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Introduction

TECHNIQUES for evaluating free convection effects
caused by arranging heated vertical plates in combinations of
rows and columns are of importance to the electronics industry.
For example, in many cases microelectronic components are
mounted on substrates (or plates) that dissipate the energy they
generate primarily by free convection. Electrical and space re-
quirements dictate that these substrates be stacked close to-
gether leading to significant thermal interactions between them.
When heated vertical plates are stacked in columns the wake of a
plate interacts with the boundary layer of the plate above it.
Such interaction could produce results significantly different
from those obtained using the common, simplifying assumption

of a continuous vertical wall (and neglecting the gap between top -

and bottom plates). - Therefore, before a general analysis can be
formulated for columns of plates, a sound theoretical and ex-
perimental understanding of the natural convection wake behind
an isolated vertical plate is necessary.

The only work that could be found in the literature concerning
the wake of a plate cooled by free convection was a paper by
Yang [1]! in which the velocity -and temperature profiles in the
immediate neighborhood of the trailing edge were found using an
asymptotic series expansion and were continued into the wake
region by an integral technique. For the case of laminar forced
convection wakes behind flat plates (Blasius type conditions)
without heat transfer, the classical solutions of Goldstein [2] and
Tollmein [3] have been followed by the studies of Kuo [4], Imai

I Numbers in brackets designate References at end of paper.
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Study of the Laminar Free-Gonvection Wake
Above an Isothermal Vertical Plate

The steady, laminary, two-dimensional wake above a thin vertical isothermal heated plate
cooled by free convection was investigated theoretically and experimentally. The system
of partial differential equations governing ithe fluid motion and heat transfer in the vicin-
ity of the plate and in the near wake region was formulated and solved using finite dif-
Using air, the temperature and velocity profiles in the wake region
were measiured experimenially using o laser holographic interferometer and a constant
temperature hot wive anemometer.

[5], and Stewartson [6], and more recently Plotkin and Flugge-
Lotz using numerical methods {7].

Engle [8], who used an integral method to analyze the natural
convection in vertical channels subject to prescribed wall heat
fluxes, extended his work to include boundary layer inter-
actions between rows of staggered plates. Experimental worlk
using the same configuration was reported by Sobel [9].

The objective of this investigation was to study the steady
state laminar flow and heat transfer behavior in the near wake
region behind a vertical isothermal plate cooled by free convec-
tion. The numerical and experimental results which have been
obtained are presented in this paper.

Formulation of the Equations

In the usual natural convection analysis the general Navier-
Stokes and energy equations are reduced to so-called ““boundary
layer” equations by means of order of magnitude arguments.
For the case of the fluid properties adhering to the Boussinesq
approximations having the basic assumptions that p = po/[1 +
T — Tl and that p(7» — Tw) < 1, these equations are
written:

ou ou - op’ 0%y
p <u o 7 ay> = Bpg(T — To) o + i o (1)

ou v
g — =0 2
o + dy 2)
oT oT 0T
; — — ) =K 3
Py (u > + v Oy> oy (3)

However in the wake problem, because of the presence of large
z derivatives as well as y derivatives in the vicinity of the trailing
edge, such simplifications are not valid. The equations which
must be solved in this case are the following:
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Note that equations (4), (5), and (7) are of the elliptic form
and their solution requires that boundary conditions be specified
on a closed boundary surrounding the region of interest. Equa-
tions (4) to (7) were solved in the ‘‘elliptic equation region”
(see Fig. 1) which included the top portion of the plate to permit
any influences of the wake to propagate upstream to the trailing
edge. The boundary conditions for the elliptic equation region
were generated by solving the parabolic set (1)-(3) over the entire
plate-wake region. A similar procedure had been used [7] for a
forced convection wake without heat transfer.

The upstream boundary of the elliptic region was located in a
region of the plate that was far enough upstream of the trailing
edge so that it was uninfluenced by the wake flow. Similarly the
downstream boundary of the elliptic region was located far
enough downstream of the trailing edge so that asymptotic wake
conditions were reached. :

Method of Solution

Equation sets (1)-(3) and (4)—(7) were both solved numerically
using finite difference procedures. To accomplish this the fluid
region was subdivided into a grid with each space point (FJAX,
kAY) simply identified as a grid point (5, k).

Solution of the Parabolic Equations. Along the plate the finite dif-
ference forms of equations (1)-(3) were solved using the Liebmann
(or Gauss-Seidel iteration) method subject to the boundary con-
ditions listed in Fig. 1. This scheme was not suitable for extend-
ing the solution into the wake region. ~Therefore a wake solution
for the finite difference form of the parabolic equations was ob-
tained by starting at the top of the plate and marching in the
downstream direction one row at a time. The formulations used
here are described in detail in reference [10].

The resulting solutions for the plate and the wake were used to
provide an initial iteration base for the subsequent solution of the
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Fig. 1 Mathematical regions for natural convection flow

elliptic region equations and to provide the necessary boundary
conditions.

Solution of the Elliptic Region Equations. To facilitate the solution
of the elliptic region equations, equation set (4)-(7) was rewritten
in the conservative and unsteady form in terms of vorticity and
stream function variables as shown in the following:

20 oUY oYY _ 22 28 20
or X oY dX: | dY: ' oY

o ¥

S ©
o0 AT ) _ 1 (00 o)
or X 2Y  Pr aX2+aY2 (10)

These changes were made so that the Dufort-Frankel method
of solution [11-13] could be used. This scheme involves three
time levels and results in truncation errors of second order in
both time and space derivatives. Because the second differen-
tials can be written in terms of three time levels the solution is
stable for central differencing. The resulting finite difference
equations are:

Nomenclature
¢p = constant pressure specific heat z = length coordinate measured paral- p = fluid density
g = acceleration of gravity lel to the plate T = time -
Gr = Grashof number, gBI(1" — T,)/v? X = nondimensional length coordinate ¥ = nondimensional stream function
4, k& = grid point indices along X and (z/1) v o
Y-direction, respectively y = length coordinate measured perpen- <U = oy V== S)?)
K = th('ermal condt}ctivity dic.ular to the plate . Q = nondimensional vorticity variable
{ = height of vertical plate Y = nondimensional length coordinate 2U oV
n = number of time steps (y/l) <Q = — —-—)
p = pressure Y* = (y/1)-(6u/4)/* oY oX
p’ = pressure perturbation (p — po,) B = ﬂmd expansion coefficient Subscripts
Pr = Prandt! number, pcp/K or = tlm'e—step . . ) . .
T = temperature € = emltt.a,nce . j = node }ndex in the X—d.u'ect.lon
o . 0 = nondimensional temperature (g8 %k = node index in the Y-direction
% = z component of velocity (T — T.)/v?) » = reference
Z = nopdlmegslmnal @ velocity (ul/v) 0., = nondimensional plate temperature w = plate
U* = U-(46,)~"" (gBB(Ty — Ty)/v?) a = z-direction
v = y component of veloeity 4 = dynamic viscosity y = y-direction
V' = nondimensional y velocity (v1/v) v = kinematic viscosity o = ambient conditions
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Since a first order time-dependent term is now included, these
equations are now considered parabolic with respect to the time
coordinates. However, because the solution is iterated until
steady state is reached using the steady-state boundary condi-
tions, the elliptic characteristics in the spatial variables are ve-
tained in the solution.

Convergence to steady state conditions required about 400-500
time steps in most cases. For a 50 X 20 grid this required ap-
proximately 90 min of computer time. (Splitting the grid size
used to one-half the size had an insignificant effect on the re-
sults.)

The downstream boundary conditions as imposed by the nu-
merical solution will not accurately reflect the conditions desired
if they are applied before asymptotic conditions are reached.
Therefore several computer runs were made in which the point of
application was varied to see the effects. The downstream
houndary was then positioned far enough downstream that the
variables in the wake region of interest had negligible change
when this position was moved further downstream.

Numerical Results

The velocity profiles obtained by solving the parabolic equa-
tions along the plate are considered first. These are plotted in
Fig. 2 as the nondimensional & component of velocity versus the
nondimensional distance V at distances along the plate of z/l =
0.25, 0.5, and 1.0. (X = z/l = 0 corresponds to the leading edge
of the plate and X = 1.0 to the trailing edge). The squares
represent velocities taken from Ostrach’s similarity solution [14]
for z/l =

Since the interim wake extension solutions suffer from infinite
plate characteristics of the parabolic equations, the final wake
solutions for the elliptic region are obtained using equation set
(11)—(13). The nondimensional velocity profiles for six locations
in the wake are given in Fig. 2. These curves indicate an abrupt
change in the velocity in the vieinity of the trailing edge. The
velocity along plate center line can be seen to increase from zero

Journal of Heat Transfer

to a value greater than the velocity at any point parallel to the
plate within one-tenth of the plate height into the wake. The
reason for the rapid changes is the continuing presence of the
buoyancy forces in conjunction with a free shear layer replacing
the restrictive wall shear stresses that precede this region. Also
included in Fig. 2 are the results of Yang’s asymptotic series ex-
pansion and integral analyses for two locations in the wake. (All
curves are for Gr = 3.07 X 10% and Pr = 0.72.)

The corresponding nondimensional temperature profiles in the
wake and at the top of the plate ave shown in Fig. 3. Again the
solutions of Yang for two wake locations have been included.

The forms of the temperature and velocity profiles are different
at different locations in the wake and universal solutions are not
possible. However, some insight into how the velocity and tem-
perature profiles vary with Grashof number can be gained by
plotting the computed results in terms of the similarity variables
taken from the standard plate boundary layer solutions [1, 14,
15]. The curves for the wake velocity profiles at X = 1.05 and
1.2 are shown in Fig. 4 for a range of Grashof numbers from 106 to
108, The corresponding temperature profiles plotted versus the
plate solution similarity variable are shown in Fig. 5.

Experimental Investigation

The velocity and temperature profiles were checked experi-
mentally to confirm the predicted flow and heat transfer patterns.
A laser holographic interferometer was set up at Allentown Bell
Laboratories to study the thermal wake development. This
system was augmented by a DISA? constant temperature hot
wire anemometer for measuring the velocity profiles in the wake
and plate boundary layer.

Test Specimen. The isothermal plate used in the experiments
consisted of a glass-insulated nichrome heater wire sandwiched
between two 0.010 in. thick copper plates (see Fig. 6). Layers of
nickel (50u in. thick) and gold (140 in. thick) were electroplated
onto the copper plates. The outside gold layer was introduced to
minimize thermal radiation (e < 0.02) and to prevent oxidation.
The intermediate layer of nickel served as a barrier to the dif-
fusion of copper into the porous gold layer. Temperature aging
tests have shown that this metallizing system will not discolor
after extended periods at 300 deg C.

The heater wire was imbedded in a Sylgard vesin® approxi-
mately 0.020 in. thick that was pliable enough to compensate

2 DISA Elektronik A/S, Herlev, Denmark.
3 Sylgard No. 182 potting and encapsulating resin, Dow Corning
Corp., Midland, Mich.
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Fig. 2 X-direction velocity profiles for plate solution and wake solution
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Fig. 4 Velocity profiles for a range of Grashof numbers plotted in terms
of plate solution similarity variables

for thermal expansion at elevated temperatures without forming
voids or warping excessively. An additional layer of Dow Cor-
ning RTV silicon rubber (~0.0025 in. thick) was applied to the
inside of each plate to ensure adherence of the Sylgard resin to
the plate and consequently to give good thermal contact to the
gold plating layer. Small thermocouple wires (0.003 in. dia)
were peened to the inside plate surface to monitor the plate tem-
perature as well as to check the temperature variations over the
plate. The thermocouples indicated that no significant tempera-
ture variations were present during test runs.

The plate was held by two thin plexiglass supports (1/8 in.
wide) in & plexiglass shroud which was constructed to protect the
convection flows from stray room currents.

