution being a "late-time" solution [3]. 
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Transient Heat Conduction in an Infinite Plate 
With a Transverse Circular Cylindrical Hole 

C. D. MICHALOPOULOS1 and J. J. SECO2 

The flow of heat in an infinite plate with a transverse circular cylin
drical hole is considered. The boundary conditions are zero tem
perature on the cylindrical surface and arbitrary but axisymmelric 
temperature distributions on the plane surfaces. The solution is ob
tained by means of Laplace and an unconventional Hanltel trans
forms. Numerical results are given in graphical form for a plate 
with a step temperature distribution on one face and zero temperature 
on the other. 

Introduction 

PROBLEMS of heat conduction in regions bounded internally by 
a circular cylinder have been considered by several investigators 
through the years. Nicholson [ l ] 3 applied the Weber expansion 
[2] to the solution of a heat conduction problem for an infinite 
medium with a circular cylindrical hole. Goldstein [3] and 
Carslaw and Jaeger [4] considered two-dimensional problems in 
diffusion and heat conduction with circular symmetry. Black-
well [5] analyzed the radial-axial heat flow in an infinite solid 
bounded internally by a circular cylinder and in an infinite plate 
with a transverse circular cylindrical hole. 

In the studies of [1, 3,4, and 5] the results are given in integral 
form or as series. No numerical results are presented. The 
purpose of this study is to obtain transient and steady-state 
axisymmetric solutions (with numerical results) of the heat con
duction equation for an infinite plate with a transverse cylindrical 
hole. 

The solution herein utilizes an unconventional Hankel trans
form which is based on an expansion formula discovered by 
Weber [2] in 1873. Orr [6] rediscovered Weber's formula in 1909 
by a method of contour integration. The formal proof of the 
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Weber-Orr expansion was established in 1922 by Titchmarch [7] 
who in m s book [8], broadened its use. The transform of an 
rbitrary function /(?•) and its inverse employed here are defined 

fti' 

by 

from equation (7) by taking the limit as time tends to infinity 
and using the following relation (see, for example, reference [10, p . 
40, number 1.445-4]): 

w{/(r)} s / ( « ) = 

w - i { / ( s ) | = / ( , • ) = 

tW0(s, t, a)f(t)dt, 

sf(s)Wo(s, r, a)ds 

JoHsa) + Y<,*(saj 

(1) 

(2) 

sinh sz 2TT 
(— lY'-hisin 

sinh sL L2 E (8) 
s2 + 

•where Wo(.s, r, a) = J0(sr)Y0(sa) — Jo(sa)Y0(sr), J„ and F0 being 
zero-order Bessel functions of the first and the second kind, re
spectively. The conditions that the function /(?•) must satisfy 
for the existence of the transform are stated by Titchmarsh [7]. 
The properties of the transform are given in [9, pp. 3-9]. 

Solution of the Heat Conduction Equation 

Consider an infinite plate of thickness L with a transverse 
circular cylindrical hole of radius a and define a cylindrical coor
dinate system (r, 0, z) such that z is coincident with the axis of the 
hole, as shown in Fig. 1 and 2. 

For axial symmetry, the flow of heat is governed by the differen
tial equation 

Thus, the steady-state temperature distribution T(r, z) is given by 

W0(s, r, a)s 
T{r, z) = f 

Jo JoHsa) + Y0\sa) 

sinh s(L — z) 
F\(s) 

sinh sL F*{») 
sinh sz 

sinh sL 
ds. (9) 

A Numerical Example 

Numerical results are given here for an infinite plate with the 
following boundary conditions on z: 

T(r, 0, t) = Fdr) = 
To, a < r < b 

d 2 T l d r d 2 r = I oT_ 

dr2 r dr dz1 a dt 
(3) 

0, 6 < r 

T(r, L, I) = *•,(,-) = 0. 

The W transform of boundary condition (10) is 

(10) 

(11) 

Fi(s) = 
where T = T(r, z, t) is the temperature, a is the diffusivity, and 
Iis the time. The boundary conditions considered herein are: 

T(r, 0, t) = F,(r); T(r, L, t) = F2(r); (4) 

T(a, z, 0 = 0. (5) 

It should be noted that 

lim T(r, z, t) = 0 (6) 

As shown in reference [9, pp. 9-17], the solution of equation (3) 
subject to conditions (4), (5), and (6) is 

rWo(s, r, a)Tadr. 

S E 
0 ^ B = l 

1 • ( - ^ > » 

( - l ) " - ^ " 
s2 -f 

nir{L - z) . niTz "I W0(s, r, a)sds 
Fi(s) sin h Fz(s) sin —— } 

(7) 

The steady-state temperature distribution can be obtained 

Introduce now the function Wi(s, r, a) = Ji(sr)Y0(sa) — 
d 

Jo(sa)Y1(sr). Noting that — [Wi(s, r, a)} = srW0(s, r, a) and 
or 

Wi(s, a, a) = 2/-7T as one obtains for Fi(s) 

_2_ 
XS 2 

(12) 

Numerical result were obtained by numerical evaluation of the 
infinite integrals of equations (7) and (9) with F2(s) = 0 and 
Fi(s) as given by (12). In all computations, the following values 
for the parameters were used: a = 1 in., b — 3a, L — a, a = 
0.01in.2/sec. 

The approximate evaluation of the inversion integrals was ef
fected by the trapezoidal rule together with Romberg's extrapola
tion scheme. Due to the nature of the integrands, it was ob
served that no significant improvement in the answer was found 
for an upper limit greater than about 20. 

The results of this section are presented in graphical form in 
Figs. 1 and 2. In Fig. 1, graphs of T/T0 versus r/a are shown 
with time as a parameter for z/L equal to 0.8. Fig. 2 gives the 
steady-state dimensionless temperature T/T0 as a function of r/a 

Fig. 1 Transient temperature distribution Fig. 2 Steady-state temperatures at z/L = 0.8 
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with z/L as a parameter. Transient temperatures at other 
ratios of z/L as well as the steady-state isotherms are given in [9]. 

Discussion 

The solution derived here could have also been obtained by 
changing the nonhomogeneous boundary conditions, equations 
(4), to homogeneous through the introduction of a new variable 
U(r, z, I) defined by 

U(r, z, I) = T(r, z, I) + 
L 

- 1 Fi(r) - - F2(r) 

However, the differential equation satisfied by U is nonho
mogeneous. This equation can be solved by taking a Laplace 
transform in t and then a Fourier finite transform in z. The re
sulting ordinary differential equation in r is a nonhomogeneous 
Bessel equation of order zero. The solution of such an equation 
is considerably more involved than that of the present study 
which is a simple ordinaiy homogeneous differential equation in z 
resulting after the application of the unconventional Hankel 
transform employed herein. 

Apparently, no solutions (transient or steady state) have ap
peared in the literature for heat conduction problems involving 
an infinite plate with a transverse cylindrical hole subject to 
nonhomogeneous boundary conditions on the plane surfaces. 
The present study illustrates a convenient analytical approach to 
heat conduction problems for regions bounded internally by circu

lar cylinders. Other Hankel transforms similar to the one u<?P i 
here (given in [9]) can be employed to obtain solutions of th 
heat conduction equation for boundary conditions other tin 
that of zero temperature on the cylindrical surface considered h 
this article. 

References 

1 Nicholson, J. W., "A Problem in the Theory of Heat Conduc 
tion," Proceedings Royal Soc, Vol. A, Series C, 1921, p. 226. 

2 Weber, H., "Veber eine Darstellung will Kurlioher Funetionen 
durch Bessel'sehe Funetionen," Math. Annelen, Vol. 6, 1873, p. 154. 

3 Goldstein, S., "Some Two-Dimensional Problems With Circu
lar Symmetry," Proceedings London Math. Soc, Vol. 34, Series 2 
1932, p. 51. 

4 Carslaw, H. S., and Jaeger, J. C , "Some Two-Dimensional 
Problems in Conduction of Heat With Circular Symmetry," Proceed
ings London Math. Soc, Vol. 46, Series 2, 1940, p. 361. 

5 Blackwell, J. H., "Radial-Axial Heat Flow in Regions Bounded 
Internally by Circular Cylinders," Canadian J. Phys., Vol. 31, 1953 
p. 472. '• ' 

6 Orr, W. M., "Extensions of Fourier's and the Bessel-Fouvier 
Theorems," Proceedings Royal Irish Acad., Vol. 27, No. A 11, 1909 
222. 

7 Titchmarsh, E. C , "Weber's Integral Theorems," Proceedings 
London Math. Soc, Vol. 22, Series 2, 1923, p. 15. 

8 Titschmarsh, E. C, Eigenfunction Expansion, Part 1, Second 
ed., Oxford University Press, London, 1962. 

9 Seco, J. J., "Use of Generalized Hankel Transforms in the 
Solution of Some Axially-Symmetric Problems in Heat Conduction," 
MS thesis, University of Houston, Houston, Texas, May 1969. 

10 Gradshteyn, I. S., and Ryzhik, I. M., Table of Integrals, Scries 
and Products, Fourth ed., Academic Press, New York, 1965. 

1 P. 

Correlations for Laminar Forced Convection in Flow 
Over an Isothermal Flat Plate and in Developing and 
Fully Developed Flow in an Isothermal Tube 
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Nomenclature 

D 
/ (Pr) 

Gz 

J 
k 
n 

NllB 
Nux 

Pe 
Pr 

Res 
Re* 

T 

V 

V(x) 

l/o (x) 

tube diameter, ft 
•• a computed function, see equation (9) 

irDhu/iax = local Graetz number 
local heat flux density at wall, B tu /hr ft2 

thermal conductivity, Btu /hr ft deg F 
arbitrary exponent 

jD/k(Tw — Tm) = local Nusselt number of tube 
jx/k(Tw — T0) = local Nusselt number for flat plate 
Dum/a = Peclet number 
V/OL ~ Prandtl number 
Diim/v = Reynolds number for tube 
xuo/v = Reynolds number for flat plate 
temperature, deg F ' 
velocity component in K-direction, f t /hr 
independent variable or distance along flat plate or tube, 

ft 
dependent variable or distance normal to flat plate or 

wall of tube, ft 
dependent variable 
asymptotic solution for x —»- 0 
asymptotic solution for x —y 00 
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a = thermal diffusivity, ft2/hr 
V = v(u<,/xvY/,2/2 
v = kinematic viscosity, ft2/hr 

4>{t)) = 2tt/w0 = velocity distribution function in Blasius 
solution. 

Subscripts 

m = mixed mean value 
0 = free stream or inlet value 
w = value at wall 

CHURCHILL AND OZOE [ l ] 3 used the procedure proposed by 
Churchill and Usagi [2] to derive an empirical expression for the 
effect of Pr on laminar forced convection in flow over a uni
formly heated flat plate. Simple, empirical expressions were 
similarly derived for plug, fully developed and developing flow in 
a uniformly heated tube. The process of correlation indicated 
that the various computed values for a flat plate were very pre
cise and consistent but revealed inconsistencies in the asymptotic 
solutions and computed values for a tube. Accordingly the 
various solutions for laminar forced convection in flow over an 
isothermal flat plate and in developing and fully developed flow 
in an isothermal tube are herein subjected to the same process of 
analysis and correlation. 

Limitations of space have forced deletion of details of the de
velopment and evaluation of the correlating equations presented 
herein. An expanded version of the manuscript is available from 
S. W. Churchill. 

Correlations for Fully Developed and Plug Flow in a Tube 

The Gi'aetz [3] solution for a step change in wall temperature in 
fully developed, laminar (parabolic) flow in a tube is in the form 
of a ratio of infinite series. The series converges very slowly for 
large Gz creating a role for a convenient and accurate approxima
tion. The expression proposed for such purposes by Churchill 
and Usagi [2] has the form 

yn(x) = y0"(x) + ya'
l(x) (1) 

3 Numbers in brackets designate References at end of technical 
brief. 
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with z/L as a parameter. Transient temperatures at other 
ratios of z/L as well as the steady-state isotherms are given in [9]. 

Discussion 

The solution derived here could have also been obtained by 
changing the nonhomogeneous boundary conditions, equations 
(4), to homogeneous through the introduction of a new variable 
U(r, z, I) defined by 

U(r, z, I) = T(r, z, I) + 
L 

- 1 Fi(r) - - F2(r) 

However, the differential equation satisfied by U is nonho
mogeneous. This equation can be solved by taking a Laplace 
transform in t and then a Fourier finite transform in z. The re
sulting ordinary differential equation in r is a nonhomogeneous 
Bessel equation of order zero. The solution of such an equation 
is considerably more involved than that of the present study 
which is a simple ordinaiy homogeneous differential equation in z 
resulting after the application of the unconventional Hankel 
transform employed herein. 

Apparently, no solutions (transient or steady state) have ap
peared in the literature for heat conduction problems involving 
an infinite plate with a transverse cylindrical hole subject to 
nonhomogeneous boundary conditions on the plane surfaces. 
The present study illustrates a convenient analytical approach to 
heat conduction problems for regions bounded internally by circu

lar cylinders. Other Hankel transforms similar to the one u<?P i 
here (given in [9]) can be employed to obtain solutions of th 
heat conduction equation for boundary conditions other tin 
that of zero temperature on the cylindrical surface considered h 
this article. 
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that the various computed values for a flat plate were very pre
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Fig. 1 

This expression requires asymptotic solutions for large and small 
values of the independent variable and one or more intermedi
ate values of y(z) from which the aribtrary coefficient n can be 
evaluated. 

The Lev^que [4] solution is not a lower bound for Gz -*• oo 
owing to the neglect of curvature. The empirical expression 

Nuc = 1.167 Gz1/ ' - 1.7 (2) 

proposed b}^ Lipids [5] was therefore combined with the asymp
totic value of 3.657 for Nile for Gz —»- 0 yield the trial expression 

[ ( N U B + 1.7)/5.357]» = 1 + (Gz/97)»'3 
(3) 

Equation (3) with n = 8/3 agrees within 6 percent for all Gz 
with the Graetz solution as computed by Munakata [6]. 

A solution for plug flow in a tube is of interest for fluids pri
marily because it constitutes an upper bound for developing flow. 
The asymptotic solution for plug flow for Gz -*• oo corresponding 
to the Leveque solution for parabolic flow is 

Nuj> = 0.6366 Gz'/* (4) 

The neglect of curvature is less serious in this case [7]. Com
bining equation (4) with the asymptotic value of 5.784 for Gz —*- 0 
yields the trial expression 

(Nuc/5.784)" = 1 + (Gz/82.5)»/2 
(5) 

The five coefficients computed by Drew [8] for the Graetz [3] 
series solution for this case are sufficient only for Gz <130. 
Equation (5) with n = 9/4 agrees within 6 percent. The values 
obtained by Rosenberg [9] for higher Gz by numerical integration 
of the differential energy balance fall as much as 10 percent above 
equation (5) with n = 9/4 but may be in error by this much or 
more. 

Solutions and Correlation for the Flat Plate 

Pohlhausen [10] derived a solution for laminar forced convec
tion from an isothermal flat plate using the velocity field of 
Blasius [11] and making the usual assumptions of boundary layer 
theory. He evaluated the integral in his solution numerically for 
Pr from 0.6 to 15. Fisher and Knudsen [12] used the more 
precise values obtained by Howarth [13] for the Blasius solution 
and evaluated the integral for Pr = 10~3(10)103. Additional 
results for low Pr have been obtained by Grosh and Cess [14] and 
by Gregg and Sparrow [15]. The asymptotic solutions given by 
Schlichting and Kestin [16] can be expressed as 

and 

Nil* = 0.5642 Re*' / ' Pr'/= for Pr 

Nil* = 0.3387 Re*1/ ' Pr1 / ' for Pr 

0 (6) 

(7) 

A preliminary examination indicated that none of the computed 
values were for effectively small Pr. Hence a set of consis
tent values was calculated for the entire range of Pr using the 
boundary layer model which has the solution: 

Nil* = 0.3387 R e / / 2 Pr1/3 / (Pr ) 

where 

/ (Pr ) = 1.476/Pr "f 
Jo 

e - P r / 0 ( , ) d , ^ 

(8) 

(9) 

Values of/(Pr) obtained by numerical integration are given in the 
expanded version. 

Nil , has a decreasing dependence on Pr as Pr increases. 
Therefore to avoid a negative value of n in equation (1) 1/Nu.t is 
taken as the dependent variable. The trial expression resulting 
from the combination of equations (6) and (7) is then 

0.5642 Re*'/* P r ' / y N i u = [1 + (Pr/0.0468)"/°]v" (10) 

The various numerical solutions for the flat plate are compared in 
Fig. 1 in the form suggested by Churchill and Usagi [2]. Some 
of the values of Pohlhausen [10] and of Fisher and Knudsen [12] 
for high Pr fall slightly below unity which is the lower bound 
provided by equation (6) but otherwise the computed values 
reveal only trivial discrepancies. Some dissymmetry is apparent 
about the central value of Pr = 0.0468 but all of the values are 
represented within about 1 percent by n = 4. 

Acrivos [17] proposed the equivalent of equation (10) with 
n = 3 for the representation of all wedge flows including the flat 
plate. Analysis of the computed values which he graciously 
supplied indicates that n — 3 provides an excellent fit for flow 
normal to a plate but confirms that the best value of n increases 
to 4 with decreasing wedge angles. 

Re-expression of equation (10) with n = 4 in terms of Nuz> 
and Gz, and neglecting the difference between T,„ and T0, yields 

N O D = 0.6366 G z ' / y U + (Pr/0.0468)2/'] A (11) 

as an asymptotic solution for the inlet of a tube. For Pr -*- 0 
equation (11) reduces to equation (4) which was previously 
utilized for Gz —>- oo j n plug flow. 

Correlations for Developing Flow in a Tube 

Prior Work. Kays [18] obtained results for developing flow by 
numerical integration. He used the theoretical solution of 
Langhaar [19] for the longitudinal velocity field and neglected 
radial convection. 

Ulrichson and Schmitz [20] carried out numerical calculations 
for developing Sow for Pr = 0.7 using the Langhaar solution for 
the longitudinal velocity but also the radial component obtained 
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Fig. 2 

from the continuity equation. They plotted but did not tabulate 
values for 4 < Gz < 786. Additional results for Pr = 0.4 and 
0.08 are given graphically by Ulrichson [21]. (Note: the 
abscissa of the plots in Ulrichson and Schmitz should be labeled 
X/4Re r Pr which is equivalent to .x/DRe/iPr in the Nomenclature 
of this paper rather than 4X/Re,Pr . ) 

Rosenberg and Heliums [22] solved the momentum and con
tinuity equations as well as the energy equation numerically for 
developing flow in the inlet of an isothermal tube. The test 
calculations of Rosenberg [9] for plug and fully developed flow 
were found to be in reasonable agreement with other solutions 
except at high Gz. The computed values for developing flow for 
Pr = 0.001, 0.70, 2.0, and 1000 and Gz as high as 7 X 10s were 
tabulated by Rosenberg. They note that Kays' values for Pr = 
0.7 erroneously approach the limiting solution for plug flow as 
Gz increases and hence conclude that his results are in serious 
error due to the neglect of radial convection. However they 
concede that their results for Pr = 1000 are as much as 20 percent 
below the Graetz solution for parabolic flow which should be a 
lower bound. 

Manohar [23] also solved this same set of equations by a finite-
difference method for Pr = 0.7. He asserts that his results are an 
improvement over those of Ulrichson and Schmitz in the inlet 
region. In response to an inquiry he confirms tha t his Curve 2, 
representing the values of Ulrichson and Schmitz in Fig. 1 of his 
article, is misplotted and should be only slightly above Curve 3. 
His Curve 1 representing the computed values of Kays is simi
larly plotted too high. He graciously supplied a print-out of his 
computed values for use in this investigation. 

All of the solutions above neglect the effect of longitudinal 
conduction. Based on the computations of Munakata [6] this 
assumption is probably reasonable for Pr Re >10. Rosenberg 
and Heliums [22] included in their study the effect of physical 
property variations and conclude that these variations may have 
a significant effect. 

Development. The following correlating equation for all Gz 
and Pr was constructed by combining equation (3) with n = 8/3 
as an asymptotic solution for Gz —*- 0 and equation (11) with 1.7 
arbitrarily added to the left side as an asymptotic solution for 
Gz —»- <» 

Nu + 1.7 
5.357[1 + (Gz/97)8/8)V» 

1 + 
Gz/71 

[1 + (Pr/0.0468)V3] I /=H + (Gz/97)8/'] V-

y/2" 

V . 
1 / B 

(12) 

The various computed values are plotted in the suggested form in 
Fig. 2. A curve representing the Graetz solution for plug flow is 
included by setting Pr = 0 in the coordinates. This curve is 
presumably an upper bound for all Pr and Gz in developing flow. 
I t appears to be a useful bound for large Gz but not for small Gz 
since N O D approaches 5.784 rather than 3.657 leading to the high 
values in Fig. 2. 

At first glance the various computed values appear to scatter 
bewilderingly. However it should be noted that the very small 
range of this plot as opposed to the conventional plot of log Nm> 
versus log Gz tends to exaggerate the deviations. Actually, the 
computed values of Rosenberg for Pr = 0.7, 1.0, and 2.0 and 
Manohar for Pr = 0.7 and the curve representing values read 
from the plot of Ulrichson for Pr = 0.7 are in reasonable agree
ment over the central range of Gz. The values of Kays are 
obviously in increasing error as Gz increases as noted by all of the 
other investigators. This error must be primarily due to failure 
to achieve convergence in the numerical calculations. Either the 
effect of Pr as introduced by equation (11) or the values of 
Rosenberg for Pr = 0.001 and 1000 and of Ulrichson for Pr = 
0.08 and 0.40 are in serious error. Comparison of these values 
with the curve representing plug flow suggests that the numerical 
integrations for small Pr may not take the velocity distribution 
into account properly. The values of Rosenberg for Pr = 1000 
generally fall below unity in Fig. 2 and for large Gz even below 
the scale of the figure. Since these computed values do not show 
a consistent pattern and do not appear to converge to the limiting 
solutions they are tentatively presumed to be in error. The 
values of Rosenberg for Pr = 0.7, 1.0 and 2.0 are self-eonsistent 
but fall below unity for large Gz. Unfortunately the calculated 
values of Ulrichson do not extend into this region and the calcu
lated values of Manohar become erratic for Gz > 15000. 