Temperature Profiles. The isotherms in the boundary layer were
obtained using the laser holographic interferometer system [10].
The principal difference between holographic interferometry and
conventional interferometry is that the interference is between
light beams which have oceurred at different times instead of be-
tween two beams existing at the same time [16]. This is possible
because the hologram plate positioned where the beams intersect
is a diffraction grating that has the capability of reconstructing
one of the laser beams when it is illuminated by the other beam
(10, 16, 17].
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terms of plate solution similarity variables
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Fig. 6 Plate structure used for isothermal test specimen

Experimental data points taken from a 4 in. high plate with a
temperature difference of 50 deg F (27.8 deg C) between the plate
and the ambient air (this corresponds to Gr = 3.07 X 10%) are
plotted in Fig. 7 along with the corresponding theoretical tem-
perature profiles. The values obtained from the interferogram
indicate that the measured temperatures are higher than pre-
dicted in the outer portions of the wake. In this region the tem-
peratures seem to increase with distance in the downstream direc-
tion. This trend is in contrast to Yang's integral solutions [1]
(plotted in Fig. 3) which show the temperature reaching ambient
conditions at ¥ 22 0.10 for X = 1.20 and in addition which predict
temperatures greater than ambient at ¥ = 0.10 and X = 1.0428.

Measurement of Velocity Profiles. The velocity profiles were mea-
sured using a constant temperature hot wire anemometer system.
To account for the affect of temperature variations in the flow
field on the output of the anemometer and to calibrate the sensor
for the low air velocities to be measured, an elaborate procedure
was developed for direct calibration (see reference [10]). For
Gr = 3.07 X 105, the theoretical velocity profiles for the wake
region are plotted in Fig. 8 along with the velocity profiles ob-
tained using the hot wire anemometer.

Shown in Fig. 9 are plots of the measured and computed veloci-
ties along plate center line as functions of x for Gr = 3.07 X 10%
The experimental scatter in the velocity measurements at dis-
tances greater than X = 1.6 is attributed to the difficulty in
alignment with the plate center line as well as to the larger veloc-
ity fluctuations that occurred in this region.
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Another important characteristic of the trailing edge flow is
seen by comparing the theoretical velocity profiles at the top of
the plate obtained from the parabolic boundary layer equations
(solid curve in Fig. 10} to those obtained from the elliptic equa-
tions (dashed curve in Fig. 10). The abrupt change to the free
ghear situation at the beginning of the wake has an upstream in-
fluence causing the velocity to increase in the vicinity of the plate
near the trailing edge. To wverify this experimentally, ane-
mometer measurements (see data points in Fig. 10) were made
using two plates of different heights.

Summary and Conclusions

The system of partial differential equations governing fluid
motion and heat transfer along an isothermal vertical plate and
in the wake above it was formulated in terms of finite difference
equations and solved numerically. Numerical results were ob-
tained for a Prandtl number of 0.72 and five different values of
Grashof number ranging from 10° to 108,

The theoretical and experimental results show a rapid transi-
tion from the free convection velocity and temperature profiles
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Fig. 7 Comparison between temperature profiles obtained from inter-
ferograms and analytical results —AT = 50 deg F (27.8 C)
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Fig. 8 Comparison between wake velocity profiles measured with hot
wire anemometer and analytical resulits
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normally encountered along a plate to fully-developed wake con-
ditions. The results also indicate that the influence of the wake
is felt along the plate upstream of the trailing edge causing the
velocity profiles near the top of the plate to be different from those
usually obtained from the conventional parabolic boundary layer
equations. Buoyancy forces in the wake cause the center-line
velocity to continue to increase for significant distances down-
stream of the trailing edge.

The solutions obtained in this study are in a form amenable to
coupling between the wake and boundary layers of neighboring
plates. Therefore it forms the basis for a general solution that
can be used to examine free convection from systems of vertical
isothermal plates.
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Stahility of Buoyant Boundary Layers and
Plumes, Taking Account of Nonparallelism
of the Basic Flows

Consideration is given to the linewr stability of buoyant boundary layers and plumes
which belong to the cluss of flows for wiich (@) the streamwise velocity vanishes in the
free stream and (b) the transverse velocity is inward-directed and has a finite value in
the free stream.  Disturbance equations for such flows are derived taking account of the
fact that the basic flows depend upon the sireamwise coordinate. The formulation is
specialized lo the case of the natural convection plume generated by a horizontal line
source of heat.  The existence of the so-called bottling effect is demonstrated, wherein the
disturbance vorticity and temperature are contained within the boundary layer of the
Slow.  The neutral stability curve exhibits both a minimum Grashof number and a lower
branch, in contrast to the neutral curve for the conventional stability analysts, which does
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not exhibit these features.
and Lo the frequencies which are the most amplified.

Consideration is given to the amplification of disturbances
Results are also presented for the

limiting case of tnviscid instability.

Introduction

I.INIC.-\I{ STABILITY aNaLYsIs for flows of the bound-

-ary-layer type is usually based on the Orr Sommerfeld (0-S)

equation which is strictly valid for parallel flows. The fact that

the basic flows depend upon the streamwise © coordinate is pre-

sumably acconnted for by nondimensionalizing the disturbance

equation by local values of a characteristic veloeity and the
boundary-layer thickness.

Pretsch [1]! derived a more complete disturbance equation
that, in addition to the terms found in the O-8 equation, con-
tained terms that take into account the z-dependence of the
basic flow and that allow the disturbance amplitude to vary with
x. Pretsch studied the class of flows in which the streamwise
velocity has a given finite value in the free stream. By use of
asymptotic analysis for large values of the wave number—
Reynolds number product, he was able to show that for such flows
the extra terms in the disturbance equation have a small effect
on the stability characteristics and can, therefore, be neglected.

Recently, Haaland [2] investigated the linear stability of the
class of lows in which (@) the streamwise velocity vanishes in the
free stream and (b) the transverse velocity is inward-directed and
has a finite value in the free stream.  Such flows will hereafter be

! Numbers in brackets designate References at end of paper.

Contributed by the Heat Transfer Division for publication (with-
out presentation) in the Jounr~xal or Hear Transrer,  Manuscript
received by the Heat Transfer Division September 6, 1972, Paper
No. 73-HT-G.

Journal of Heat Transfer

Copyright © 1973 by ASME

designated as class A flows.  Ile showed that the usual approxi-
mation implied by the parallel-flow assumption, i.c., the neglect
of the transverse convection of disturbance vorticity compared
with the streamwise convection, is a nonuniform approximation
for class A flows. [t was also demonstrated that this transverse
velocily term gives rise to the so-called bottling effect.  That is,
inelusion of this term resnlts in the containment of the dis-
turbance vorticity and temperature within the boundary layer.
This means that class A stability problems which were previously
defined on an unbounded domain can now be defined on a
bounded domain. Moreover, for this class of flows, the wave
number--Reynolds number product usually becomes so small
that all the terms arising from the z-dependence of the basic flow
have to be retained. By including these terms, while retaining
the assumption of disturbances in the form of local plane waves,
modified O-S equations (including temperature disturbances)
were obtained. The modified O-S equations were solved for
several flows, i.e., the similarity jet, the shear layer, and natural
conveetion on inclined plates.  In all cases it was found that the
retention of the terms associated with the x-dependence of the
basic flow had a strong effect on the neutral stability curve.  See
also Haaland [3] for further discussion of the stability analysis of
class A flows.

In the present investigation, modified disturbance equations
(including terms taking account of the z-dependence of the basic
flow) will first be derived for buoyant boundary layers and plumes.
These will then be specialized to the natural convection plume gen-
erated by a horizontal line source of heat, which belongs to class
A flows. Since this flow is very unstable, it is a good example of

AUGUST 1973 / 209

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



a case where the a-dependence of the basic flow is expected to
have a large influence on the stability characteristics. For ex-
ample, the neutral stability curve of Pera and Gebhart [4], based
on the conventional linear stability model, does not exhibit a
minimum Grashof number or alower branch. On the other hand,
the neutral curve corresponding to the more complete formulation
displays both a minimum Grashof number and a lower branch.

The aforementioned bottling effect will be demonstrated for the
plume. Among the numerical results, we will be concerned not
only with neutral stability but also with amplification of dis-
turbances and with those frequencies which are most greatly
amplified. A computation is made of the degree of amplification
experienced by a disturbance as it moves downstream. The
numerical results to be presented here are primarily for a Prandtl
number of 0.7, that is, for gases. The neutral curve for a
Prandtl numbel of 6.7 (liquid watel) has also been evaluated
for purposes of comparison.

For very large Reynolds (or Grashof) numbers, the viscous
terms in the disturbance equations become negligible. For
the inviscid model, the disturbance equations for the velocity
and temperature fields uncouple, and the terms resulting from the
x-dependence of the basic flow drop out. Stability results for the
inviscid case will be obtained and presented.

The only prior investigation of the linear stability of a plume
that is known to the authors is that of Pera and Gebhart [4].
Further reference to their work will be made during the course of
this paper.

Stahility Analysis for Buoyant Boundary Layers

In this section, the disturbance equations for buoyant bound-
ary-layer flows in general will be formulated, with account being
taken of the terms which arise from the z-dependence of the basie
flow. The formulation follows that of Haaland [2]. Let us
consider flows for which the Boussinesq equations are valid (Lan-
dau and Lifshitz [5])

OV

1
- —}- V:VV = — ;) Vp — gﬁT(T — 1w + VVZV, (1)
V-V =0, @)
60)7; + V-VT = aV27, 3)

in which V is the velocity vector, p the reduced pressure (static
pressure minus hydrostatic pressure), 1" the temperature, 7', the
ambient fluid temperature (a constant), and g the gravity vector.
The thermophysical properties, density p, thermal expansion co-
efficient Br, kinematic viscosity », and thermal diffusivity a, are
taken to be constants. A

By taking the curl of (1), denoting the vorticity by € =
V X V,’and using the continuity equation (2), one obtains the
vorticity equation

oL .
§+V~VQ~Q-VV=ﬂT9XVT+uvzﬂ. 4)

In the case of two-dimensional flows (xz = streamwise coordinate,
y = transverse coordinate), V = (U, 7, 0), & = (0, 0, ), 7=
7, and g = (gx, gy, 0}, and with these, equation (4) reduces to

o
o aT) v (5)

Next, let (U, V, 0), (0, 0, ), and T denote the basic flow solu-
tion which depends on z and y.  Correspondingly, (, v, 0), (0, 0,
w), and 7 denote two-dimensional disturbances which depend on
x, ¥, t.  When the sum of the basic flow and the disturbances are
introduced into equation (5), there follows, after neglecting non-
linear terms in the disturbance quantities and subtracting out the
vorticity equation for the basic flow, v
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ow of2 o0
- + —+V~+l—+v;
Y

oT
= Br <gr —b—y — Gy

Consistent with the boundary-layer model for the basic flow,
0 = —dU/dy, so that, by using the continuity equation, dQ/dz
= 0!V/dy% In addition, the continuity equation for the dis-
turbance velocities is satisfied by a stream function y defined by
= oY /oy, v = —b\{//bx With the foregoing, equation (6) be-

0
5—;—:> + »Vow. (6)

comes_
w0 U e BV oy
ot - oz dy? ox oy dy? dy
or or
= Pr <gx o ~> + vV, . (7)
Az
where
o
=" (axz + Oy”>' ®

Furthermore, by starting with the energy equation (3) and pro-
ceeding along similar lines, the governing equation for the dis-
turbance temperature can be derived as

or bT

or Ty or ordy
ot ax

= gV?ir. 9
Jy dx oy oz Oy v ©

Fquations (7), (8), and (9) comprise a sixth-order system for the
variables ¥, w, and 7. The vorticity w can easily be eliminated
from these equations, but this step will not be taken since w has
greater physical significance that do the higher order derivatives
of Y.

Attention will now be directed to the last two terms that
appear respectively on the left-hand sides of equations (7) and (9).
These terms are due to the z-dependence of the basic flow and are
commonly omitted in linear stability analyses by invoking the
parallel-flow assumption. As seen from the continuity equation,

y
V = — (0U/dz)dy + constant; thus, the presence of a
non-zero transverse velocity is a consequence of the u-de-
pendence of the streamwise velocity. The terms V(dw/0y) in (7)
and: V(@7/dy) in (9) arve transverse convection terms of dis-
turbance vorticity and temperature, respectively. The term
(02V /0y?)(0¥/dy) can be traced back to #(d£2/dz), so this term
represents streamwise convection of basic flow vorticity. The
term (07/0x2)(0y/dy) is due to streamwise convection of the basic
temperature field.

The disturbances are assumed to be locally of the plane-wave
type, that is

{‘p’ w} T}

in which « is the wave number and § is the circular frequency.
Equation (10) is then substituted into the disturbance equations
(7)-(9), but hefore stating the outcome, dimensionless variables
and parameters will be introduced. The scales for the nondimen-
sionalization are motivated by an examination of the form of the
solution for the basic flow.

For boundary-layer flows which admit similarity solutions, one
can, in general, write

= {o), o), T} eites = (10)

_ U*(z) -,
U = U*@)T ), V= R((:)) Vin),
T = Ty + [T%@) — TulT(n), (11)
with
= y/h(z), R) = U*h/v. (12)
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In the foregoing, R can be identified as a local Reynolds number
pased on the characteristic velocity U* and the characteristic
length i (proportional to the boundary-layer thickness); 7* is a
characteristic temperature and 7 is the similarity variable. In
cases where a global similarity solution does not exist, that is,
where U, V, and T depend on R, equations (11) can still be em-
ployed locally provided that local similarity prevails.

Other nondimensional parameters that are pertinent to the
analysis are the dimensionless wave mimber &, the Strouhal num-
per S, and the Grashof number G based on the length h. These
are

S = Br/U*, G = gBr(T* — To)h3/v2  (13)

a = «h,

In addition, the dimensionless counterparts of the disturbance
amplitude functions ¢, w, 7 are defined as

b = @/UMh), & =w/Uh), &=71/(T%—Ta).

Then, upon introducing equations (10) into (7)-(9) and subse-
quently forming dimensionless variables and parameters by using
{7* as the velocity scale, i as the length scale, and the definitions
contained in (11)-(14), one obtains after dropping the tilde

(14)

w' — alw = R[(aU — S + aU'p] + V' + V'’

— (G/R)g=/)7" — lgu/gler], (15)
' — o’y = —w, (16)

7" — a?r = ¢ Pr R[(aU — S)r — al’y]
+ Pr Ve’ + (@l + anl')’], (17)

in which Pr = p/a is the Prandtl number,
“= T*}ih'pm d(T*d; = - _R%’ (18)

and the primes represent derivatives with respect to 7.

Tquations (15)-(17) represent the disturbance equations (for
local plane-wave disturbances) for boundary-layer flows involving
buoyancy. These equations take account of the explicit z-de-
pendence of the basic flow and, therefore, constitute a modifica~
tion of the traditional formulation which leads to the Orr—Som-
merfeld equation. Subsequently, these equations will be special-
ized to the plume. )

It is appropriate at this point to comment on the choice of space
or time amplification for the disturbances (see also Haaland [3]).
From the standpoint of experiment, spacé amplification appears
more appropriate for boundary-layer flows (see, for example,
Betchov and Criminale [6]). Therefore, the circular frequency
and its dimensionless counterpart, the Strouhal number S, are
taken to be real, whereas the wave number & is taken as complex.
On the neutral curve, both S and « are real and no choice has to be
made about the type of amplification.

Governing Equations for the Plane Plume

The general formulation developed in the preceding section of
the paper will now be specialized to the plume generated by a
horizontal line source of heat. The coordinates are selected so
that the streamwise coordinate z is vertically upward and the
transverse coordinate y is horizontal. The basic flow solution for
the plume is outlined in the Appendix, so that 7, ¥, 7 and their
derivatives as required in the disturbance equations (15)-(17) are
available (the tilde has been dropped in (15)-(17)).

For the aforementioned orientation of the coordinates, g./¢ =
—1 and ¢,/g = 0. Fuwrthermore, according to equation (A6),
R = G. In addition, use of the relationships given in the Ap-
pendix reduces equation (18) to a1 = —12/5, a2 = —8/5. Asa
result of these findings, the disturbance equations (15)-(17)
hecome )

1t

w' — alw = R[(aU — S)w + alU'¢]

Journal of Heat Transfer

+ 7+ Vo' 4+ V!, (19)
' — alp = —uw, (20)

7" — atr = ¢ Pr R[(aU — S)r — aT'¢] :
+ Pr V' — Pr{(12/5)T + 8/5mT"l¢’. (21)

The Reynolds number R and Strouhal number S can be special-
ized to the plume by introducing U* and k from the Appendix
into the defining equations (12) and (13). In addition, the com-
monly employed Grashof number Gr (based on z) is related to R
by equation (A7). ,

From an examination of equations (19)-(21), and noting that
U, V, and T are, respectively, even, odd, and even functions of 7,
it is seen that solutions are possible in which (a) ¢ and w are even
and 7 is odd, (b) ¢ and w are odd and 7 is even. Of these two
solution modes, the more interesting is that which is least stable.
This ought to be the mode with the least constraint on the de-
pendent variables, that is, when ¢ and w are even and 7 is odd.
Accordingly, the boundary conditions are taken as
P'(0) =w'(0) =7(0) =0, @(=)=¢(x)=1(x)=0 (22)

The system consisting of equations (19)-(22) is homogeneous,
s0 that ¢ = w== 7= 0 is a possible solution. In order to obtain
a non-trivial solution, it is necessary to impose a normalizing con-
dition. Since this fixes only the scale of the solution, any choice
will suffice, for example

w(0) = 1. (23)

Equations (22) and (23) represent 14 real conditions on the
twelfth-order real system (19)-(21). Therefore, two of the four
real parameters o, @;, R, and S have to be eigenvalues. Since in
the subsequent presentation of results we shall be interested in
curves parameterized by «;, the solutions will be carried out for
fixed values of « (i.e., &, and «;) taking R and S to be the eigen-
values.

It is appropriate to examine the inviscid limit of the disturbance
equations (19)-(21). As R approaches infinity, these equations
reduce to

o' = [at + «U"/(aU — 8o, (24)
w = —alU"¢/(aU — 8), (25)
7 = aT'/(alU — 8). (26)

The formerly. coupled system is now decoupled, and in addition
the. térms related to the z-dependence of the basic flow have
dropped out. Orice ¢ has been determined from equation (24),
w and 7 follow directly from (23) and (26), respectively. As be-
fore, the even solution for ¢ is expected to be the least stable, so
that the boundary conditions are chosen as

e'(0) = (=) =0, 0) =1,

where the last member of (27) is a normalizing condition. Equa-
tion (24) is a fourth-order real system, for which six real condi-
tions are specified by equation (27). Therefore, two of the three
real parameters a,, oy, and S have to be eigenvalues. For the
solutions; fixed values will be assigned to S, and «,, o; will be the
eigenvalues.

The solution méthod to be employed here uses an analytical
solution for large 1 in conjunction with numerical integration for
intermediate and small n. The large-n solutions will be de-
veloped in the next section, where they will also be applied in
demonstrating the bottling effect.

(27)

The Large-n Solutions and the Bottling Effect

As a first step in obtaining the large-n solutions of equations
(19)-(21), it is necessary to have expressions for U, V, T and their
derivatives that are valid for large values of . On the basis of

- equations (A4), (A14), and (A15), one can write ' = Fo, + F,
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H = Hy, and
U=U =F/, (28a)
V="Vo+ Vi = V.~ [Q/5nF — (12/5)F] (28p)
T =T = H, (28¢c)

where Fy and H; are the first terms of exponentially decreasing
expansions which involve known constants which depend on the
Prandtl number, and V,, = — (12/5)F.

Large-n solutions for ¢, w, and 7 can now be sought in a series
of decreasing functions (i.e., successive approximations)

w=Bl+Bz+...,
T=C1+C2+'..,.

(p=A1+A2+...,
(29)

After substitution of (28) and (29) into (19)-(21), terms of like
order are collected. 'To the first order, one gets

LA; = —B;, MB, = CY, NC; =0, (30)
and to the second order
LAs = —B,, (31a)
MB, = Cy + {aRU,"A: 4 Vi"’Ay' + 1aRUB; + V1B’ (31b)
NC, = —ioR Pr T4, — Pr [(12/5)T: + (8/5)nT1'] 41/
+ iaR Pr U\C, + Pr ViCy, (3le)
where the operators are defined by
L =D~ a2 M=D—V,D— (&> —iSR) (32)
N =D =PrV,D — (a* = iSR Pr), D = d/on, (33)

There are three independent solutions of equations (30) and
(31) that vanish at infinity. These are designated by subseripts
1,2,and 3. For the first set of solutions

@1 = e~ 4 ¢~ 210[max (¢~ |Veln ¢~ PrlValn)]

@ = (b + baple ™ (HITaln (b, 4 byp)e= (@t PriValdr,  (34)
71 = (bs + beye™ (et PriVal,
for the second set
o=
@ = o gy Wy = e, 7y = Ofe = (v PrValn) - (35)
and for the third set
[A/(A? ~ a?)]e~M
P NV - (SR)Pr — 1)
—Xe™M (36)
GV —esmermy T
in which .
Y = |Val/2 + VV2/A + a2 — i SR, @37)
A=V Pr/2 4+ V/V,2 P12/ + a2 — SR Pr.  (38)

The second and thitd sets of solutions and the leading term of ¢,
come from equations (30), whereas the other terms of the first
set come from equations (31). The foregoing solutions degen-
erate for Pr = 1, and special solutions are required for this case.
The by, ..., bs of equations (34) are abbreviations for rather
lengthy expressions which contain the Dy, |V.|, Pr, o, R, and 8.
It can be shown that the Auy1/A s, Bap1/Bn, Cryr/Cy of equation
(29) decrease exponentially as 7 approaches infinity.
Corisideration may now be given to a comparison of the relative
rates at which the disturbance flow and the basic flow decay at
large 7. For the velocity and temperature fields of the basic flow

Q ~ max (g—[VmI"l, e—PFIleﬂ), T ~ e~Pr|Vm|77’ (39)
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whereas the large-n solutions for the disturbance flow are given by
equations (34), (35), and (36). With respect to the exponents
appearing in these equations, it is relevant to note that the real
part of A > Pr|V.| and the real part of y > |V.|, provided that
the real part of a2 is positive (Haaland [2]). The comparison of
decay rates has to be made separately for Pr > 1 and Pr < 1.2
When Pr > 1, exp (—|Va|n) > exp (=Pr |[V.|g). Then, as

n— ®

max (e~ ", =M, g~ (at|Va)n)

g ~ o—1Veoln -0, (40a)
r  max (M ¢~ (@ FPriValn o —(y+Pr|Valn)
"~ E—— —0. (400)

Equations (40a) and (40b) indicate that the disturbance vor-
ticity w decays faster than the basic flow vorticity and that the
disturbance temperature 7 decays faster than the basic flow tem-
perature. That is, the disturbances are ‘bottled in’’ or con-
tained within the respective boundary layers of the basic flow.
1t is readily shown that it is the transverse velocity terms V(dw/
oy) and V(0r/dy) which are responsible for the bottling effect.
If these terms were omitted, the bottling effect would not be
exhibited by the solution.

When Pr < 1, exp (—Pr [men) > exp (—leln). By proceed-
ing as above, one finds
-0 T or T 0

’ Q T ’

w w (1)
Coor 2
Q T

50 that the disturbances are, once again, bottled in by the inward-
directed transverse velocity.

Solution of the Eigehvaiue Problem

As was noted earlier, the solution method involves the use of the
large-n solutions for ¢, w, and 7 in conjunction with numerical
integration of equations (19)-(21) at small and intermediate
values of 7. The details of the solution method are described by
Haaland [2, 3], and therefore only an outline will be presented
here.

The Jarge-n solutions furnish the starting values for the nu-
merical integration of (19)-(21), which proceeds inward from
some large value of 9 {(=7%*) toward the centerline of the plume
(n = 0). Examination of the large-n solutions, equations (34)-
(36), indicates that for given values of Pr, e, R, and S, numerical
values of ¢, w, and 7 can be obtained at n*.  With ¢i(9*), wi(n*),
and 7:(n*) (and their derivatives) as starting values, equations
(19)-(21) are numerically integrated inward to 7 = 0. Then the
integration is repeated using @:(n*), wi(n*), and 72(n*) as the
starting values. Next the integration is carried out once again
starting with ¢3(n*), ws(n*), and 73(n*). .