Equation (12) with n = 8/3 appears to provide a reasonable 
representation for all Gz for those computed values in which the 
most confidence can be placed. This expression appears to be 
somewhat ungainly but is probably the simplest possible expres
sion which converges to the chosen limiting conditions for both 
large and small Pr and Gz. 
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Unsteady Stagnation Point Heat Transfer due to 
Unsteady Free Stream Temperature 

D. R. JENG 1 and R. S. REDDY GORLA2 

T H E U N S T E A D Y h e a t t r ans fe r processes in s t e a d y flow caused b y 

t i m e d e p e n d e n t sur face t e m p e r a t u r e a n d surface h e a t flux h a v e 

been s t u d i e d e x t e n s i v e l y (see [ l ] 3 for l i t e r a t u r e c i t a t i on ) . A 

m o r e rea l is t ic b u t m o r e compl i ca t ed p r o b l e m is t o i n v e s t i g a t e t h e 

t r ans i en t h e a t t r ans fe r w h e n a solid b o d y in i t i a l ly a t an u n i f o r m 

t e m p e r a t u r e is p l a c e d in a s t r e a m h a v i n g a t i m e - v a r y i n g t e m p e r a 

t u r e or h e a t flux. I n 1963, L y m a n [2] r e p o r t e d a K e r i n a n -

P o h l h a u s e n t y p e ana lys i s for u n s t e a d y h e a t t r ans fe r in t h e 

n e i g h b o r h o o d of a two-d imens iona l s t a g n a t i o n p o i n t of a n a i r 

s t r e a m i m p i n g i n g a t r i gh t angles t o t h e solid wal l , w h e n t h e free-

s t e a m t e m p e r a t u r e of t h e air h a s a s t e p c h a n g e . H i s r e su l t s 

show a phys i ca l l y u n l i k e l y b e h a v i o r t h a t t h e t i m e r e q u i r e d for t h e 

h e a t t o p e n e t r a t e t h e r m a l b o u n d a r y l a y e r goes t o inf in i ty as t h e 

t h e r m a l b o u n d a r y l a y e r t h i c k n e s s t e n d s t o zero. T h i s difficulty 

was a t t r i b u t e d t o t h e i n t e g r a l m e t h o d of so lu t ion a n d t h e a s s u m p 

t ion t h a t h e a t is a d d e d t o t h e b o u n d a r y l a y e r b y c o n v e c t i o n 

a lone. T h e m a i n ob jec t ive of t h e p r e s e n t p a p e r is t o re - inves t i 

g a t e t h e p r o b l e m cons idered in [2] b u t for wide r a n g e of P r a n d t l 

n u m b e r P r . 

A s s u m i n g s t e a d y , i ncompress ib l e flow w i t h c o n s t a n t p r o p e r t i e s 

and negl igible d i ss ipa t ion , t h e ve loc i ty a t t h e edge of t h e b o u n d a r y 

l aye r n e a r a t w o - d i m e n s i o n a l s t a g n a t i o n is Kx w h e r e K is a con

s t a n t a n d x is m e a s u r e d a long t h e sur face f rom t h e s t a g n a t i o n 

po in t . L e t y r e p r e s e n t t h e d i s t a n c e n o r m a l t h e sur face . T h e 

ve loc i ty c o m p o n e n t s u a n d v in x a n d y d i r ec t ions , r e spec t ive ly , 
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m a y be w r i t t e n as u = Kxf'(rj) a n d v = — (ei?) ' /2 /(7i) w h e r e 

r) = yiK/v)1'2 a n d v d e n o t e s t h e k i n e m a t i c v iscosi ty . T h e func

t ion f(y\) satisfies F a l k n e r a n d S k a n e q u a t i o n w i t h /3 = 1 a n d i t s 

so lu t ion is well k n o w n [3]. T h u s , no fu r the r cons ide ra t ion is 

neces sa ry for t h e v e l o c i t y field. F o r t h e t e m p e r a t u r e field, our 

ana lys i s will c e n t e r a t t h e case w h e n t h e free s t r e a m t e m p e r a t u r e 

in i t ia l ly a t T ; is s u b j e c t e d t o a s t e p c h a n g e t o rl\. T h e l inea r i ty 

of t h e e n e r g y e q u a t i o n p e r m i t s t h e use of a superpos i t ion t e c h 

n i q u e t o genera l ize t h e s t e p func t ion resu l t s o b t a i n e d p r e v i o u s l y 

to a n y a r b i t r a r y free s t r e a m t e m p e r a t u r e va r i a t i on w i th t ime , 

Ta(t) for I > 0. T h e g o v e r n i n g e n e r g y e q u a t i o n for t h e p r o b l e m 

cons idered shal l be f o r m u l a t e d for t h e fluid (wi th t h e s u b s c r i p t / ) 

a n d t h e solid (w i th t h e s u b s c r i p t s). I n t r o d u c i n g t h e d imens ion -

less t e m p e r a t u r e 6 = (T — Ti)/(Tm — ?',-) a n d t h e d imens ionless 

t i m e T = Kl/Pr i n t o t h e e n e r g y e q u a t i o n s n e a r t h e s t a g n a t i o n 

po in t , we h a v e , 

for fluid ?/ > 0 

d r 

f + Pr/ —' 
d?j2 d?) 

for solid 7] < 0 

cJ0« _ ou 

d r cif 

a n d t h e in i t ia l a n d b o u n d a r y cond i t ions t h e n b e c o m e , 

for T < rtr 

0,07, 0) = 0 

Ql(V°>, r ) = 1 

for T > Ttr 

5T? 

9f(v, T „ ) = M i j ) 

0/O7c„, r ) = 1 

CUT?, Ttr) = 0 

6S{-™,T) = 0 

(1) 

(2) 

(3a) 

(36) 

(3c) 

(4a) 

(46) 

(4c) 

(4d) 

a n d a t t h e in te r face , 
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Unsteady Stagnation Point Heat Transfer due to 
Unsteady Free Stream Temperature 

D. R. JENG 1 and R. S. REDDY GORLA2 

T H E U N S T E A D Y h e a t t r ans fe r processes in s t e a d y flow caused b y 

t i m e d e p e n d e n t sur face t e m p e r a t u r e a n d surface h e a t flux h a v e 

been s t u d i e d e x t e n s i v e l y (see [ l ] 3 for l i t e r a t u r e c i t a t i on ) . A 

m o r e rea l is t ic b u t m o r e compl i ca t ed p r o b l e m is t o i n v e s t i g a t e t h e 

t r ans i en t h e a t t r ans fe r w h e n a solid b o d y in i t i a l ly a t an u n i f o r m 

t e m p e r a t u r e is p l a c e d in a s t r e a m h a v i n g a t i m e - v a r y i n g t e m p e r a 

t u r e or h e a t flux. I n 1963, L y m a n [2] r e p o r t e d a K e r i n a n -

P o h l h a u s e n t y p e ana lys i s for u n s t e a d y h e a t t r ans fe r in t h e 

n e i g h b o r h o o d of a two-d imens iona l s t a g n a t i o n p o i n t of a n a i r 

s t r e a m i m p i n g i n g a t r i gh t angles t o t h e solid wal l , w h e n t h e free-

s t e a m t e m p e r a t u r e of t h e air h a s a s t e p c h a n g e . H i s r e su l t s 

show a phys i ca l l y u n l i k e l y b e h a v i o r t h a t t h e t i m e r e q u i r e d for t h e 

h e a t t o p e n e t r a t e t h e r m a l b o u n d a r y l a y e r goes t o inf in i ty as t h e 

t h e r m a l b o u n d a r y l a y e r t h i c k n e s s t e n d s t o zero. T h i s difficulty 

was a t t r i b u t e d t o t h e i n t e g r a l m e t h o d of so lu t ion a n d t h e a s s u m p 

t ion t h a t h e a t is a d d e d t o t h e b o u n d a r y l a y e r b y c o n v e c t i o n 

a lone. T h e m a i n ob jec t ive of t h e p r e s e n t p a p e r is t o re - inves t i 

g a t e t h e p r o b l e m cons idered in [2] b u t for wide r a n g e of P r a n d t l 

n u m b e r P r . 

A s s u m i n g s t e a d y , i ncompress ib l e flow w i t h c o n s t a n t p r o p e r t i e s 

and negl igible d i ss ipa t ion , t h e ve loc i ty a t t h e edge of t h e b o u n d a r y 

l aye r n e a r a t w o - d i m e n s i o n a l s t a g n a t i o n is Kx w h e r e K is a con

s t a n t a n d x is m e a s u r e d a long t h e sur face f rom t h e s t a g n a t i o n 

po in t . L e t y r e p r e s e n t t h e d i s t a n c e n o r m a l t h e sur face . T h e 

ve loc i ty c o m p o n e n t s u a n d v in x a n d y d i r ec t ions , r e spec t ive ly , 
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m a y be w r i t t e n as u = Kxf'(rj) a n d v = — (ei?) ' /2 /(7i) w h e r e 

r) = yiK/v)1'2 a n d v d e n o t e s t h e k i n e m a t i c v iscosi ty . T h e func

t ion f(y\) satisfies F a l k n e r a n d S k a n e q u a t i o n w i t h /3 = 1 a n d i t s 

so lu t ion is well k n o w n [3]. T h u s , no fu r the r cons ide ra t ion is 

neces sa ry for t h e v e l o c i t y field. F o r t h e t e m p e r a t u r e field, our 

ana lys i s will c e n t e r a t t h e case w h e n t h e free s t r e a m t e m p e r a t u r e 

in i t ia l ly a t T ; is s u b j e c t e d t o a s t e p c h a n g e t o rl\. T h e l inea r i ty 

of t h e e n e r g y e q u a t i o n p e r m i t s t h e use of a superpos i t ion t e c h 

n i q u e t o genera l ize t h e s t e p func t ion resu l t s o b t a i n e d p r e v i o u s l y 

to a n y a r b i t r a r y free s t r e a m t e m p e r a t u r e va r i a t i on w i th t ime , 

Ta(t) for I > 0. T h e g o v e r n i n g e n e r g y e q u a t i o n for t h e p r o b l e m 

cons idered shal l be f o r m u l a t e d for t h e fluid (wi th t h e s u b s c r i p t / ) 

a n d t h e solid (w i th t h e s u b s c r i p t s). I n t r o d u c i n g t h e d imens ion -

less t e m p e r a t u r e 6 = (T — Ti)/(Tm — ?',-) a n d t h e d imens ionless 

t i m e T = Kl/Pr i n t o t h e e n e r g y e q u a t i o n s n e a r t h e s t a g n a t i o n 

po in t , we h a v e , 

for fluid ?/ > 0 

d r 

f + Pr/ —' 
d?j2 d?) 

for solid 7] < 0 

cJ0« _ ou 

d r cif 

a n d t h e in i t ia l a n d b o u n d a r y cond i t ions t h e n b e c o m e , 

for T < rtr 

0,07, 0) = 0 

Ql(V°>, r ) = 1 

for T > Ttr 

5T? 

9f(v, T „ ) = M i j ) 

0/O7c„, r ) = 1 

CUT?, Ttr) = 0 

6S{-™,T) = 0 

(1) 

(2) 

(3a) 

(36) 

(3c) 

(4a) 

(46) 

(4c) 

(4d) 

a n d a t t h e in te r face , 
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Table 1 Values of dimensionless penetration thickness and transit time for a range of Prandtl numbers 

Pr 

Ttr 
Pr 
IJco 
Ttr 

0.01 
35.72 
50.122 
100.0 
0.82 
0.0178 

0.1 
11.44 
6.224 

200.0 
0.66 
0.0112 

0.7 
4.25 
1.089 

800.0 
0.58 
0.0087 

1.0 
3.76 
0.809 

400.0 
0.54 
0.0070 

7.0 
1.79 
0.149 

500.0 
0.50 
0.00605 

10.0 
1.64 
0.112 

1000.0 
0.39 
0.00382 

50.0 
0.98 
0.0305 

9/(0, T ) = 0.(0, r) 

9/(0, r) dfl.(0, T) 

(5a) 

(56) 

In the foregoing, U„ denotes the free stream velocity, a the 
thermal diffusivity, and k the thermal conductivity. Before 
proceeding further, the boundary conditions (36) and (46) require 
some explanation. Mathematically, rj^ should be replaced by <*>, 
however, we have introduced a fictitious dis tance/ ?/„ (the 
corresponding dimensionless coordinate will be ??„). This means 
that the step change in free stream temperature will be trans
mitted instantly to the fluid immediately outside the region 
V = 2/co, however, the redistribution of the temperature in the 
region y < ya will not be instantaneous. The dimensionless 
transit time TI, is defined such that it corresponds to the time 
required for the thermal front to penetrate the distance r\a. 
Thus, for certain interval of time following a step change in the 
free stream temperature, there is no change in the temperature in 
the solid so that the energy equation in the boundary layer may be 
decoupled from that of solid and treated separately. 