The three solutions that are generated in this way are summed
up, with each solution being multiplied by a constant. These
constants are determined by applying equation (23) and two of
the three boundary conditions at 7 = 0 as stated in equation
(22). The remaining boundary condition in (22) is satisfied only
when R and S are eigenvalues. The initial guesses for R and S
are vefined iteratively by applying the Newton—-Raphson
method to the unsatisfied boundary condition. Variational
equations with respect to R and S are found by differentiation of
(19)-(21). The solution of the variational equations with ap-
propriate boundary conditions provides the values for the coef-
ficients in the equations for the increments AR and AS.

Results and Discussion

The numerical solutions for the plume were, in the main, car-
ried out for a Prandtl number of 0.7. This is the Prandtl number

2 The Pr = 1 case yields the same general conclusions as the other
cases.
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Fig. 1

Neutral stability and amplification contours; wave number-
Reynolds number diagram (Pr = 0.7)

of air and other gases. For comparison, some additional solu-
tions were obtained for Pr = 6.7, which corresponds to liquid
water. The primary presentation of results will be for Pr =
0.7, and the comparison of the results for the two Prandtl num-
bers will be made at the end.

The neutral stability eurve and several amplification curves are
presented in Fig. 1. In the figure, a,, which is the real part of the
wave number, is plotted against the Reynolds number R. The
curves are parameterized by ¢, the imaginary part of the wave
number, where o; = 0 corresponds to neutral stability and in-
creasingly negative values of a; correspond to greater amplifica~
tion of the disturbance. In addition to the solid lines, which de-~
pict the present results, there is a dashed line which represents
the neutral stability curve computed by Pera and Gebhart [4] on
the basis of the conventional formulation in which terms due to
the a-dependence of the basic flow are omitted. The abscissa
variable R is related to the commonly encountered Grashof
number Gr by

Gr = ¢gBr(T* — T,)x*/v: = R4/64, (42)

where 7% = T*(x) is the temperature at the centerline of the
plume.

Examination of the figure shows that the present neutral sta-
bility curve exhibits both upper and lower branches and a
minimum (i.e., critical) Reynolds number R = 12 (Gr = 324).2
On the other hand, the neutral stability curve from the analysis
which omits the terms due to the z-dependent basic flow exhibits
neither a minimum value nor a lower branch. Clearly, the
accounting of the x-dependence of the basic flow has a profound
effect on the neutral stability characteristics. Amplification
curves are not presented by Pera and Gebhart, so that no ap-
praisal can be made as to how the z-dependence affects the
amplification characteristics.

Further examination of Fig. 1 indicates that the upper branches
of all the curves tend to rise with increasing Reynolds number.
The results of the inviscid solution, to be described later, show
that for each «; there is a limiting value of a, as R approaches
infinity. Therefore, if Fig. 1 were to be extended to larger
Reynolds numbers, the upper branches of all the curves would
tend to level off.

Although the a,, R diagram is the most common vehicle for
presentation of stability results, it has the drawback that «, is
not a readily measurable quantity. Furthermore, the «,, R
diagram gives no indication as to which disturbance frequencies
are most strongly amplified. In recent papers, stability informa-
tion has sometimes been presented using a dimensionless fre-

3 At the low Grashof numbers in the neighborhood of the critical
point, the basic flow boundary-layer model may be somewhat
inaccurate.
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Fig. 2 Neutral stability and amplification contours; Strouhal number-
Reynolds number diagram (Pr = 0.7)

quency which is equivalent to the Strouhal number defined by
equation (13). The neutral curve and the amplification con-
tours for the present problem are presented in-an S, R diagram
in Fig. 2. These curves are generally similar in shape to those of
the just-discussed o, R diagram.

At the right-hand margin of Fig. 2 is an array of dash-line seg-
ments. These lines represent the R — o« limits for the upper
branches of the S versus R curves and are obtained from the in-
viscid solutions. The «; parameterization of the dash-line seg-
mentsis in the same order as the parameterization of the S versus
R curves. It is seen that at the largest R value of the figure,
the upper branches are still substantially below their respective
limits for R— .

Although the Strouhal number contains the eircular frequency
B3 of the disturbances, it also contains the z-dependent quantities
U* and h. Consequently, the Strouhal number corresponding to
a disturbance of fixed frequency B varies as the disturbance
moves in the streamwise direction. It can easily be shown with
the aid of equation (13) and of the Appendix that S ~ '/5 or that
8 ~ R's, Correspondingly, in Fig. 2, the path of a disturbance
of fixed frequency moving in the streamwise direction would be a
line S ~ R'2,

To facilitate a more informative examination of the role of fre-
quency, it is advantageous to devise a presentation where the
path of a disturbance of fixed frequency is more easily followed.
To this end, we introduce a characteristic time ¢* defined as

2
" =,,<L£C_P£> "
g8r @

where @ is the energy per unit time and unit length imparted to
the fluid by the horizontal line source of heat. I is an integral
defined by equation (A5), the value of which depends on the
Prandtl number (e.g., for Pr = 0.7, ] = 1.245). From equation
(43) it is seen that ¢* is a constant for a particular experiment.
With the definition of ¢*, it is readily shown that

B+ = S/RY:

(43)

(44)

This equation enables the S, R diagram to be rephrased as a
diagram of Bt* versus R, the end result being shown in Fig. 3.

In this figure, the path of a disturbance of fixed frequency
which moves in the streamwise direction is a horizontal line.
The extent to which a disturbance is amplified can be gauged by
examining the amplification curves that are cut by the horizontal
line that corresponds to the frequency of the disturbance; the
more negative the oy, the greater'is the amplification. On this
basis, it is expected that the most amplified frequencies would lie
in the range 8t* = 0.02 to 0.03.

The dashed lines shown in the figure correspond to frequencies f
(=f/2m) that pertain to the experimental conditions of Pera and
Gebhart [4]. The experiments were performed in air at a heat-
ing rate @ of 58.6 Btu/hr-ft. These authors found that greatest
amplification occurred at disturbance frequencies around 3 Haz,
and as seen in Fig. 3, this is in excellent accord with the present
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Fig. 3 Neutral stability and amplification contours; frequency-Reynolds
number diagram (Pr = 0.7)
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Fig. 4 Amplification of a disturbance of fixed frequency, 8t* = 0.025
(Pr = 0.7)

results. For frequencies greater than 12 Hz, Pera and Gebhart
indicated that they were unable to detect amplified disturbances.
Although Fig. 3 indicates that disturbances between 12 Hz and
14.3 Hz may be amplified, the extent of the amplification is so
small that detection may not have been possible.

It is of interest to estimate the amplification experienced by a
disturbance of fixed frequency as it moves in the streamwise
direction. In view of the fact that the disturbance may en-
counter a range of «; values, a logical generalization of the z-de-
pendent factor in equation (10)is

x x x
exp <1 f ad:v> = exp <z f a,d:v) exp <— f aidx>
xy &1 43

(45)

where z; is the streamwise location at which amplification begins.
The second exponential term on the right-hand side of equation
(45) can be regarded as the z-dependent amplitude A of the dis-
turbance (for example, Dring and Gebhart [7]; Jaffe, Okamura,
and Smith [8}). In terms of the dimensionless variables relevant
to the plume problem
R
R

The amplification factor A has been evaluated as a funetion of
the Reynolds number R for the disturbance frequency Bt* =
0.025. Asisseenin Fig. 3, this frequency lies in the band of most
amplified frequencies. The variation of A with R (~z*/%) is
plotted in Fig. 4. The figure shows that the disturbance ampli-
fies rather slowly at first, but then increases extremely rapidly.
For example, at R = 100 (Gr = 1.6 X 10%), the disturbance
amplitude is about 300 times its initial amplitude.

The inviscid model represents the limit of the disturbance
equations as R approaches infinity. Numerical results for the
inviscid case were obtained by solving equation (24) for Pr = 0.7

A = exp [—(5/12) (46)
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Fig. 6 Neutral stability curves for Pr = 0.7 and 6.7

and are shown in Fig. 5 as solid lines. The figure contains curves
of a, and «;, respectively referred to the lefi- and right-hand
ordinates, plotted as a function of the Strouhal number. The
curve of o; vs. S gives the R — o limits of the «; contours of Fig.
2, with the portion to the left of the maximum corresponding to
the lower branches and the portion to the right of the maximum
corresponding to the upper branches. The largest value of —a;
is about 0.2.

In addition to the ¢, results from the inviscid solution, Fig. 5 also

contains the o, versus S variation along the neutral curve. The

two o, curves are coincident at S = 0 and S = 0.605, where the
lower and upper branches of the neutral stability curve approach
R = «. However, the spread between the a, curves is not large
at most other S values, even though the local Reynolds number on
the neutral curve may be small. From the . vs. S curve, one
may evaluate the dimensionless wave speed ¢ = S/a;.

All of the results thus far presented have been for Pr = 0.7.
In Fig. 6, a comparison is made of the neutral curves for Pr = 0.7
and Pr = 6.7. These Prandtl numbers correspond respectively
to gases (in particular, air) and to liquid water. Both curves
have the same general shape. In particular, each exhibits a
minimum Reynolds number and a lower branch, thereby indicat-
ing that the findings of Fig. 1 are not confined to a specific Prandtl
number. Although the upper branches of the two neutral curves
are substantially different, the minimum Reynolds number and
the lower branches are nearly coincident.
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APPENDIX
The Basic Flow Solution for the Plane Piume

The velocity and temperature fields for the plume can be ex-
pressed in the forms indicated in equations (11) and (12). In
particular (for example, see Gebhart, Pera, and Schorr [9]),

2 /s
U*z) = l:i——(gﬂy') <i>2} z'/, (A1)
v pcl
. _ LN sy
e = T = [641;29& (pcp1> :I v (42)
_[18v? (ped \ T o,
M) = [g&( Q >] o (A3)
Om) =F" V() = [(8/5)mF" — (12/5)F] T(y) = H (A4)

in which F and H are functions of v. In the foregoing, @ is the
energy per unit time and unit length imparted to the fluid by the
horizontal line source and

I=2 f F'Hdy,
0

The quantity 7*(z) is the temperature at the centerline of the
plume.

From an evaluation of the defining equations (12) and (13) for
R and G using (A1)-(A3), it follows that ’

R = G.

(A5)

(AB)

Furthermore, it is easily shown that the conventional Grashof
number Gr is related to G and R by

Journal of Heat Transfer

24/2Gr'/+ = R = G, (AT)

where
Gr = gBr(T* — T, )a?/v2 (A8)

The velocity and temperature functions I and H are obtaineq
by solving the coupled system

B! 4 (12/8)FF" — (4/5)F2 + H = 0, (A9)
H + (12/5)Pr FH = . (A10)

subject to the boundary conditions
Fl0O) = F"(0) =0, H@O) =1, F(w) =0 (All)

The conditions H'(0) = 0 and H(*) = 0 are automatically
satisfied by the solution. Once a solution of equations (A9)
and (A10) is obtained, then the quantity I of equation (A5) ean
be evaluated.

For the numerical solutions, the condition ' = 0 at infinity is
usually applied at a finite value of 7 = 9% A more accurate
condition which is equivalent to a first-order asymptotic solution
of (A9) and (A10) can be derived as follows (Haaland 2.
From (A10), to first order

H = —H'/[(12/5) Pr F..]. (A12)

Substitution of this into the first-order equivalent of (A9) gives
F!'" 4 (12/5)F I — H'/[(12/5) Pr F.] = 0, (A13)

which, after integration and substitution of the local value F
instead of F.,, becomes

F'" + (12/5)FF' — H/[(12/5) Pr F] = 0. (A13a)

This condition can be applied at a smaller value of #* than the
more inaccurate condition F’'(n*) = 0. TUse of equation (Al13a)
permitted the use of the Newton—Raphson method (with full
second-order convergence) in finding the missing starting value
aty = 0.