Applying the Laplace transformation to (1) and (3) with 
respect to r and assuming small T,„ since r < Ttr, we now seek 
the asymptotic solution with respect to large Laplace transform 
variable p. The result is 

/(V,T) = exp< — 
I ,2 JV ) 71 = 0 

X U„(rt)(4:T)n/2i''erfc 
2\/T 

(6) 

where U„'s satisfy Uoirj) = 1 and 

2 Un'(V) + t W « - (™~ 
Pi'2/2 , 

+ -^-}Un^(v) = 0(orV>l 

(7) 

with 

£/i(>7») = Ui(v^ Un(Vm) = 0 

Using the appropriate boundary conditions, a set of differential 
equations generated by (7) for n = 1 to 5 are solved successively 
on an I B M 360 computer by making use of the fourth order 
Runge-Kutta method of numerical integration procedure. A 
value has to be assigned for 7]^ such that the obtained solution 
shows little further change for rj larger than r]a. The values of 
the dimensionless penetration thicknesses r)„ were determined for 
Prandtl numbers ranging from 0.01 to 1000, using the data ob
tained for U„(r)) where n varies from 1 to 5. This was accom
plished by choosing the value of r\ at which all the values of U„ 
(r)) for n varying from 1 to 5 become less than or equal to 0.01. 
The numerical values of the dimensionless penetration thickness 
have been listed in Table 1. The complete data of U„(r]) are 
compiled in reference [1] and will not be given here. The transit 
times are then obtained by (6) using the condition that 6/ 
assumes a value of 0.01 at rj = 0.01. These results are also in
cluded in Table 1. 

For all times greater than the transit time Tlr, heat will be 
transferred from the fluid to the solid. I t is now required to 

4 In this paper, we defined ym as a thermal boundary layer thick
ness which has a different physical meaning from an ordinary thermal 
boundary layer thickness. 

consider the interaction of fluid and solid. In order to facilitate 
the analysis, we further introduce r* = r — T,r into equations 
(1) to (5). The solution of (2) to satisfy (4c) and (4d) is given 
by [4] as 

:(v, r*) 
2 ( — 7 T 

\Ctf 

. ( f ) ( T * - f ) -

X exp )— 
a, 

4 — ( T * - f ) j 

and 

dfl,(0, r*) _ (a/Y/2 6w(r*) 

d£ (8) 

O) 

where 6W(T*) is an unknown interface temperature to be deter
mined. Using (9), the boundary condition (5) may be rephrased 
as 

Z>df(0, r*) fl0,(O, r*) 

d?j (7TT*) *1'A (10) 

where 

h/ \a.) 

The solution of (1) with (6) as an initial condition and (10) as 
boundary condition is then obtained by a finite-difference 
numerical method. A detailed description is given in reference 
[1]. 

10' 10 10- 10 10 10 10 
r 

Fig. 1 Comparison of transient interface temperature for Pr = 0.7 
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0.6-
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Fig. 2 Transient interface temperature for Pr = 7.0, 10, and 100 
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A sequence of numerical results for transient interface tem
perature was obtained with the property ratio 0 and Prandtl 
number as parameters. They are presented graphically in 
Figs. 1 and 2. For a given Prandtl number, time required to 
attain steady state increases with increasing values of 0. For 
example, let us consider air (Pr = 0.7) with a free stream velocity 
of 200 ft/sec impinging normal to the axis of a cylindrical asbestos 
rod of one foot radius. For this condition, the parameter K = 

— - = 400 s e c - 1 and U = 51 (the properties of air and asbestos 
B 

have been obtained at a reference temperature of 145 deg F). 
From Fig. 1 we find that the dimensionless time required for the 
interface temperature d,„ to attain one-half of its steady state 
value is 1.1 X 104 or the time is about 19 sec. If one replaces the 
asbestos rod by an aluminum rod with other conditions un
changed, the time is 962 sec. (This case corresponds to 0 = 
4034.) On the other hand, if U is fixed, the dimensionless time 
required for 6m to attain steady state decreases with increasing 
Prandtl numbers. Lyman [2] reported an equation for transient 
interface temperature obtained by the integral approach. The 
numerical values have been calculated by the authors using his 
equation for air and have been shown in Fig. 1 for the sake of 
comparison. The agreement is good for very large values of r 
but some deviation is noticed for r < 105. 

The heat flux at the interface is 

and the corresponding Nusselt number is 

= -kt - f c / r . -Ti)[-f)VV(o, T) (11) 

Nu 

(LU„\/> 
q'° \XJ 
(?'„, ~ Ti)kf 

-(KeLy'>d/((\T) 

where L is a characteristic length. 
By virtue of (56) and (9), (12) may be written as 

Nu(Rez,)- ' /*fi- i = - - - - " ^ - f o r r * > 0 
(7TT*) >'-

(12) 

(13) 

and with the known values of 9W(T*) presented in figures, the 
value of Nu(Re i ) ~1^- il"1 may be obtained numerically. Calcu
lation of (13) for a Prandtl number of 0.7 are made and it is of 
interest to note that the dimensionless group Nu(Rei ) ~'/- U~l is 
independent of 0 until T* assumes a value of 10z. I t is expected 
when r* -»• °°, the Nusselt number approaches zero value. 
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Lateral Heat Transfer by Conduction and Radiation 
Along Two Parallel Plates—an Analogy Between 
Surface and Gaseous Radiation 
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Introduction 

LATERAL HEAT TEANFEH along two long parallel plates plays an 

important role in several engineering problems such as thermal 
performance of multilayer insulation systems, effectiveness of 
fins, etc. [1, 2, 3] .2 Since earlier investigators have analyzed this 
problem only for the case of specularly reflecting side walls [4, 5] 
the present study will extend the problem to the case of diffusely 
reflecting side walls. I t is found that the present problem of con
duction and radiation along two long parallel diffuse surfaces 
spaced by nonparticipating medium is similar to the Viskanta's 
model of conduction and radiation [6] in an absorbing, emitting, 
and scattering medium and that the Viskanta's numerical solution 
can be used as a good approximate solution to the present prob
lem. Also found is an analogy between the diffusing surfaces 
and a radiating gas. 

Analysis 

The physical system under investigation is shown in Fig. 1(a) 
where the two plates are separated by a nonabsorbing dielectric 
of refractive index n. All boundaries are gray and diffuse and 
the side walls 3 and 4 are externally insulated to represent, for 
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example, one layer of an evacuated multilayer insulation system 
Since the length L » the spacing h and end temperatures uniform, 
the end surface radiosities are assumed to be uniform. This 
approximation makes the problem one-dimensional. 

The governing equation for the dimensionless temperature dis
tribution can be readily shown as [3, 7] 

rt/*1 = N(l - p){B* - H*) (1) 

where 

Bi" 
H* = -— [1 - r / V r 2 + 0.25] 

+ ^ - [ 1 - (ro - r ) / V V „ - rf + 0.25] 

+ {[(1 - P)#4 + pH*](0.25/2)/[0.25 + (T - T'YY^CIT' L 
(2) 

B{* = (1 - Pi) + 2 P l { / V ( V TO* + 0.25 - ro) 

+ f [(1 - P)#4 + pH*Hl - r/V T> + 0.25) ch} (3) 
Jo 

B2* = (l - p 2 ) ^ + 2p2{B1*(V TV + 025 - ro) 

+ f [(1 - P)<?4 + pH*] (1 - (ro - T)I 
Jo 

X V~(TO- TY + 0.25) A" j (4) 

T = 0, 6 = 1; T = TO, 6 = ft (5) 

The nondimensional heat flux is given by 

(6) 
dd 

$ = _ -
dr 

+ 7 * (0) 4 

where 
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LATERAL HEAT TEANFEH along two long parallel plates plays an 

important role in several engineering problems such as thermal 
performance of multilayer insulation systems, effectiveness of 
fins, etc. [1, 2, 3] .2 Since earlier investigators have analyzed this 
problem only for the case of specularly reflecting side walls [4, 5] 
the present study will extend the problem to the case of diffusely 
reflecting side walls. I t is found that the present problem of con
duction and radiation along two long parallel diffuse surfaces 
spaced by nonparticipating medium is similar to the Viskanta's 
model of conduction and radiation [6] in an absorbing, emitting, 
and scattering medium and that the Viskanta's numerical solution 
can be used as a good approximate solution to the present prob
lem. Also found is an analogy between the diffusing surfaces 
and a radiating gas. 

Analysis 

The physical system under investigation is shown in Fig. 1(a) 
where the two plates are separated by a nonabsorbing dielectric 
of refractive index n. All boundaries are gray and diffuse and 
the side walls 3 and 4 are externally insulated to represent, for 
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example, one layer of an evacuated multilayer insulation system 
Since the length L » the spacing h and end temperatures uniform, 
the end surface radiosities are assumed to be uniform. This 
approximation makes the problem one-dimensional. 

The governing equation for the dimensionless temperature dis
tribution can be readily shown as [3, 7] 

rt/*1 = N(l - p){B* - H*) (1) 

where 

Bi" 
H* = -— [1 - r / V r 2 + 0.25] 

+ ^ - [ 1 - (ro - r ) / V V „ - rf + 0.25] 

+ {[(1 - P)#4 + pH*](0.25/2)/[0.25 + (T - T'YY^CIT' L 
(2) 

B{* = (1 - Pi) + 2 P l { / V ( V TO* + 0.25 - ro) 

+ f [(1 - P)#4 + pH*Hl - r/V T> + 0.25) ch} (3) 
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B2* = (l - p 2 ) ^ + 2p2{B1*(V TV + 025 - ro) 

+ f [(1 - P)<?4 + pH*] (1 - (ro - T)I 
Jo 

X V~(TO- TY + 0.25) A" j (4) 

T = 0, 6 = 1; T = TO, 6 = ft (5) 

The nondimensional heat flux is given by 

(6) 
dd 

$ = _ -
dr 

+ 7 * (0) 4 

where 
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Fig. 2 Comparison between exponential integrals and their approxima
tions 

^ ( T ) = 2B 1 *(Vr 2 + 0.25 - T ) 

- 2B 2 *(V(r7^- T ) 2 + 0.25 - ro + T ) 

+ 2 p [(1 - p)0« + pfl*][l - (T - T ' ) / 
J o 

X V ^ ^ r ' ) 2 + 0.25] d r ' 

- 2 p K l - p)04 + pi?*] [1 - ( r ' - r)l 

X V ( T ' - r ) 2 + 0.25] Ar' (7) 

In the above equations, p, pi, and p2 are the reflectivities of 
side walls, walls 1 and 2, respectively. The other dimensionless 
quantities are defined as 

6 = T/Th 02 = l\iTh T = x/2h, ro = L/2h, N 

8nVJ'iafe , t , , 
= , , K = ka - + k, 

k, h 

$ 
kj, 1_ 
T ' 2l 

^ . ^ = QnW Bi, t 

'A 
nVTV 

= iJ i / j iVri4 , B a* = Bi/n'arTS, H* = H/tfolY 

where -B is the radiosity, H the incident radiation, kw and A, the 
thermal conductivities of the side walls and the spacer, re
spectively, and Q and QR the total and radiant heat fluxes, respec
tively. The equivalent length ro which depends on the system 
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Fig. 3 Comparison between exact and approxfmate results for temper
ature distribution and incident radiation 

geometer is similar to the optical path length in gaseous radia
tion, and radiation conduction parameter N determines the rela
tive magnitude of the two modes of heat transfer. 