Asymptotic solutions valid at large values of 5 can be de-
veloped as follows:

F() = Fe + Diexp [—(12/5)Fan]
+ Dsexp [—(12/5) Pr Fon], (Al4)
H = Dsexp [—(12/5) Pr Funl, (A15)
where
Dy = [(12/5) Pr Fo]*(1 — 1/Pr)Ds. (A16)

The constants F., Dy, Ds, and Ds; were evaluated by employing
the numerical solutions of equations (A9) and (A10).
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Introduction

THERMAL INSULATION has long been a subject of
great importance in cryogenic applications [1, 2].! Evacuated
multilayer insulation systems [3], though most effective ther-
mally, have certain limitations in application. Besides the dif-
ficulty of installation around bodies of complex geometry and
the highly anisotropic thermal behavior neat penetrations, the
thermal performance of such a system is extremely sensitive to
compressive load. These factors result in a low predictability of
the thermal performance of the multilayer insulation.

A new concept for high-performance insulation involves the
use of packed hollow dielectric microspheres (20 to 200 u in
diauneter) coated with low-emittance metallic films (about 400 A
thick). The space inside a microsphere is commonly filled with
some residual gas at reduced pressures (microspheres supplied by
3M Co., Minuneapolis, Minn., contain SO, at approximately 0.3
atm), but for all practical purposes it can be regarded as a
vacuum. Packed spheres provide good mechanical strength to
stand compressive loads as well as high constriction resistance
against heat conduction. The use of hollow spherves reduces, in
addition to weight, the system heat capacity, so that it consumes
less eryogen and time in the cooldown process. The low-emit~
tance coating shields against radiative transfer. Preliminary
thermal tests [4] show that this new type of insulation is com-
petitive thermally with multilayers; in addition, it is lightweight
and easy to install and possesses many other advantages.

The major heat transfer mechanisms in packed spheres or
powder insulation under the evacuated condition consist of the
surface radiation transfer across the voids and the constricted
conduction through the contact surface of packed particles. Ex-
tensive experimental results on heat transfer in powder insula-

! Numbers in brackets designate References at end of paper.

Contributed by the Heat Transfer Division of THE AMERICAN
SociETY oF MECHANICAL ENGINEERS and presented at the ASME-
AIChE Heat Transfer Conference, Atlanta, Ga., August 5-8, 1973.
Manuscript received by the Heat Transfer Division September 21,
1972. Paper No. 73-HT-1
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bed of spheres bounded by two infintte plane surfaces of different temperatures.
prediction of the conductance is based on the constriction resistance for spheres in con-
Both exact and approximate equations are derived for solid, hollow, and couted
spheres and for several regular packing patterns of different void fractions.
sons with the available experimental date indicate that the theory is satisfuctory over a
wide range of applied load und system parameters.

Copyright © 1973 by ASME
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Compari-

tions have been accumulated, and formulas for correlations and
predictions have been proposed {1, 5-7]. These formulas are,
however, mostly empirical in nature, due to complex geometry
and radiation—conduction coupling. As part of a general funda-
mental research program on heat transfer through microsphere
insulation, the present investigation is concerned with a theoreti-
cal analysis of conduction contributions. The specific objective
is to establish an explicit functional relationship between the
thermal conductance of packed spheres and fundamental system
parameters such as the imposed thermal and load conditions, the
geometric parameters (e.g., sphere diameter, shell thickness,
packing configuration, ete.), and the thermal as well as mechani-
cal properties of the constituent particles.

Analysis

Physical Model. Under the present considerations, heat can be
conducted from one sphere to the other only through the contact
interface. Thus from one sphere to another the conduction
process is characterized by three series-connected thermal re-
sistances, namely the macroscopic constriction resistance due to
the contraction of conduction passages, the microscopic constric-
tion resistance due to surface roughness at the contact area, and
the film resistance due to surface contamination. In general, for
spherical contact, the macroscopic constriction resistance is the
predominant one, but the other two may become appreciable
when the surface is rough and heavily oxidized. In the present
analysis, only the macroscopic constriction resistance is considered.

Previous analysis [8] on macroscopic constriction resistance
across spheres involves the replacement of the sphere by a con-
ductor of infinite extent between two parallel planes with certain
appropriate boundary conditions. The approximate analysis
would not hold well for a hollow or coated sphere, especially when
the thickness of the shell is of the same order of magnitude as the
radius of the contact. A more fundamental analysis is presented
here for the constriction resistance of spherical contacts involving
three different types of spheres, namely solid, hollow, and com-
posite (e.g., metal-coated).

Two basic assumptions are made in the present analysis.
First, the radius of the circular contaet arvea is given by the
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INSULATED

Fig. 1 Analytical model

Hertz relation for elastic contact of two smooth spheres of radius
7, pressed dgainst each other under collinear force F':

31— u Vs
re = | — uFr,,
4 E

where u and E are Poisson’s ratio and Young’s modulus of the
material, respectively. The relation is valid as long as the solids
remain linearly elastic and r. < r,, 7, being the radius of the
sphere. A similar analysis for hollow or coated spheres has not
been developed, but for thick-walled spheres the above relation
should be a good approximation. The second assumption is that
the contact surface has a uniform heat flux and the rest of the
surface is insulated. The reasons for assuming a uniform heat
flux instead of a uniform temperature are: either condition
represents only an idealization of the actual situation; the result
for thermal-constriction resistance should be rather insensitive to
either condition (more discussion on this later); and the uniform-
heat-flux condition results in a much simpler analysis.

0

Constriction Resistance of a Single Sphere. The physical system
under consideration is shown in Fig. 1. The temperature field
inside the sphere must satisfy the steady-state heat conduction

equation
o] oT 1 2 oT .
— 2 — — 1 — =
or (7‘ br) + sin 4 o8 (sm b 30) 0 @
as well as the boundary conditions at r = »,
oT
k.(—) =¢ 0<L8<L60)
or /
(3)
=0 O, <b0<m— 0
= —¢ (7T-90S057F)

where 8, = sin=1 (r,/r,).

For hollow spheres, an additional boundary condition must be
imposed at the inner surface (r = 7;). Since at cryogenic tem-
peratures the radiant energy transfer within the inner space of
the hollow sphere is much smaller than the conduction contribu-
tion, the inner swiface can be regarded as adiabatic:

ks (aﬁ> =0 (8 everywhere) 4)
Ty

or

For composite spheres, T'; (for 0 < r < r)and T, (forr; < r <
7'5) must satisfy

e} aT,? 1 90 . oT; . .
2= o il Z9Y - =
or <7 or > sin 8 06 (sm o o0 ) 0 G =10 )

oT,
kaa ( > = Qo
or /o

(0 <6< 0.)

=0 (0, < O<m — 6,) ©)
= —q (r—0,<60<7
T, =T; (r = r;, 8 everywhere) (7)
kso (b_T£> = kg <2@> (0 everywhere) (8)
or /oy, or Jy,

Nomenclature
A, A’ = defined after equations P = externaliy applied pres- w = sphere weight
(29) and (30), respec- sure x = cos @
tively P; = Legendre polynomial of 2, = cos b,
A. = contact area degree ¢ Oan_y, Ban—y = defined after equations
By, Bany' = defined after equations ¢o = heat flux (31) and (34), respec-
(27).and (28), respec- Q = total amount of heat tively
tively through a sphere 0, = solid fraction
C, = arbitrary constant 7 = radial coordinate = polar angle
C,, Oy, C; = constants, equations (12), re = contact radius 0, = sin™ (ro/r0)
(13), and (14), respec-~ ¢ = inner radius A = kso/ks:
tively r, = outer radius u = Poisson’s ratio
D = sphere diameter R = constriction resistance ps = mass density
E = Young’s modulus R’ = modified constriction re-
F = tact force i Subseripts
contac ] sistance .
F, = vertical force Sk, Sr, Sj,} _ parameters,  equations Z’ (Z,’. _ pairs of heat supply and re-
G, @ = defined after equations S, Sxy — (20), (48), (49), (51), . o ~ moval regions
" 9 3 pl
éi?e)lyand (35, xespec | = W:ﬁlfhii jl,elszspectlvely 1,17 = indices referring to the typ(? of
i sphere and the packings; 7 =
k = coz}ductance . ’.{_’ = temperature 1 for solid, 2 for hollow, and
ks = solid conductivity T = mean temperature 3 for composite spheie;j = 1
L = bed thickness AT = temperature difference for simple cubic, 2 for body-
N, = number of particles per between the heat sup- centered cubic; and 3 for
unit area ply and removal re- face-centered cubic packing
N = number of particles per - gions 7 = inner '
unit length Vs = sphere volume o = outer
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By the method of separation of variables, solutions for the tem-
perature in the solid, hollow, and composite spheres, respectively,
are obtained as

Ti(r, 8) = Co + 3, CuPulcos 6) O<L<rsr) O

n=1

. 0 o« n 7: 2n+1 0
W(r, ) = Cy + n§1 Cor l:l + n il (;—) :an(cos )

e <r<nr) (10)

@ A =1 : 2n+1
Ts(r, 0) = Co+ 3, Carn I:l + n_jt(_?\_(ﬂ—w)T) (7'7) :‘

n=1
X Py(cos 8) (r: v <) (11)

where N = Fkq/ks;, P:is the Legendre polynomial of degree ¢, C,
is an arbitrary constant, and C,, C3, and C; are constants deter-
mined by the outer boundary condition and the orthogonal prop-~
erties of Legendre polynomials. These constants are zero when
7 is an even integer, but when n is odd, they are given as

1
G = 2t g Po(z)dz (12)
n karont x,,
241 o I 1
¢ = n <7€s7'a"_‘> [1 - (n/ra)”“] j; Palo) (13)
0 = 2n -+ 1 ( Qo ) 1
T Nk (- A =D+ 1) friyn
n 4+ An -+ 1) \r
1
X f Pa(z)dz (14)

where ©, = cos §,. Equations (12)-(14) can be put into a more
computable form when the following relation

1 1
f P, (l )d’l? =
- 2n

4+ 1

[Pralme) — Pria(,)] (15)

is used for the integral term.
By definition, the thermal resistance of the sphere is given by
R=(Ts— Tu)/Q (16)

where T, and T/ are the respective mean temperatures of the
two contact regions whete heat is supplied and removed across the

contact area 4,
T = f T(ro, BdA / f dA
A Ag

Q is the total amount of heat passing through the sphere, and for
7e/70 < 1

(a7

Q = ¢t (18)

When the packing pattern of spheres is not simply cubie, there
exist more than a pair of diametrically opposed contact regions.
The calculation of mean temperatures is not simple, and a modi-
fied thermal resistance R’ is introduced as

R’ = [T(rs, 0) — T(ro, m)]/Q (19)

The two thermal resistances can be related by a numerical factor
Sr
R = SgR’ (20)

where Sg depends on the contact radius and the wall thickness.

From the solutions given in equations (9), (10), and (11),
closed-form expressions of I and R’ can be established as in the
following:

for solid spheres:
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R = A4 Y Bu (21)
=1
R =AY Bua' (22)
ne=1
for hollow spheres:
[iz = A Z BZn—1a2n—-1 (23)
n=1
Ry = A’ Z Bon_y 0tzay (24)
n=1
for coated spheres:
Ry =@ Z Ban-1fn (25)
n=1
By =G Buns'Bans (26)
=1
where
1
Bn— = T, . Pn—- o) n\Lo 2
ot = G e ) (D) = Pullt @1)
B’ = [Pon—a{zo) — Paalms)] (23)
2n — 1
- _Ji{_h (29)
T ka1 — )
A = 2r, 30
T whare? )
1 [@n = 1)/2n) (ri/re)*n 3
Gt = 1= (rfroyt i
210
- — 0 2
¢ Thsot X (1 — o) (2)
2r,
@ =
Thsote? (33)
1 A — D@2n ~ 1)/2n — 1+ 2n\)](r:/1,)tn1
Bons = + [( )2n ~ 1)/(2n nA)] (rs/r0) 34)

11— [N — D@n)/2n — 1 4+ Zn)\‘)] (rifroytn=t

Conductance of Packed Spheres. The conductance of packed
spheres depends on the packing pattern. For spheres of uniform
size, the three basic regular arrangements are simple cubie, face-
centered cubic, and body-centered cubic, Fig. 2. The void frac-
tion of an actual bed (L.e., randomly packed spheres) is normally
less than that of the simple cubic but greater than that of the
other two close packing patterns. The regular packing patterns
provide convenient physical models for analysis of the conduetion
transport in packed spheres: The analysis would illustrate the
importance of various parameters in the actual bed, such as the
porosity, the contact pattern, the applied load, and the physical
properties of the sphere material. For a regular packing, each
layer of the arrangement is isothermal normal to the direction of
the heat flow, and each particle has an identical contact pattern
with its neighboring particles, Fig. 2. Therefore the constriction
resistance for each particle should be the same. The thermal re-
sistance of a regular packed arrangement can thus be considered
as a group of parallel resistances, each composed of a series of the
resistances of a single particle. Hence the conductance of
the medium is, by definition,

N, 1
by = e L 35
P = N R (35)
where R;; is the constriction resistance of a single particle. The
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Fig. 2 Regularly packed spheres under compressive loads
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Fig. 3 Thermal-contact patterns of different regularly packed spheres

first subscript refers to the type of sphere (: = 1 for solid, 7 = 2
for hollow, and z = 3 for composite sphere), while the second sub-
script refers to the packing pattern (§ = 1 for simple cubic, j = 2
for body-centered cubic, and j = 3 for face-centered cubic). N
and N, are the number of particles per unit length and per unit
area, respectively.