Now, consider the problem of combined conduction and radia
tion heat transfer through an absorbing, emitting and scattering 
gas bounded by two isothermal walls maintained at two different 
temperatures Tx and 1\ (see Fig. 1(b)). On the assumption of a 
gray medium, the temperature distribution in the gas was ob
tained by solving the following equation [6] 

•W 4nV7V 
(1 - co„)(04 - T?) (8) 

dr2 kgB 

where 

ij(r) = Bi*S„(r)/2 + B2*E2(T0 - r ) / 2 

/•TO 

+ {[(1 - wo)04 + W017]^(|T - T ' | ) / 2 } dr' (9) 
Jo 

Bi* = (1 - pi) + 2p 1{/V# 3(ro) 

/ • T O 

+ [(1 - co0)5
4 + o>ovm(r)dT} (10) 

Jo 

Bi* = (1 - p2)02* + 2p2{B1*^3(ro - r) 
/•TO 

+ I [ ( 1 - COo)6»4 + COoTjJ^fro - T)dr} ( 1 1 ) 

Jo 
with the boundary condition given by equation (5) and the 
radiant flux given by 

t(r) = 2£ I*S 3(r) - 2B2*E3(T0 - T) 

+ 2 r [(1 - o)„)l?4 + WO77]^(T - T') dr' 
Jo 

[(1 - w»)04 + o>oi?]^(r' - T) d r ' (12) 

The total heat flux through such a gas is given by 

d6 
-WTi 

dr 
+ n'aT^iQ) (13) 

Complete analogy between the two sets of governing equations, 
i.e., equations (l)-(7) and equations (8)-(13), can be readily 
shown. First consider the governing equation (1). By choosing 

p = wo, k„ = kg, VVt = 8, and H* = t\ (14) 

equation (1) becomes identical to equation (8). Furthermore if 
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the shape factors can be approximated by the respective ex
ponential integrals Ei(r), E2(T), and E3(r) as 

0.25/[0.25 + TS]'/'c~ Eifr) 

1 - T/VT1 + 0.25 ^ Ei(j) 

V T M - 0.25 - T ~ # 3 ( r ) 

and if 0 / £ -s set to be equal to q, then equations (2)-(7) are 
identical to equations (9)-(13). The foregoing approximations 
are good as illustrated in Fig. 2, especially since such approxima
tions are better than the well established exponential kernel 
approximation which approximates exponential integrals by 
exponential functions [7]. Because the use of the exponential 
kernel approximation generally yields an excellent temperature 
distribution or heat flux etc., one can expect the same by using 
the above approximations as can be seen in Fig. 3. Conse
quently the existing solution obtained by Viskanta [6] can be 
used directly as an approximate solution to the present problem 
involving lateral, combined conduction and radiation heat 
transfer along diffusely reflecting side walls. 

In order to show tha t the Viskanta's solution can.serve as a 
good approximate solution to the present problem, this approxi
mate solution must be compared with exact solution of equations 
(l)-(7). Because it involves a system of complicated, nonlinear 
integro-differential equations, no analytical solution of these 
equations is possible. The solutions, therefore, are obtained by 
numerical procedures. 

Before applying the numerical technique, equation (1) is 
integrated twice to obtain an equivalent integral equation in
cluding the boundary condition as 

0(r) = 1 - (1 - 02)T/TO - N(l - p) 

X | T T ' U - T / T „ ) ( 0 * - - H * ) C 2 T 

+ J r ( l - T'/VO)(04 - H*)dr'\ (15) 

The governing integral equations (2), (3), (4), and (15) are 
converted into a set of algebraic equations by discretizing the 
definite and indefinite integrals by using the Simpson's quadrature 
formulas. The resulting set of equations have two sets of un
known H* and 8. The relations are linear in H* and highly non
linear in 8. Guessing values of 8, the equations are solved for 
H* by Gaussian Matrix inversion. Next, the equations are 
solved for 8 by using direct iteration technique. The entire 
process is repeated until convergence is obtained in the value of 8 
as well as H. * However, even if such an elaborate procedure is 
used, it is found that the numerical solution still does not con
verge for all possible values of the six governing parameters, N, 
02, To, p, pi, and p2. Generally speaking the larger the JY or To, 
the less stable is the solution. For example, if N is chosen as 
large as 10 to emphasize the radiation effect and other parameters 
are taken as those shown in Fig. 3, the solution converges for 
To = 1 or less. Fig. 3 shows the case of To = 1 and the agreement 
between the approximate and exact numerical solutions is re
markably good. For larger values of To, the agreement could be 
expected to be even better because the approximation of the shape 
factors by the exponential integrals as shown in Fig. 2 works 
better for larger values of To, just like the case of replacing the 
exponential integrals by the exponential kernal approximation. 
Therefore the existing Viskant'a solution for a radiation par
ticipating medium can be used as a good approximate solution 
to the present problem of nonpartieipating medium. 

In conclusion, the present study shows an analogy between 
surface and gaseous radiations. The two long parallel diffuse sur
faces with an reflectivity p and a spacing /( are equivalent to 
an absorbing, emitting and scattering medium with a scattering 
albedo coo = p and an extinction coefficient fi = l/Ji. 

References 

1 Coston, R. M., and Vliet, G. C , "Thermal Energy Transport 
Parallel to the Lamination in Multilayer Insulation," Advances in 
Cryogenic Engineering, Vol. 13, 1968, p. 671. 

2 Androulakis, J. G., and Kosson, R. M., "Effective Thermal 
Conductivity Parallel to the Lamination and Total Conductance for 
Combined Parallel and Normal Heat Flow in Multilayer Insulation," 
AIAA Paper No. 68-765, Los Angeles, Calif., 1968. 

3 Donovan, R. C , and Rohrer, W. M., "Radiative Conducting 
Fins on a Plane Wall, Including Mutual Irradiation," ASME paper 
69 WA/HT-22, Los Angeles, Calif., 1969. 

4 Tien, C. L., Jagannathan, P. S., and Arraaly, B. F., "Analysis of 
Lateral Conduction and Radiation Along Two Parallel Long Plates," 
AIAA Journal, Vol. 7, 1969, p. 1806. 

5 Jagannathan, P. S., and Tien, C. L., "Spacer Effects on Lateral 
Heat Transfer in Multilayer Insulation," Journal of Spacecraft and 
Rockets, Vol. 8, 1971, p. 416. 

6 Viskanta, R., "Heat Transfer by Conduction and Radiation in 
Absorbing and Scattering Materials," JOUBNAL OF HEAT TRANSFEB, 
TBANS. ASME, Series C, Vol. 1, 87, 1965, p. 143. 

7 Sparrow, E. M., and Cess, R. D., "Radiation Heat Transfer," 
Brooks/Cole, Belmont, Calif., 1967, pp. 96-98. 

The Effect of Changes in Sphere Coating 
Reflectance on the Performance of 
Integrating Spheres 

C. K. HSIEH1 

Nomenclature 

A = area 
H = irradiation flux 
R = reflected flux of radiation 
A = wavelength 
p = reflectance 

Subscripts 

B = bright spot 
D = dark shadow 
E = apertures 
0 = total sphere (Ao = AB + AD + AE) 
S — externally originated incoming radiation 

Introduction 

T H E INTEGRATING SPHERE has been indispensable in measure

ments of hemispherical-directional reflectance of substances [1, 
2] .2 Recently, it has also been used as a flux averaging device in 
optical systems [3, 4J. In both applications, chopped incoming 
radiation passes through one aperture of the sphere and strikes on 
the interior of the sphere wall. Because of the highly reflective 
and diffuse coating on the wall, this incoming radiation can 
undergo a process of diffuse multi-reflections. As a result, there 
are only two zones inside the sphere. The zone which is directly 
illuminated by the external irradiation appears bright to the eye, 
as contrasted to the dark shadow zone where illumination is 
solely a result of multi-reflections. 

An examination of literature reveals that the previous theories 
on integrating spheres [5, 6, 7, 8] used only total properties which 
offer no perspective as to the performance of the sphere on a 
spectral basis. Edwards, et al. [9] derived equations for per-
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the shape factors can be approximated by the respective ex
ponential integrals Ei(r), E2(T), and E3(r) as 

0.25/[0.25 + TS]'/'c~ Eifr) 

1 - T/VT1 + 0.25 ^ Ei(j) 

V T M - 0.25 - T ~ # 3 ( r ) 
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kernel approximation generally yields an excellent temperature 
distribution or heat flux etc., one can expect the same by using 
the above approximations as can be seen in Fig. 3. Conse
quently the existing solution obtained by Viskanta [6] can be 
used directly as an approximate solution to the present problem 
involving lateral, combined conduction and radiation heat 
transfer along diffusely reflecting side walls. 
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mate solution must be compared with exact solution of equations 
(l)-(7). Because it involves a system of complicated, nonlinear 
integro-differential equations, no analytical solution of these 
equations is possible. The solutions, therefore, are obtained by 
numerical procedures. 

Before applying the numerical technique, equation (1) is 
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cluding the boundary condition as 
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The governing integral equations (2), (3), (4), and (15) are 
converted into a set of algebraic equations by discretizing the 
definite and indefinite integrals by using the Simpson's quadrature 
formulas. The resulting set of equations have two sets of un
known H* and 8. The relations are linear in H* and highly non
linear in 8. Guessing values of 8, the equations are solved for 
H* by Gaussian Matrix inversion. Next, the equations are 
solved for 8 by using direct iteration technique. The entire 
process is repeated until convergence is obtained in the value of 8 
as well as H. * However, even if such an elaborate procedure is 
used, it is found that the numerical solution still does not con
verge for all possible values of the six governing parameters, N, 
02, To, p, pi, and p2. Generally speaking the larger the JY or To, 
the less stable is the solution. For example, if N is chosen as 
large as 10 to emphasize the radiation effect and other parameters 
are taken as those shown in Fig. 3, the solution converges for 
To = 1 or less. Fig. 3 shows the case of To = 1 and the agreement 
between the approximate and exact numerical solutions is re
markably good. For larger values of To, the agreement could be 
expected to be even better because the approximation of the shape 
factors by the exponential integrals as shown in Fig. 2 works 
better for larger values of To, just like the case of replacing the 
exponential integrals by the exponential kernal approximation. 
Therefore the existing Viskant'a solution for a radiation par
ticipating medium can be used as a good approximate solution 
to the present problem of nonpartieipating medium. 

In conclusion, the present study shows an analogy between 
surface and gaseous radiations. The two long parallel diffuse sur
faces with an reflectivity p and a spacing /( are equivalent to 
an absorbing, emitting and scattering medium with a scattering 
albedo coo = p and an extinction coefficient fi = l/Ji. 
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T H E INTEGRATING SPHERE has been indispensable in measure

ments of hemispherical-directional reflectance of substances [1, 
2] .2 Recently, it has also been used as a flux averaging device in 
optical systems [3, 4J. In both applications, chopped incoming 
radiation passes through one aperture of the sphere and strikes on 
the interior of the sphere wall. Because of the highly reflective 
and diffuse coating on the wall, this incoming radiation can 
undergo a process of diffuse multi-reflections. As a result, there 
are only two zones inside the sphere. The zone which is directly 
illuminated by the external irradiation appears bright to the eye, 
as contrasted to the dark shadow zone where illumination is 
solely a result of multi-reflections. 

An examination of literature reveals that the previous theories 
on integrating spheres [5, 6, 7, 8] used only total properties which 
offer no perspective as to the performance of the sphere on a 
spectral basis. Edwards, et al. [9] derived equations for per-
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formance analysis of their designed integrating sphere reflectom-
eter. Errors were calculated for both specular and perfectly 
diffuse samples. This technical brief attempts to follow a dif
ferent approach by studying the effects of changing of coating 
reflectance on the performance of integrating spheres. 

Analysis 

The analysis is considerably simplified in view of the fact tha t 
the incoming radiation is chopped. This eliminates the effect of 
the emitted energy that is received by a detector and reflected 
energy becomes the only concern. A model is considered that 
consists of a sphere with two circular apertures, one for incoming 
pencil of ray to pass through and the other for detection; both are 
considered black for reflected energies. The interior wall of the 
sphere is opaque, nongi-ay, and a diffuse emitter and reflector of 
radiation. The gas medium inside the sphere is radiatively non-
participating; and diffraction, interference, and polarization ef
fects are ignored. 

For any surface element dA{6', </>') on a sphere wall, see Fig. 1, 
the radiant flux reflected from the surface can be expressed as 

R*(6', 0 ' , X) 

= pK(d', <j>', X) Hsx(d', <t>', X) sin - + HX'(B', <fi', X) (1) 

where sin — in the first term on the right emerges as a result of the 

cosine of the incident ray, cos -(ir — 6'). By invoking use of the 

configuration factor and recognizing that, for a spherical 
geometry, this factor is independent of the area from which ra
diant flux leaves a surface [10], equation (1) can be rewritten as 

i?x(0', 0 ' , X) = px( Hsx(6', <f>', X) sin -

R\(6",(j>", X)cL4(0", 0") (2) 

As noted earlier, there are two zones inside the sphere, a bright 
spot (B) and a dark shadow zone (D). Equation (2) can be used 
to write, for these two regions, 

R\B = px#sx sin —• + px ( —-) -ffix£> + px I — 
2 \Ao/ \Ao 

R\B (3a) 

and 

IRRADIANCE 

APERTURE 
FOR 

INCIDENT 
RAY, AF 

R\D = PX I-j- j R\D + px ( — j R\B (36) 

where position dependency has been omitted for simplicity in ex
pressions. Both equations (3a) and (3b) should be solved sinnii. 
taneously for R\B and -ffixzi. Yet, in practical applications, thev 
can be used to derive two equations: 

R\D m px*HS\ sin (1/2)6' 

RXB 

R\D 
1 — px -:)][ 

1 - px + PX ( 

][»&)] 
- 1 

^ • / _ 

- i 

(4) 

(5) 

which are more useful in analysis. Equation (4) is indispensable 
in evaluating the signal level and, therefore, the signal-to-noise 
ratio for the energy that reaches a detector in the optical system. 
Equation (5) is useful to estimate the error that might be involved 
if the bright spot on the sphere wall comes into the field of view of 
a detector. The latter is particularly meaningful in view of the 
fact that, in the case of an integrating sphere reflectometer 
R\B/R\D ratio provides a means for checking the condition of 
uniform irradiation on a specimen. This uniform irradiation is a 
prerequisite for directional-hemispherical reflectance to be equal 
to hemispherical-directional reflectance according to theory [11], 

Results and Discussion 

I t is noted that AB in equations (4) and (5) is independent of 
the area of the aperture for incident radiation H$\. The sum of 
the two areas of the apertures is AE- T O facilitate comparison of 
the performance of the integrating sphere over a broad spectrum, 
a MgO coated sphere is considered. An attempt is made to 
study the deterioration of the sphere performance due to aging 
of the coating. The reflectance of MgO is taken from a paper by 
Edwards, et al. [9] in which a 3 hour old coating and a 1 month 
old coating are respectively identified as "fresh" and "aged." 
The reflectance values are used to evaluate ratios /ix-O(froah)/-
fixD(aged) versus wavelengths, see Fig. 2. The ratio of reflec
tances Px(fresh)/px<ag6<i) is also plotted along the right ordinate. 
AE/AO, being fixed for a given sphere, is suitably chosen as a 
parameter. The AE in the numerator has also been used to com
pute a total equivalent field angle for apertures, 6E defined as the 
angle subtended by As = AE1 + Ajit at the center of the sphere, 
see Fig. 1. The values of BE are given along with the parameter 
AE/AO in Fig. 2 to facilitate comparison and visualization. 

Fig. 2 shows clearly that the performance of the integrating 
sphere is strongly dependent on the surface property variation. 
From 0.6 to 1/jm, where aging does not lower reflectance appre
ciably (less that 0.5 percent), reflected flux ratios do not show 
marked increase. Even for small apertures (AE/AO = 0.00759), 

T~ I r 
- a - «E/A„ - 0.00759 OR B E - 10 
- A - AE/A„ = 0.01701 OH 6E = 15° 
-r- AE/.«0 - 0.03016 on 0 E - 20° 
-.- REFLRCTANCE RATIO 

Fig. 1 Spherical coordinate system for the integrating sphere 

0.35 0,1 0.5 0.6 0,7 0.8 0,9 1.0 

VAVE1BISTK, X !«"0 

Fig. 2 Curves for ratios of reflected fluxes from shadow zones versus 
wavelengths 
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WAVELENGTH, X ( « J 

Fig. 3 Curves for ratios of raidiant flux reflected from bright spot to that 
dark zone versus wavelengths 

the value of this ratio remains low at about 1.2, which implies that 
using a fresh coating does not offer great advantage. Toward 
either shorter or longer wavelengths, using a fresh coating be
comes highly desirable. For instance, at 2.3/nm the reflectance 
of a fresh MgO coating is only 3.8 percent higher than tha t of an 
aged one. Yet, the reflected energy in the shadow zone from the 
former is 83 percent higher than that from the latter for these 
apertures. While increasing AE/A0 decreases the flux ratio 
slightly, it still reaches a high value of 1.6 for AJS/AO = 0.03016. 

An examination of equation (5) shows that the ratio R\B/R\D 
can be decreased by either increasing p\ or decreasing AE if the 
area of the bright spot is kept unchanged. Unlike Ry,D, this ratio 
is independent of the incoming radiation H$\. A plot representa
tive of a typical sphere in working condition with AE/AO = 
0.01704 and the field angle of the bright spot 6B = 4 deg is given 
in Fig. 3. The ratios of the flux reflected from the bright spot to 
that from the shadow zone can be seen to be high for both fresh 
and aged coatings over the entire spectrum. Toward the two 
ends of the spectrum this ratio reaches extremely high values. 
These are the wavelengths where excessive error might result if 
one equates the directional-hemispherical reflectance to the 
hemispherical-directional reflectance provided that the latter is 
measured by an integrating sphere reflectometer with the bright 
spot exposed toward the specimen. This ratio is nevertheless 
higher for aged coating rather than for fresh in contrast with what 
one might normally expect. 

The analysis can also be extended to cases when upper and lower 
spheres have different reflectance values. Hsieh and Lee's work 
[12] can be referred to for further information on such analysis. 
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Local Liquid Film Thickness Around Taylor Bubbles1 

MUSTAFA R. OZGU,2 JOHN C. CHEN,3 and ALAN H. 
STENNING4 

Nomenclature 

g = gravitational acceleration 
m = mass flow rate in film per unit depth 
Rts = tube radius 
u = axial velocity in film 
us = velocity at liquid-vapor interface 
lip = potential flow velocity at liquid-vapor interface 
x = axial distance below bubble nose 
y = normal distance measured from tube wall 
5 = film thickness 
dp = potential flow film thickness 
JX = absolute viscosity of liquid 
7j = nondimensional film thickness, S/Ro 
rjp — nondimensional potential flow film thickness, 8,,/Rn 
8 — liquid density 
£ = nondimensional axial distance, x/Ro 

Introduction 

T H E STEADY-STATE rise of long bullet-shaped bubbles of gas 
(referred to as Taylor bubbles) in large circular tubes filled with a 
liquid of low viscosity was first studied by Dumitrescu [l],6 and 
Davies and Taylor [2]. Their work served as the starting point 
for the studies of Griffith and Wallis [3], Moissis and Griffith [4], 
Stanley [5], Nicklin, et al. [6], Brown [7], Collins [8], Hsu and 
Simon [9], and others. These studies were mainly concentrated 
on the bubble rise velocity, bubble stability, pressure drop, shear 
stress, and entrance effects in flows in which Taylor bubbles are 
separated by slugs of liquid, i.e., two-phase slug flow. Little in
formation, however, has been obtained on the local liquid-film 
thickness around the bubbles. In some heat transfer problems 
involving slug flow or single-bubble flow (e.g., reactor coolant 
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Fig. 3 Curves for ratios of raidiant flux reflected from bright spot to that 
dark zone versus wavelengths 

the value of this ratio remains low at about 1.2, which implies that 
using a fresh coating does not offer great advantage. Toward 
either shorter or longer wavelengths, using a fresh coating be
comes highly desirable. For instance, at 2.3/nm the reflectance 
of a fresh MgO coating is only 3.8 percent higher than tha t of an 
aged one. Yet, the reflected energy in the shadow zone from the 
former is 83 percent higher than that from the latter for these 
apertures. While increasing AE/A0 decreases the flux ratio 
slightly, it still reaches a high value of 1.6 for AJS/AO = 0.03016. 

An examination of equation (5) shows that the ratio R\B/R\D 
can be decreased by either increasing p\ or decreasing AE if the 
area of the bright spot is kept unchanged. Unlike Ry,D, this ratio 
is independent of the incoming radiation H$\. A plot representa
tive of a typical sphere in working condition with AE/AO = 
0.01704 and the field angle of the bright spot 6B = 4 deg is given 
in Fig. 3. The ratios of the flux reflected from the bright spot to 
that from the shadow zone can be seen to be high for both fresh 
and aged coatings over the entire spectrum. Toward the two 
ends of the spectrum this ratio reaches extremely high values. 
These are the wavelengths where excessive error might result if 
one equates the directional-hemispherical reflectance to the 
hemispherical-directional reflectance provided that the latter is 
measured by an integrating sphere reflectometer with the bright 
spot exposed toward the specimen. This ratio is nevertheless 
higher for aged coating rather than for fresh in contrast with what 
one might normally expect. 

The analysis can also be extended to cases when upper and lower 
spheres have different reflectance values. Hsieh and Lee's work 
[12] can be referred to for further information on such analysis. 
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Local Liquid Film Thickness Around Taylor Bubbles1 

MUSTAFA R. OZGU,2 JOHN C. CHEN,3 and ALAN H. 
STENNING4 

Nomenclature 

g = gravitational acceleration 
m = mass flow rate in film per unit depth 
Rts = tube radius 
u = axial velocity in film 
us = velocity at liquid-vapor interface 
lip = potential flow velocity at liquid-vapor interface 
x = axial distance below bubble nose 
y = normal distance measured from tube wall 
5 = film thickness 
dp = potential flow film thickness 
JX = absolute viscosity of liquid 
7j = nondimensional film thickness, S/Ro 
rjp — nondimensional potential flow film thickness, 8,,/Rn 
8 — liquid density 
£ = nondimensional axial distance, x/Ro 

Introduction 

T H E STEADY-STATE rise of long bullet-shaped bubbles of gas 
(referred to as Taylor bubbles) in large circular tubes filled with a 
liquid of low viscosity was first studied by Dumitrescu [l],6 and 
Davies and Taylor [2]. Their work served as the starting point 
for the studies of Griffith and Wallis [3], Moissis and Griffith [4], 
Stanley [5], Nicklin, et al. [6], Brown [7], Collins [8], Hsu and 
Simon [9], and others. These studies were mainly concentrated 
on the bubble rise velocity, bubble stability, pressure drop, shear 
stress, and entrance effects in flows in which Taylor bubbles are 
separated by slugs of liquid, i.e., two-phase slug flow. Little in
formation, however, has been obtained on the local liquid-film 
thickness around the bubbles. In some heat transfer problems 
involving slug flow or single-bubble flow (e.g., reactor coolant 
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also to the errors involved in their photographic measurements 
Brown [7] made experimental measurements of the local film 
thickness in regions close to the bubble nose (£ < 1.2) using pho
tography. His results are shown as rectangles in Fig. 2. 