Of all the physical contact points of a single particle, only those
in contact with other particles of a layer above and below are of
interest to the thermal analysis, because each layer of a regular
arrangement is isothermal, Fig. 2. These thermal-contact re-
giong can be grouped into pairs. Each pair is composed of a heat
supply region on the upper hemisphere and a heat removal region
on the lower hemisphere. These two regions are diametrically
opposite to each other. For the simple cubic arrangement,
there is only one pair of such contact areas. In this case Ry is
the same as R;. In the case of face-centered cubic arrangement,
by symmetry, the six thermal contact areas on a sphere can be
grouped into three pairs: a-a’, b-b’, and ¢-¢’, Fig. 3. The tem-
perature difference and the heat flux will be the same for each
pair. For simplification, R;;’ is to be determined. The tem-
perature difference at each pair due to the total heat flux of all the
pairs can be obtained from the result of a single pair by the
method of superposition. For instance, in the case of a solid
sphere, the temperature difference at b-b’ and ¢-¢’ due to the heat
flux at ¢-a’ alone is the same and is equal to

(AT)b—b’ = (AT)c—c’ =2 Z 017'0"Pn(1/2)

n=1

(36)

The temperature difference at each pair due to the heat flux of all
the paiis is

(AT) = 2 37 Cur[Pa(l) + 2Pa(i/2)]
n=1

(87)
Hence for solid spheres
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Ru' = 144" 3 Bu'[1 + 2Pwma(/2)] (38)
n=1
for hollow spheres
Ry’ = 1347 Z Bin1'02na[1 4 2Py (1/5)] (39)
n=1
for coated spheres
Ry’ = 1/4G" > Baua'Boaall + 2P 1(1/2)] (40)

n=1

In the case of the body-centered cubic arrangement, there are
four pairs of thermal contacts, Fig. 3. The corresponding equa-
tions for e’ for solid, hollow, and coated spheres are, respectively

Ry =1/,4" Z Boni'[1 + Pana(Y/s)] (41)
n=1
Ra' = 1,47 Z Bany'aon 1[1 + Pana(Y/3)] (42)
n=1
Ry’ = 1/,G" Z BZn—l’BZﬂ—I[l + Pan_1(1/s)] (43)

n=1

Results and Discussion

For dielectric spheres with metal coating, the metal conduc-
tivity is three orders of magnitude higher than that of the dielee-
tric. The expressions for Ry and R;’ are reduced to those for
hollow spheres. When the wall thickness ¢ of a hollow sphere is
small in comparison with its outer radius 7., the two parameters
75/7 and 1/r, in equations (23) and (24) can be decoupled
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7o =, Bany
Ry = A (~) > (44)
t) = 2n
Y AL Bgny
R = A (t) nz=:1 o (45)

Predicted values of the constriction resistance of a hollow
sphere from equations (44) and (23) as well as the modified con-
striction resistance from equations (45) and (24) are shown in
Figs. 4 and 5. The curve ¢/r, = 1 corresponds to the case of a
solid sphere. It should be noted that a thick-walled sphere
(¢/7 > 0.1) has about the same resistance as a solid sphere. At
reduced wall thickness, the resistance is inversely proportional to
t, as indicated by equations (44) and (45). The result for t/r, = 1

also reveals that the series [(1 — z,)71 Z Bons [and 3 Boay
n=1 n=1

in equation (21) a_nd (22) can be treated as a linear function of

r./7s, S0 the constriction resistance of a solid sphere can be ex-

pressed in the following explicit form:

0.53

L= (re/10 < 0.1) (46)
fosre
0.64

R, = % (re/rs < 0.1) 47)
STG

It the constriction resistance of the sphere can be considered
as lwice the resistance of the circular contact area on 4 semi-
infinite body [7, 8], then it is equal to 1/yk.r, for an isothermal
contact area and is equal to 0.54/ks. when the heat flow on the
area is constant. The resistances obtained with thesé two dif-
ferent boundary conditions for spherical particles differ by less
than 20 percent, depending on the contact radius. However; for
small 7./7,, as in most practical cases, the difference is much
smaller [7]. The agreement between the present and the pre-
vious analysis is consistent with the assumption that the re-
sistance of a solid sphere is insensitive to the precise details of the
boundary conditions for small contact area.

For the special case of a thin-shell sphere; the heat flow can be
considered to be one-dimensional, having two isothermal contact
regions diametrically opposite to each other. It can easily be
derived that in this case B = (1/7ik,) In [1/tan (0,/2)]. A com-
parison between this simplified solution and the result of the two-
dimensional constant-flux boundary analysis indicates that their
difference is less than 5 percent for (¢/7,) = 10~% and 7./, ranging
from 10=3 to 10~2. This agreement further confirms the validity
of the eonstant-flux boundary assumption for hollow spheres.

It is of interest to see how the present analysis can predict the

4
10 . I ] T T T

. 0. _
- ————EQ. (23) > Q.05
—m—— EQ. (44) 'o
102 L L1 %2 7
103 5 2 3 4 6 89 42
re’ro

Fig. 4 Consiriction resistunce of a sphere
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Fig. 5 Modified conslriction resistance of a sphere

conductance of packed spheres from the fundamental system
parameters. Two limiting cases of compressive forces are to be
considered: (a) the system is under an externally applied load
such that the contact force is independent of the force due to
sphere weight and (b) the system is under no externally applied
load so the contact force is mainly due to the sphere weight. For
different packing patterns, the contact force I’ can be related to
the vertical force F, by a numerical factor Sr that expresses F, in
the direction of F. This vertical force can be the external load
in case (a) or the weight of the spheres above the contact in case
(»). Hence, for case (a)

P

"= 8Sp— (48)

To obtain an explicit form for the conductance of packed solid
spheres, certain simplifications must be made for the constituent
resistances f2;" and B3, Actual calculation of the resistance has

shown that the second term | 2 Z Bon_i"Poay(X/2) oF Z Bon )’

n=1 n=1

Pgnﬂl(l/a)} in equation (38) or (41) is of the order of (r;/7,)?, while

the first term is of the ovder of 7./r,. Thus for small r./7,,

Ry; = SpS;Ry’ (49)

where R’ is given by equaﬁon (47). S;jis equal to 1, 1/4 and 1/;
for j equal to 1, 2, and 3, respectively. Values of Sg for solid and
hollow sphere are presented in Table 1. From equation (35),

there follows
1— w2 \Ve
ki = Spks ( 7 P)

where S, is a constant depending on the packing pattern only
156
B S&S;

(50)

Sy (No/N )(0.758pr,/No)'/?

(61)

Values of N, Ny, the solid fraction s, Sj, Sr, Sp and Sy (de-

Table 1 Values of Si for hollow and solid spheres

t/re 0.001 0.005 0.01 0.05 0.1 0.2 1
Te/To

0.001 0.9384 0.8726 0.8479 0.8230 0.8201 0.8191 0.8252
0.002 0.9549 0.8955 0.8569 0.8071 0.8030 0.7984 0.8193
0.004 0.9582 0.9263 0.8831 0.8171 0.8489 0.8447 0.8207
0.006 0.9569 0.9380 0.9081 0.8664 0.8532 0.8236 0.8334
0.008 0.9554 0.9431 0.9192 0.8732 0.8339 0.8395 0.8280
0.01 0.9538 0.9453 0.9256 0.8588 0.8372 0.8415 0.8331
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Table 2 Basic parameters for different packing patterns

Simple cubic

Body-centered cubic

Face-centered cubic

1 V3 V3
N o, ar, 2v3r,

1 3 1
Na 4r,2 167,2 2v/3r,2
s, 0.524 0.680 0.74
S; 1 /s s

3 1

Sr 1 \/T Ve
S, 1.36 1.96 2.72
Sy 0.452 0.713 1.02

fined later) for the three regular packing patterns are presented
in Table 2.

Closed-form expressions such as equation (50) for hollow
spheres are not available. However, the conductance can easily
he obtained by realizing that it is related to the constriction re-
sistance and thus to the contact radius r,, which is expressed in
terms of P and other system parameters, Fig. 6.

Sample calculations are carried out for aluminized and un-
coated borosilicate glass spheres. Poisson’s ratio and Young’s
modulus for glass are 0.22 and 5.51 X 10" N/m?, respectively.
The thermal conductivity for aluminum at 200 deg K is 2.37
w/em-deg K and the corresponding value for glass is 9.51 X
10~% w/em-deg K. The large difference between the two con-
ductivities suggests that a composite sphere, for example an
aluminum-coated (500—;& film) glass sphere of 100 u dia can
be treated as a hollow aluminum sphere with #/r, = 0.001.
The predicted values of the conductance of three different packed
spheres under compressive load, as well as the experimental data
of Cunnington and Tien [4] for a 50 percent (by weight) mixture
of 44- to 135-u aluminized spheres and uncoated spheres, are
shown in Fig. 7. The conductance of the mixture is expected to
be between the predicted values of the aluminized and the un-
coated spheres. In view of the variations in sizes and the uncer-
tainties of the porosity and the wall thickness of the spheresin the
test, the predictions of the present analysis did correlate well with
the experimental data.

For the case of zero external load, the force on each contact is
equal to the weight of the spheres above it. The contact resist-
ance decreases with increasing depth from the uppermost surface.
If the weight of each sphere is w, the series resistance of a bed
of thickness L is

i PACKING: ]
SIMPLE CUBIC |

BODY CENTERED cuBIC
I~ ——-—— FACE CENTERED CUBIC A

Lt | Lol 1 L1
0% 10
P (N/m?2)

L1l ! 1

10‘4 1 1

Fig. 6 Contact radius of borosilicate spheres under compressive loads
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Rseries =

. 2 /3 LN
1.065; 4r,2E 3 Z’ o (52)
kD 3(1 — udSrw =
The summation term can effectively be approximated by an in-
tegral, especially where LN, is large. Considering N, resistance
in parallel, the conductance of the bed is

1 - /"'2)PIVIL Vs
ki = Sw <T ks (53)
where
ISFl/a IVa
Sy = 1.143 ) '
" ( S, ) <Nf/“>’ 60

Although equation (53) has been derived assuming solid spheres,
it can be applied for thick-walled spheres. The conductance for
thin-walled spheres can also be predicted by following similar pro-
cedures as used in the case of compressive loading. The condue-
tance of thick-walled borosilicate glass spheres predicted from
equation (53) is sbown in Fig. 8. An order-of-magnitude com-

-2
10 — T — ]
A EXPERIMENTAL DATA BY ]
B CUNNINGTON AND TIEN [4] 1
1073} ]
= 3=
o - ;E-gglzx 10 N/m2 :'2/
2 =5 -
50 1
~ = i 1
= i —-j=3m
o —_—fz2
-
-5
1079} W N
r -2 t/r k5<cm°K> ]
L SOLID 1.0 0.951x1072 |
—-— HOLLOW -0.0 0.95IxI07?
o emm——e- ALUMINIZED HOLLOW 0.00! 2.37 1
10-6 ! e L Lot 1 [ L1
10' 102 103 Tou 105
P(N/m2)

Fig. 7 Conductance of aluminized and uncoated glass spheres under
compressive loads

T T T I T

| 0 EQ.(56) p =2.72x10° kg/m3, 1/r,=0.08 _
= Y 3 =
201 E 5.5|x|03 N/m3, p=0.22 |
B kg =9.51x 1072 W/emeK i
e
S |6l & EXPERIMENTAL DATA BY -
E CUNNINGTON AND TIEN [4]
e .
o
E -]
O

0.6 0.7 0.8

SOLID FRACTION -8

Fig. 8 Conductance of packed spheres under no external load
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parison between the predicted values and the experimental data
of aluminized spheres further establishes the reliability of the
analysis.