As seen from Fig. 2, these available results were insufficient to 
describe local film thicknesses over a wide range of axial position 
(ij). The potential flow theory, which neglects viscous effects 
can be expected to apply only at small values of £ (i.e., £ < ]Y 
The two previously published sets of experimental data together 
cover values of £ only up to 6, and also exhibit some disagree
ment. The present study was undertaken to obtain additional 
information on local film thicknesses, with emphasis on the range 
1 < £ < 12, where viscous effects become important. 

Present Study 

(a) Theoretical Considerations. The liquid ahead of the 
bubble can be assumed to have a uniform velocity profile relative 
to the bubble. The flat velocity profile is deformed at the bubble 
nose, and laminar boundary layer formation starts at the tube 
wall. The effect of this boundary layer is small and can be 
neglected for short distances below the nose of the bubble. At 
the other limit of large distances below the nose, the acceleration 
of the film under gravity ceases and the film is supported by wall 
shear stress. Hence, the film thickness reaches an asymptotic 
value which should approach the value predicted by falling film 
theory if wave motion is disregarded. In between the nose 
region and the asymptotic region there should exist a transition 
region where potential flow aspects and boundary layer flow as
pects are both important. 

For this transition region, an approximate model for the 
velocity distribution in the liquid film can be formulated by: 

(a) neglecting curvature effects in view of small film thickness 
compared with the tube radius; 

(b) assuming that the laminar viscous wall-shear force and 
gravity force balance each other, as in falling film theory; 

(c) equating the velocity at the liquid-vapor interface to that 
obtained from potential flow theory. 

In (b) it is assumed that the axial convective term is small com
pared with wall-shear and gravity forces. Neglecting the density 
of the vapor in the bubble compared with the density of the 
liquid, the laminar film velocity profile is: 

Fig. 2 Normalized liquid film thickness u = — [8y - y 2 «/2] (2) 

expulsion), the local film thickness is an important governing 
parameter. I t was the objective of this work to study the varia
tion of the liquid-film thickness around Taylor bubbles of different 
lengths. 

Previous Work 

By assuming potential flow conditions at the bubble nose and in 
the film, and by assuming that the nose of the bubble was a 
portion of a spherical surface, Davies and Taylor [2] determined 
the following expression for the local film thickness around 
Taylor bubbles: 

VP - -TT = 0.165 £' • ' A (1) 

The mass flow rate in the film can be obtained by integrating 
equation (2) as 

3/u 
(3) 

From equation (2), the velocity at the liquid-vapor interface 
is obtained as: 

us 

Using assumption (c) 

pg&2 

2n 

pgd2 

2n 

(4) 

(5) 

7)p2/2 can be neglected at large values of £ where the film is thin. 
The coordinate system is shown in Fig. 1. Equation (1) is 
represented by the solid line in Fig. 2. Davies and Taylor also 
obtained experimental values for the film thickness in the region 
of 2 < £ < 6 using a photographic technique. Their results were 
30 percent higher than the predictions of equation (1) and are 
shown as circles in Fig. 2. They attributed the discrepancy to 
the neglect of the viscous boundary layer effects in the film and 

But, 

Combining (4) and (6) 

Equating (3) and (7) 

m = u„dv 

pg52dP 

2/* 

(6) 

(7) 
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^ = V 3 = 0.667 
5 (8) 

o r ^ = 0.667 
V 

Alternately, if the Blasius velocity profile were used in place of 
equation (2), the ratio i}P/r] would be 0.656—a difference of only 
1.5 percent. 

Equation (8) is represented by the broken line in Fig. 2. 
Experiments were performed to complement the analysis 

described in the foregoing. The experimental program and 
results are presented in the following. 

(b) Experimental Work and Results. Air bubbles of different 
lengths were introduced into a 1 in. ID tube filled with water. 
Local film thickness measurements were made along the bubble 
using a new capacitance measurement technique. The details 
of the experimental setup and capacitance technique are given in 
reference [10]. In normalized coordinates of ij versus £, the 
experimentally determined bubble shapes were found to be 
independent of bubble length, as expected. Due to the steep 
variation of film thickness with axial position in the nose region 
and the particular design of the capacitance gauge, no accurate 
measurements of film thickness could be made in the region of 
£ < 1.0. Fortunately, for application to heat transfer problems, 
major interest is in the region of thin film (£ > 1). Thus, data are 
presented as solid circles in Fig. 2 only for values of £ > 1.0. 

The agreement between equation (8), the present experimental 
data and the data of Davies and Taylor is very good in the region 
of 1 < £ < 10. I t is seen that for £ > 1, all data lie noticeably 
higher than the theoretical curve for potential flow. This con
firms our expectation that viscous thickening of the liquid film 
becomes significant within a short distance below the nose of the 
bubble. In the region £ > 1, these data are seen to agree with the 
earlier results of Davies and Taylor, but do indicate a thicker 
film than the results of Brown. Aside from possible uncertainties 
due to different experimental techniques (photographic versus 
capacitance measurement) no explanation was found for this 
discrepancy. 

In the region of high £, one would not expect equation (8) to be 
applicable due to onset of turbulent flow and wave formation. 
For the experimental conditions for this work, the measured film 
thicknesses appeared to agree with equation (8) up to £ ~ 10. 

Conclusion 

The results of this study indicate that liquid films around 
Taylor bubbles are significantly thicker than predicted by poten
tial flow theory. In the region 1 < £ < 10, the experimentally 
measured film thickness agreed well with the approximate 
analysis proposed. 
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Dependence of Friction Factor Upon Liquid Level in 
Two-Phase One-Component Stratified Flow 
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Nomenclature 

a 
b 
d 

f 
h 

x, V 
Ek 

F 
P 

Q 
Re 

a 

0 
7 

f. V 
X 

M 

a 
p 

= half-width of interface 
= wetted perimeter 
= tube diameter 
= friction factor 
= height of arc of wetted perimeter 
= cartesian coordinates 
= specific kinetic energy 
= frictional force acting on liquid at wall 
= force acting on unit volume of liquid 
= rate of discharge, volumetric 
= Reynolds number (4pQ/b/u) 
= form factor 
= one-half arc of wetted perimeter 
= wetted area 
= polar coordinates 
= integration variable 
= dynamic viscosity 
= liquid-section area 
= density of liquid 

Subscripts 

Introduction 

I N A STUDY on condensation of pure substances in horizontal 
tubes, Rufer and Kezios [ l ] 2 proposed a model describing the 
case of stratified two-phase flow of vapor and condensate with 
annular condensation superimposed. This model resulted in an 
equation giving the slope of the vapor-bulk liquid interface along 
the tube, which was derived using the principles of conservation 
of mass, energy, and momentum. Within this equation coeffi
cients appear that take into account the variation of friction 
factors with liquid level for both vapor and liquid phase. Values, 
or an expression for these so-called form factors, were not given. 

In another work, Sarma and co-workers [2] studied the de
pendence of liquid level on void fraction in the same model. 
Therein the value of the ratio of the form factors for vapor and 
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Local film thickness measurements were made along the bubble 
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of the experimental setup and capacitance technique are given in 
reference [10]. In normalized coordinates of ij versus £, the 
experimentally determined bubble shapes were found to be 
independent of bubble length, as expected. Due to the steep 
variation of film thickness with axial position in the nose region 
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higher than the theoretical curve for potential flow. This con
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bubble. In the region £ > 1, these data are seen to agree with the 
earlier results of Davies and Taylor, but do indicate a thicker 
film than the results of Brown. Aside from possible uncertainties 
due to different experimental techniques (photographic versus 
capacitance measurement) no explanation was found for this 
discrepancy. 

In the region of high £, one would not expect equation (8) to be 
applicable due to onset of turbulent flow and wave formation. 
For the experimental conditions for this work, the measured film 
thicknesses appeared to agree with equation (8) up to £ ~ 10. 

Conclusion 

The results of this study indicate that liquid films around 
Taylor bubbles are significantly thicker than predicted by poten
tial flow theory. In the region 1 < £ < 10, the experimentally 
measured film thickness agreed well with the approximate 
analysis proposed. 
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liquid phases was supposed, without justification, to lie between 
0.8 and 1.2. 

I t is the aim of this note to provide information about the 
variation of these form factors with liquid level and to fix the 
limits of their ratio. 

Analysis 

In stratified two-phase flow in circular tubes, each phase 
flows in a space of segmental section. If the shear stress at the 
interface is supposed to be zero [1, 2] this interface can be seen 
as a free surface and the flow in one phase can be considered as 
open-channel flow, whether laminar or turbulent. 

Laminar Flow in Open Circular Channels. The same expression 
for the local velocity applies for laminar flow in open circular 
channels as well as for flow in symmetrical lenticular tubes, for 
by symmetry the velocity gradient at the plane dividing the 
lenticular tube into two segments is zero, and identical conditions 
exist at the free surface in open-channel flow. 

The expressions for local velocity and for rate of discharge for 
laminar flow in symmetrical lenticular tubes have been derived 
by Chaudhury [3] using a bipolar coordinate system defined by 
the equation 

x -\- iy — a tanh m ( i ) 

The two poles of the system are either at the intersection of the 
two arcs or at the intersection of one arc and the straight line 
representing the free surface. In this system the Navier-Stokes 
equation of motion takes the form 

-Pa2 d2v b2v 

d£2 drj2 ,u(cosh f + cos 7])2 (2) 

with the boundary condition v = 0 for r\ — ±/3. The solution of 
this equation is 

Pa2 

2n 
cos r; 

.(cosh £ + cos J?) 

2 c o t / 3 
r t£ 

Jo 

tanh X/3 cosh Xrj 

sinh XT 
cos X£dX (3) 

By integrating this expression over the flow-section area, one 
obtains for the rate of discharge for flow in an open circular 
channel 

Pa4 

8/i 

— 4TT cot 0 cosec 

(B + cot 0 - 20 cot2 /3 + 3 cot3 0 ~ 3/3 cot4 8) 

tanh /SX(sinh 2/3X - X sin 2/3) 

' / ; sinh2 XT 
dX (4) 

/ 1 6 

Re 

where 

4123 

F-KP) 

(8) 

(9) 

Substituting for 0, a, and b, which are geometrical functions of 
/3 only, gives 

'0 — sin 0 cos 0~\3 f sin 0 

T TD F-W) (10) 

This latter shows that the form factor is really independent of 
flow properties and only depends on the geometry of the channel 
characterized by the value of /3 or by an equivalent parameter 
such as the relative flow depth h/d. 

We have calculated this factor a for different values of /3. 
The integral in the denominator has been integrated through a 
combination of analytical and numerical methods. From X = o 
to X = 6 the integration has been performed by means of the 
trapezium rule with a step length of 0.1. For X > 6 the ex
pression to be integrated can, without loss of accuracy, be re
placed by the following: 

tanh /3X(sinh 2/3X - X sin 2/3) 

sinh2 X7T 
= 2 exp [2X(/3 - IT)] 

- 4X sin 20 exp ( -2Xi r ) (l.i) 

The difference between the expressions has always been less than 
10 ~13 for values of 0 up to 179 deg. The analytical integration of 
this expression gives 

2 exp [2X(/3 - ir)] - 4X sin 2/3 exp (-2X)dX 

— exp ( —127r) 
'exp (12/3) _ sin 2/3 

ir - 0 iv2 (12TT + 1) (1.2) 

The results of these calculations are represented in Fig. 1, where 
the values of a have been plotted as the ordinate versus the rela
tive flow depth h/d as abscissa. 

From this figure one can see that for h/d smaller than 0.5, the 
difference between completely and partly filled tube-section flow 
is rather small, while the difference is much larger for h/d > 0.5. 
Here a reaches the maximum value of 1.1099 for h/d = 0.97. 
The curve attains the value a = 1 for values of h/d equal to 
0.26, 0.5, and 1.0. 