Concluding Remarks

A method has been proposed to predict the conductance of dif-
ferent spheres in terms of the fundamental system parameters.
Tt has been shown that the present proposal agrees well with
available experimental data for the two extreme loading condi-
tions. Two important points should be noted: first, the con-
ductance in both loading cases depends on the thickness ratio
/7, but not on the sphere diameter; secondly, it is directly pro-
portional to the conductivity of the material. Finally, it should
be pointed out that the conductance derived in this paper will be
a fundamental parameter for a complete analysis of heat transfer
through evacuated microsphere insulation when both conduction
and radiation are important.
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1 Introdustion

A RIGOROUS SOLUTION to the problem of determining
the temperature distribution in a composite (laminated) material
subject to harmonic boundary excitation, where matrix and filler
are stacked perpendicularly to the heat flow direction, Fig. 1(a),
has long been available in the literature, see, e.g., [1, 2].2 The
solution has the advantage of enabling one to establish equivalent
thermal properties in terms of which the problem of the laminated
slab may be solved (in the case of reasonable boundaries?), as for
a slab of homogeneous material of properties

S, 17

kav = [k— + —':I_l (pc)u.v = f(PC)F + (1 - f)(pC)M
3 kar

Yoy = kav/(pClav  (la)
Here %, (pc), and » denote conductivity, heat capacity, and dif-
fusivity; f/(1 — f) represents the volumetric ratio of the F (filler)
material to the M (matrix) material. The dual problem, Fig.
1(b), where the layers are lined up parallel to the heat propaga-
tion direction, does not seem to have been similarly considered.
In the present paper we plan to make up for the deficiency. We
determine the thermal mode structure of the temperature diffusion
problem where the boundary temperature excitation is harmonic,
of frequency w (Dirichlet’s problem). We again establish
equivalent thermal parameters. In fact, we shall demonstrate

! Presently with the Corporate Research and Development Center,
General Electric Co., Schenectady, N, Y.

2 Numbers in brackets designate References at end of paper.

* An unreasonable boundary would be one, for example, that en-
compasses a long narrow strip containing two layers of I and one
layer of M material.

Contributed by the Heat Transfer Division for publication (without
presentation) in the JourNaL or HeaT TRANSFER. Manuscript re-
%tliived by the Heat Transfer Division March 8, 1972. Paper No. 73-

T-R.
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Transient Heat Conduction in
Laminated Composites

The layers are stacked parailel to the x axis.
at x = 0, a boundary temperature of y-periodicity conformaing fo the periodicity of the
The response 1s determined in the form of @ normal mode expansion.
A complex ergenvalue problem must be solved first, then the Fourier coefficients are de-
termined from a biorthogonal expansion formula.
and the imaginary parts of the prescribed input simultaneously. It is found that al low
frequencies and not too small distances the static equivalent thermal constants kav, (pC)av
are applicable also in the non-static problem. This ceases to be true at high frequencies.

On the half-space x > 0 there is applied,

The series converges to both the real

y
7 3
i 2mUM - M
{ | | :
(tf) T
vt v | SRS A w——
[ 1 : (-f)m
. | ! »x o —- M—p X
[¢] m 2w |37 .
' | -(-f)y T
TR 7
(a) (b)
Fig. 1 Laminated material stacked {a) perpendicularly and (b) parallel to

the direction of heat flow

that the appropriate low-frequency formulas are the familiar
static (w = 0) formulas* (when higher mode shapes don’t domi-
nate the boundary temperature distribution®

kav = fhr + (0 — Pk (pc)av = floc)r + (1 — fXpc)a

Haov = knv/(pc)nv (]-b)

In Fig. 1 and in the sequel we use, for convenience, a length scale
whereby the stacking distance is assigned the value 2w. The
problem presented by Fig. 1(b) is inherently more difficult than
that presented by Fig. 1(a) (where invariably it is assumed that
the boundary excitation has no y-variation). Fig. 1(a) repre-
sents a one-dimensional problem, whereas Fig. 1(b) represents a
truly two-dimensional problem.
Referring to Fig. 1(b), we seek the solution

T 0y —NHim
Tr A—-—fim<ysn

(2a)

= (2b)

4 The question of the range of validity of equivalent constants is
raised with respect to elastic wave propagation in a layered medium,
asin Fig, 1(b),in [3].

5 When higher modes dominate, then the additional restriction to
large distances must also be made.
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ot -0l | ! 2 3 5 710 yalue equation (11) for f = 1/5, a = 1/,, b = 5; dashed lines: by

Fig. 2(a) Moduli R and phase angles § of the roots z;, z; of the eigen-
value equation (11) for f = 1/;, @ = 1/, b = 5; dashed lines: by
power-series expansion to y! terms (linear approximation); full lines:
by numerical solution of eigenvalue equation; curves go with scale on
left side unless otherwise indicated

Tule, y, 1) = e oy, y)  Tr,y,t) = ¢ “wrl, y)

(2c)
of the temperature problem
y=0,m 0T/oy =10 (3a, b)
y=01—=Ffim: Ty ="Tr kx0T /oy = kpdTr/0y (3¢, d)
= T=0 x©=0 T=_¢ ) (3e, 1)

(we assume that temperature boundary conditions are prescribed
at # = 0; x(y) represents the y-distribution of this boundary
temperature), governed by the equation

, 102 o
V‘Z,& T=0 j=MF (4)

or, equivalently, by
(V2 + ip;Jw; = 0

since we restrict ourselves to harmonic excitation.

In Section 2 we set up the complex eigenvalue equation (11).
In Section 3 we establish the biorthogonal expansion formula
(20). In Section 4 we relate our results for the zero-frequency
case to the solution of Concus [4, 5]. In Section 5 we outline
the solution of the eigenvalue equation (29) by Newton’s iteration
method in a form immediately adaptable to a digital computer.

In Sections 6 and .7 we establish a normal mode solution of the
temperature distribution in the composite, expanded in powers
of the frequency, and verify that on retaining only up to first-
power terms in w we may indeed use the static equivalent con-
stants (1b) to describe the temperature behavior of the com-
posite. But for higher frequencies this equivalence is no longer
admissible.

In Section 8 we give some numerical examples and rvesults. In
Section 9 we summarize the mathematical highlights of the
analysis and also comment on some practical uses that can be
made of the results.

Pi o= W/, (5a, b)

2 Complex Eigenvalue Equation
We seek solution of (5) in the form of product functions®
A=A+ TN
(6a, b, ¢)

wak = e Mo(y)  we = e MY(y)

Placing (6) into (5) gives (prime denotes y-differentiation)

8 This is not the only way, of course, to approach the problem.
One may, for instance, seek a solution in the form of a Fourier integral
and then convert this into a normal mode expansion, as is done in [6]
in a different context. Seealso [10],
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power-series expansion fo »1 terms (linear approximation); full lines;
by numerical solution of eigenvalue equation; curves go with scale on
left side unless otherwise indicated

o+ NE ooy =0 " N2+ ipre = 0 (Ta, b)
subject by (3) to the boundary conditions
y=0 ¢ =0 y=m ' =0 (8a, b)
y=0—fm: o=9¢  kup' = kry’ (8¢, d)
Solution of (7) subject to (8a, b) is
zk’
s = s = By < — 9
= Qi 005 Ty /8 kcosl_f(r ) )
where
2 . 2" .
M2 = (1+f)2 — Py = m — ipr (10)

Consistency with (8¢, d) requires that the determinant of the co-
efficients @, & vanish:’

cos 2T — cos az'mw
0= kar —2 Siner kr ¢ sin az'm
1-f 1—
kar
= {7 cos zw cosaz'm; A (11la)
Here
A = aztan zm + bz’ tan (az'T) (12a)
= mYaf tan § 4 b’ tan al’) (12b)
a = f/(L = f) b = akr/ka = er ¢ =2'm (13a)
Furthermore
® = cos {/cos a{’ (13b)
and we may relate 2’ to 2 by (10), through the formula
a=at+w  v=0-Npr~-pu) (l4a,b)

v is a new frequency parameter. For convenience, it also will be
referred to as frequency.

Tt is readily noted that if z; and 2" satisfy the eigenvalue equa-
tion (1la), then so also do —#, ~—z:’, but not the conjugates.
%, and %’ satisfy the conjugate problem whereby in (7) 4p; is re-
placed by —p;.2

7 We omit subseript & in (11)—(13), (23), (26), (28)~(35), (47)-(48),
(56), and (69) for the sake of simpler writing, and place Gr = 1.

8 This comment will be amplified in Section 9. Note that there is
really only one independent set of eigenvalues, viz., zx. But it is
convenient to refer to z’, related to z; via (14a), also as an eigenvalue,
and s0 also to {x, {%’ related to the former via (13a), perhaps even to
Az related to zx, 21’ via (10).
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eigenvalue equation {11) for f = /5, @ = 1/5, b = 5; dashed lines:
by linear approximation; full lines: by numerical solution of eigen-
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In the limit of vanishing frequency the roots z, z;’ coalesce
and become real, and so do the decay parameters Az:®

v = 0: 15)

)\Ic = )\kr = 2 = '

Since decay exists, z must be positive in the » = 0 limit. By
continuity, zx, 2" must be chosen with a positive real part also for
w # 0. From Figs. 2 and 3 it will be noted that the appropriate
roots zx are in the fourth quadrant; the roots #; are in the first
quadrant.

We may rewrite the eigenvalue equation (11a) in the form

wA = af tan { + b{’' tan a{’ = 0 (11b)

Observe that the vanishing of the factors cos ¢, cos a{’ in expres-
sion (1la) does not contribute eigenvalues, because they are
offset by the corresponding denominators of tan {, tan a{’ in
(12). Indeed, suppose that cos { vanishes while cos a{’ does not.
Then { = (n + 4)r (n = integer) and sin { = 1. Hence,
omitting the factor ki /f, (11a) becomes

af cosaf’ =0

which implies { = 0 in contradiction to { = (n + 4)r. When,
on the other hand, both cos { and cos a{’ vanish, then { = (»n +
#imand al’ = (m 4+ L)w.  Consequently, al’ — { = (m — »)m,
whereas by (14) this difference must contain (for » ¢ 0) an imagi-
nary part.