Whereas the last two points, which were predicted by the 

Pa4 „ 
Q = — P(8) 

From the definition of the friction factor [4] 

F = fyEk 

one obtains 

_ 2Ptts 

1 = WP 

Substituting the expression for Q in this formula gives 

64fi3 

Q>; 

/ = 62a4 Re F{0) 

(5) 

(6) 

(7) 

1.04 

1.02 

1.00 

Fig. 1 
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«nge n_Poiseuille equation [4], could be fixed a priori, the limit 
for h/d going to zero was more difficult to determine. Indeed, 
for P goin8' t ° zero, equation (9) takes the undefined form 0/0. 
The uncertainty at this point could be solved by making use of a 
simplified formula for the rate of discharge derived by Buffham 
f5] which is only applicable for very shallow channels: 

P_ d^ 6^ 

IJ. 2 10.5 
(13) 

The assumptions made when deriving this formula entail tha t 
the lower the value of h/d, the more reliable the calculated value 
for the rate of discharge. Putt ing this expression in equation (5) 
and substituting Q,, b, and h as functions of /3, the following ex
pression is obtained: 

f = 
1 105 1 (2/3 - sin 2/3 )3 

Re 64 32 
(14) 

P2 sin' — 
2 
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The last quotient in this equation also takes the undefined value 
0/0 for jS going to zero, but by means of l'H&pital's rule the limit 
for / c a n be calculated. Therefore we calculated the ninth-order 
derivative of numerator and denominator, giving 1680 X 29 and 
9! X 2~7, respectively. Finally, the limit of / for h/d going to 
zero was found to be 15.5555 . . . /Re, giving a limiting value for 
a of 0.9721. I t is evident that the figure also applies for the 
determination of friction factors for laminar flow in symmetrical 
lenticular tubes, as was explained earlier. 

Turbulent Flow in Open Circular Channels. As reported by several 
authors, the friction factor for turbulent flow in closed [6] and 
in open [7] channels does not depend upon the geometric form 
of the section, provided the hydraulic radius has the same value. 
This entails that for turbulent flow 

a = 1 

and one can use one of the known relations expressing the friction 
factor as a function of the Reynolds number, for instance the 
Blasius equation 

/ = 0.0791 Re-1 /4 (15) 

Conclusion 

While the form factor for turbulent flow is always close to 
unity, for laminar flow a variation between 0.9721 and 1.1099 is 
possible. This results in the following extreme values for the 
ratio of the form factors of each phase: 

laminar-laminar: 

Ct-L 
0.88 < — < 1.14 

ar 

liquid laminar-vapor turbulent: 

<XL 
0.97 < — < 1.11 

(Xv 

liquid turbulent-vapor laminar: 

0.90 < — < 1.03 
ar 

The first and the third cases, with laminar vapor flow, are 
Wry rarely encountered. In the second case the deviation from 
unity of the ratio <XL/(XV is considerable only when h/d > 0.75, a 
condition in which the flow can hardly persist to be stratified. 
Ihis leads us to the conclusion that the assumption of 

^ = 1 
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Introduction 

T H E CONSTANT-TEMPERATURE quartz-coated hot-film anemom
eter sensor is one of the few instruments available to measure 
local and instantaneous velocity of a liquid over a wide speed 
range. In practice each sensor is calibrated to establish the 
bridge voltage versus velocity {E versus V) relation. Since the 
sensor performance depends upon both the sensor and 
the ambient temperatures (Ts and T„, respectively), as well as the 
velocity, the calibration and its utilization are parametrically 
complex. In order to reduce the calibrating time and to provide 
an interpolating scheme, the calibrations are sometimes general
ized in terms of a dimensionless heat transfer correlation, or a 
generalized King's law. This paper provides a fairly rational 
correlation representing the heat transfer on a conical hot-film 
sensor in axisymmetrical flow (Fig. 1). 

Heat transfer correlations have been presented in quasi-
dimensionless form or in dimensionless form over limited range of 
Reynolds number and overheat. A major difference between 
the present and earlier works [1-6]3 is coverage of a broad Reyn
olds number range which includes a low-speed portion where 
buoyanc5' is manifest. By juxtaposing a few elementary guide
lines, the heat transfer correlation on the small conical surface is 
cast in a conventional dimensionless form. 

Global Unit Surface Conductance 

In a statistically steady calibration the bridge voltage E = 
E{V, T„ T„ ; q, \p); q denotes the heat transfer, and \j/ the angle 
between the velocity and gravitational fields. A global unit 
surface conductance denoted by h is arbitrarily based on the 
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«nge n_Poiseuille equation [4], could be fixed a priori, the limit 
for h/d going to zero was more difficult to determine. Indeed, 
for P goin8' t ° zero, equation (9) takes the undefined form 0/0. 
The uncertainty at this point could be solved by making use of a 
simplified formula for the rate of discharge derived by Buffham 
f5] which is only applicable for very shallow channels: 

P_ d^ 6^ 

IJ. 2 10.5 
(13) 

The assumptions made when deriving this formula entail tha t 
the lower the value of h/d, the more reliable the calculated value 
for the rate of discharge. Putt ing this expression in equation (5) 
and substituting Q,, b, and h as functions of /3, the following ex
pression is obtained: 

f = 
1 105 1 (2/3 - sin 2/3 )3 

Re 64 32 
(14) 

P2 sin' — 
2 
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GOLD LEADS 

PLATINUM FILM 

Fig. 1 Conical sensor structure and nomenclature. Dimensions of 
present sample: 4> = 23.9 deg, l i = 0.346 , L2 = 0.457 , U = O.O85, 
Li = 3.0 mm 

surface area S of one face of the film, 
takes the form: 

E*[R./(R, + B ' ) p 

The steady heat balance 

Rs 
hS(Ts - Ta) (1) 

The numerator is the square of the sensor (net) voltage, R' 
being a constant bridge resistance. In the range of utilization 
reported in the following, the Rs versus T5 relation is found 
experimentally to be linear: 

R./Ro = 1 + @o(T, - T„) (2) 

The limiting conduction is approximated by supposing that the 
hot film forms the surface of a spherical cavity of radius r, 
centered at the virtual vertex of the cone in an infinite domain. 
The conduction through the water is assumed to "parallel" 
the conduction through the quartz. If <f> is the cone half angle 
(Fig. 1) and a geometric factor C is defined by 

2TG = (1 - Z,i/L»)[7r(l + U/U) sine/) - 2L3/L2] (3) 

then the film surface area S = 2irCLi
2, and rs = L2Vc/2. The 

limiting conduction Nusselt number 

Nu* = qtLi/lSk^T, - Ta)] 

1 — C0S(f> hq 
= (2/C) I / 2 1 + cos</ 

/Ccc 
1 + 

kj. 
(4) 

The first term in brackets represents the fraction conducted 
through the quartz, and the second term the fraction through 
the liquid; their ratio for water is about 1:10. The character
istic length Li, the slant height from the vertex to the trailing 
edge of the hot film, is the hydrodynamic length of the boundary 
layer presumed to develop at high sensor Reynolds number. 

If the fluid properties were independent of temperature, the 
convective part would be proportional to Pr'"B,e". To allow 
for the variation of fluid properties, a power of the viscosity 
ratio {n„/fis)

y is suffixed, as for liquids through tubes [7]. 
In order to reduce the number of degrees of freedom in the 

correlation, values of m and 7 are fixed. Similarity solutions 
show that in is practically 1/3, and since the conjugate boundary 
condition cannot alter the influence of the Prandtl number, 
m = 2n/3 . As for 7, prior experiences, particularly with water, 
suggest that it equals 0.14. 

Accordingly, the generalized form of the heat transfer correla
tion under zero gravity is 

(5) Nu„ = ANuh + B(PvJ</>Rea,)»(nJy,.y'-u 

Here, Nu„ = hL%/ka, Ee„ = VLi/v„ and the quantities A, B, 
and n remain to be determined by experimentation. 

A correction is now required to account for the buoyant effects 
observed when the sensor orientation relative to the gravity field 
is altered at low velocity. If the velocity and the gravity 

fields are parallel (sensor pointing upward) the buoyancy effec
tively retards the on-coming fluid, reducing the heat transfer :niil 
vice versa if they are anti-parallel. When the velocity and il»i 
gravity fields are perpendicular, the thermal plume induce; •• 
vertical velocity component which is observed to increase the life-
transfer. 

An approximate perturbation analysis based on point-souini. 
laminar plume theory has been used [8] to investigate the ef'ivi 
of the free convection at the heated sensor. The result is tl l : i; 
the magnitude of the change in the velocity of approach i-, 
w = /3gq/(2irV /J.CP). Here, /? is the volume expansivity, JX il„. 
viscosity, and cp the specific heat of the liquid. Thus, wln-i, 
the speeds are not too low, the thermal probe is presumed it) 
sense the velocity V ± w as though it were in a zero-graviiv 
field, the minus or plus sign corresponding to the case that IIK-
velocity and gravity fields are parallel or anti-parallel, respiT-
tively. 

In order to incorporate the buoyant effect into (5) it is con
venient to introduce Ka, defined by 

V ~ 2irV'[icp 
= C-

Nu„,Gr„ 

Pt raRe„ 
= CKm '(>i 

where the Grashof number Gr„ = Li
3(3gpJ'(Ts — ?'„)//um

8 • 'ul 
C is given by (3). 

Experimental Results 

A detailed description of the calibration apparatus and lis 
performance has been reported elsewhere [5, 8]. All the aneirm-
metric data were obtained on a Thermo-Systems, Inc., Mulil 
1050 constant temperature anemometer system. The sen.-m-
was of their Model 1230. 

Low speed data (V < 7cm/sec) at the several sensor tempi r.v 
tures are depicted in Figs. 2 and 3. The ordinate in Fig. L' 
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Fig. 2 Calibration data in the mixed convection regime reduced I' 
zero-gravity conditions. T^ — 25 .0 deg C, four sensor temperatures 
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VELOCITY CM/S 

Fig. 3 Gravitational effects in the mixed convection regime 

represents the arithmetic mean value of E measured when the 
laminar flow pipe was in the two vertical positions. The dotted 
curve represents data reported earlier [5], and the solid lines 
show recent data. Fig. 3 shows the departures from mean E 
which are ascribed to buoyancy, the three curves at each sensor 
temperature corresponding to the three orientations. The 
ordinates represent the amounts of voltage that must be added 
to the corresponding average curve in Fig. 2 in order to recover 
the original calibration data; iteration converges rapidly. 
Note that the horizontal position (\j/ = ir/2) favors the anti-
parallel orientation (\p = ir). 

A zero-gravity correlation was established by averaging E1 ~ q 

at \p = 0 and \f/ - ir. There were 192 data points throughout 
the experimentation, including [5]. Constants A, B, and n 
were determined on basis of a least square fit accomplished with a 
program developed by Law [9]. The buoyant effects were then 
accounted for in the manner previously suggested. 

Expressed at length, the correlation of the global unit surface 
conductance on the quartz-coated conical hot-film sensor at 
arbitrary orientation in the gravitational field is 

NU. = i.i J2- r ^ ^ > * t + L ± J ^ L + <h\~ 
I d 2 k„^ 4 V *-/. 

+ 5.5[Pr„2'3Re„(l + 0.7GVCJ]0-309 

X ( — ) , 3 < Re < 1000 (7) 

where Cr = - C o = C 0.072, and C r /2 = +0.043. The standard 
deviation of the deviation parameter (Nu„.exP. — Nuoo.oaio.)/ 
Nu„,ouio. was 1.6 percent. 

The result might be further generalized to include a correction 
for the unheated hydrodynamic starting length Li, which varies 
from sensor to sensor. An estimate based on laminar boundary-
layer heat transfer on slender cones suggests that the coefficient 
5.5 ought be replaced by the factor 6.0[1 - (Li/L2)»-46]2/3. 
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