3 Biorthogonal Expansion Formula

Let 2o, 21, 23, . . -, be the sequence of fourth-quadrant complex
eigenvalues of A = 0, arranged according to ascending moduli
(at v = 0), and (o, Y), (@1, Y1), . . ., the boundaty temperature
pairs associated with these eigenvalues. Introduce furthermore
the boundary flux pairs

(Br, Vi) = (kseon, krifs)

We omitted the irrelevant — Ae ~ % factors on both sides of (16).
Multiplying (7a) by kue: and subtracting the equation that re-
sults when the k and [ indices are interchanged, there results

(16)

karlowor” — oupr”) + (N2 — NBkuerpr = 0
0y £l ~Sfir (17a)

Likewise

ke —~ e’ + O ~ NBkridn = 0
I -fimgy <7 (17D)

® We shall find it convenient to refer to A as the decay parameter, Ar
as the decay constant, and A; as a phase-shift constant.
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It follows that

A-nr . ‘
A — N2) [f Dyorndy 4 f ‘I’z‘pkdy:l
0 (1—f)r

= kaf{owor’ — orpr'} ymo — ke{ g’ — \[/kl//l,}ymw
~ {kulor’ — orpr’) — ks’ — ¥t M y—aona  (18)

But the boundary terms vanish in the light of the boundary
conditions (8). Hence, for the case of non-equality of eigen-
values A\i, A;, biorthogonality of the function pairs follows:

k=l (on ) L (P, 1))

The expansion formula for w(z, ¥), where w(0, y) is specified as
x (y), thus becomes

(19)

5 e 2@ 0 Sy A= fim
w9 = 3 G [Wy) A —frgysn 20
where
A= ™
f x ) Pu(y)dy + f x @) ¥ily)dy
G = 5= o 1 (20b)
f or(y)Puly)dy +f Dy YWy )dy
] A=
For the particular case of
w(0,y) = x(y) = 1 (21)

with which we shall be mainly concerned, one finds, noting that
by (9) and (13)

2y cos {x zk'(ﬂ; ~ )
= = —_— 22
o cos1—~f Ve cos a{x’ 1-7 @2)
the expression
A=fir L
kar f eondy + kr f Vidy
_ 0 aA=hHr
Cr = - A=fn - ‘ (23a)
koar f er*dy + kr f Uiy
0 A~f
i—7 . 1-
378 fsin§'+kp z,f(Bsinag"
z .
B 1—~7f : 1-7f ' 1 !
ke e [2¢ + sin 281 + ke ™ ®2{2a¢’ + sin 2a{’]
z
(23b)
44v sin { ©3¢)

~ v sin 20 + 2(¢¢2/m2)(A -+ b cos? {/cos? al’)

In the last step we have also used (13b), (14), and (11d).
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4 Concus’ Zero-Frequency Solution

We write!®

e =
&’

At the frequency » = 0 all roots of the eigenvalue equation (116)
are real; the equation A = 0 then acquires the form

(x + ty)m = Xi + Vi = Rue'fer
(o' + ) = Xk/ 4+ 1V = Rklemk’,,r

Z}ﬂl;

(24)

It

'm

= g/

y =0 x o tan zm + b tan axw = 0 (25)

This equation has been studied by Concus and Olander '[4],‘ and
the roots have been tabulated by Concus [5] for ¢ ranging from
0.001to 1.000 and b rariging from 0.001 to 1000. If in any given
problem @ is assigned a value greater than one, we merely inter-
change the roles of F and M, and a is brought back into the 0 <
« < 1 range. )

Of particular iriterest is the limiting case

Ff=% a=1 (260)

where the roots

a=k/2 k=012... (26b)

are seen, by [4], to Be independent of b.  The solution (26b) of

a = 1: tanar - btah xr = 0 (26¢)

by

22, = k = odd integer (27a)

is not a contradiction, by virtue of the fact that the functional ex--
pression

tan km/2 = £ (270)
is doubié—valued.
5 Solution of the Eigenvalue Equation A = 0
Let
F=5-Lif= R & =g fif = Re?  (28)

be a truly approximate (i.e., non-exaet) solution pair of

, z sin 2zm — y sinh 2y7 - i(y sin 2#7 + =z sinh 2ym)
Az, 2') = ¢ -
cos 2xm -+ cosh 2ym

+ b

x' sin 20z’'m — y' sinh 2ay'm + i(y’ sin Qum'm +

Alternately, starting out with

(34a)
we find

=2+ €2/ ¢ = —A/maz' D, 2') (34b)
In accordance with Newton’s method, the process is then iterated,

Moduli and phases of the roots 2y, 2/, 21, and 21" were calculateq
for low frequencies (v < 0.1) by the series expansion method of
Section 6 in the linear approximation (i.e., terms up to ¥! wepe
retained); this is shown in dashed lines in Figs. 2 and 3. The
curves obtained were extended to the right and provided firsg
guesses for roots associated with » > 0.1. The € or €' scheme
was used (programs EPS and EPSP, based on polar inputs ¢f
%, 2'), whichever was found to be more promising. (In fact, for
k = 0 the EPSP scheme turned out to be more favorable; for
k = 1 usually EPS was preferable.) Invariably it was found thag
Newton’s iteration scheme diverged, but the printouts gave sue-
cessive values for z, y (also z’, ') as the iteratiohs progressed,
By averaging the first two printouts, better initial estimates were
obtained, and work then continted with programs EPSCAR or
EPSPCAR using cartesian inputs but otherwise identical with
EPS and EPSP. After about four or five such averagings, the
result was within Speciﬁéd aceuracy (five decimals for » < 0.1,
four for 0.1 < » < 1.0, three beyond » 1.0). This was
mainly the procedure for the zo root. In calculating z: the ad-
ditional difficulty arose that the initial guess Z (or 2’) had to be
very accurate (accurate to three or more digits) before a consistent
divergence scheme could be reached. (Consistent scheme: one
where the first iteration gives results in the same quadrant as the
initial guess and is within a factor of two of the initial guess.)

For high ¥ (v 2 100) and also for &k > 1 the guessing game he-
came quite laborious and further computation work was aban-
doned. (It is planned to reconsider the computational aspects
more thoroughly in a later study, replacing at the same time the
specified swrface temperature distribution condition by the condi-
tion of specified heat flux (10].)

On the other hand, one must not expect the present method to
be usable at very large v, for we cannot with impunity place w =
o in (5), to wit, in

' sinh 2ay'r)

cos 2az’'T 4 cosh 2ay’m
Then the residual
A=A ) (30)

does not vanish. But let the departure € fron the true value of z
be small:

r=f+e ezt (31a)
Correspondingly,
2= [+ et W] i o ez (31b)
Plécing these into (115), we find the first-order correction
€ = —A/razD(z, 2') (32)
DGz, #) : tan 2w b tan az'r 2
2 az'm 1 + cos 2zm
2b
(33)

1 4 cos 2az'm

19 The present @, y symbols should not be confused with the symbols
&, i of the coordinates in Fig. 1 and elsewhere.
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0 (29)

—i;cjw‘iV% +w =0 (35)

The equation must be propetly treated as a singular perturbation
problem in order to explore the nature of the solution near w = .
Tt is also planned to carry out this other study in the near future.

6 Low-Frequency Estimate of the Roots
Sinhce the fundamental root Ag of A = 0 (or, in the light of
Ao? 2?/(1 — ) — ipar (36)

the root zo of A = 0) dominates the behavior of the thermal wave
at large distances & (irrespective of w), it is desirable to provide
an explicit formula for it. This we proceed to do in the low-fre-
quency limit. Let

fo? = (20m)? = dvTan + ViTmion + 3T + vimtay 4 ... (37a)
Then
$o? = (T = (20 + vywt = B+ vimion + wintas + ..

Br=14+ a1 (37b)

Transactions of the ASME

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



On placing the {o?, {o'? expressions into For the root z? itself, one has the estimate, to ovder »Y,
mA/a = { tan { + (b/a)” tan af’ @8a)  |af* = law| = A — 1Ylpr — pulks'/ker < |pr — D] (460)

1 2 Therefore
R SR (SRR T ORI (SR L SO PP

(38)

|zl < 0.1 when |pr — pu < 0.1 (46b)

This represents a rough estimate of the range of validity of a first-
and equating the coefficients of successive » powers to zero,' one power appre oximation.

obtains, using the notations For higher roots we write the three-term approximation
kat’ = (1 — kar kr' = fkr kav = ka’ + kp’ ¢ =2 = (z + v + Vi) = X + v + v2Gs
ke = flar kr = (1 — Nkr =Ty +kr (39) ' =2T=(@"+wh+vhr =X+ wH + rH, “7a,b)
the results By idenfifying fhe second expression with '
@ = =D/ +b) = k' B = 1/ + b) = k' s RV e
o = bb + a?)/3(L + b)Y = kr'kark/3kat 26 8ge
a = (2/45)b(a? + B)B(L + b)@? — b) — Bba® — 1)}/ and using the notation (51), one finds
(14 by = ~(2/15)0n0:0 X' =X m=H =G+ 72X = (g + 1/2z)r
1—a 2 1 — 9f ks haw = Hy = Go + Gir?/2X* 4 4/8X° |
o= T (Z”): U= 7l = @+ /20 + 1/80)
b (k_u - 1> “0) tan § = ¢+ G+ ) + G — G + 2)
T tan a{’ = ¢’ + waH,(1 + 1'2) + v2(aH, — t'a?H,?)
One therefore has, for the fundamental mode, X (1 +7) (48)

- A2 = N2 — )2 N = g 2 — )2
Nt = (A + 2N As A+ 20NN i + 20?/(1 = ) Placing these expressions into (38a) and equating the coef-
= —ipy + [ivmion + vimia + wirias + .. /(1 — f)r? ficients of successive » powers to zero, one obtains (the first of (49)
(41a) is the Concus equation, the roots  are tabulatéd in [4 1)

[ 10 =0 at+ bt =0 (494)
. 1 ]CP L ’1_ _ 41b -
=T g - kow \Jtn e = e/ (410) L — Xb(1 + %)

[ ]t - 0: G = o T 4t + b+ 17)
Maw = kue/(PClav  (pC)av = {1 = f)lpe)n + flpcle (42) ‘

(49)

in accordance with (1b). Expression (41b) is appropriate in the [ =0 G = |:X (tGlZ(l + &) + l_’aﬂlzé,(l + tlz)]
! approximation.’2 Furthermore, because A? is pure imaginary N \ ]
in the v! approximation, also G+ ) + bHR(L + 1) — (gl;'z + 87r\’3>
A= N o= (@/20000) |>\[ /N2 43) ' : " ’
b ’
Since oy is positive, one obtains in the »? approximation?? x {(1 + X + o v ’ :l/‘\{l + &+ b(l + ¢ (49¢)
/A2 > 1 [2Mhe/N7 =1 (44a, b) )

while in the »® approximation the imaginary part of A? is in- 1 LOW Frequency Expressmﬂs of the Expa"sm" coemmems

ereased (reduced) when ¢ 2 0. Thus We restrict ourselvés to the uniform boundary tempelabme
x(@) = 1, as in (21). Then, expanding (23¢) i in powers “of ¥ up

@ 2 0 implies ]27\9\,/7\2[ <1 (45a) to quadlatlc terms, we ﬁnd using (37),
By expression (40c¢) the condition for a3 2 0is 0 : . , 1 1a24b
Lo Bk +w’r“‘<3+'§1+b)
0 % 0: (1 — f) 5 —k—F%;— (4:5b) - { L
\‘ +V27r4|:—~a1+<——§baz>az
1 The strueture of these coefficient equations is 1 11 1' + b
mwl {1+ blar + {b} =0 { +a (d_f(ﬁ)]qlz_ : a
a2 {1+ blae+ | Jau? =0 360 4 12 2
woy3; {1+b}_¢xa+ { Jtawar+ { }Jai® =0 3\ 1° 1+ 9a% — 10a* .
............................................................ - lz+b<a2———>} o —"Tal'

where { |} are real coefficients. It follows that all ap are real. .
Therefore it also follows that, on reversing the sign of » in (37a), one (1 — a¥a? — (1 + blas)?
obtains the expression of {2. The term »0r?as, when 1ncorp01ated into - {“/ (50)
(37), leads to a »9 equation {1 + blao = 0. Thus ao = 0, and may 2
be suppressed in (37) ab initio, as we have done. o

2In the »? approximation the equivalent diffusivity assumes a For k 2 1 we use, in conjunction with expressions (47), the
form Heq = av[l -+ ©F(w)]where the asr? correction term gives rise  notations o
to fr equency-dependence.

'3 BEquation (44b) follows from the fact that A? is now of the form g = gin X e = cos X { = tan X ¢’ = cos aX
M = {Bw + Aw? (B = —1/xy); hence iBw = N2/(1 ~ {dw/B) ~ i o
N(1 + 54w/ B), and therefore | Be| = |2\:\,] =~ |A[2. ¢ =tanaX 8 =sin2X (51)
Journal of Heat Transfer aucusT 1973 / 313
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One obtains, to quadratic terms in » (we omit subseript 1 of G, H)

2mrts

= X1+ ber/e]
e:

1n2S + XUG + 2H)(L + ber/c'?) + 2X%(ct/c'2)(aHl' — Gb)

vy — p2 {—
X[w V{'t

A seeming indeterminacy arises when ¢/¢’ = 0/0. This happens

X3{1 + ber/e'?}

when
X = mw/2 aX = nw/2 m and n are odd integers (53a)
Then one arrives at the value
(c/c')? = c¥(1 4 1'2) = ¢? [1 + (% tan X>2]
l = ¢+ (a/b)2s?® = (ku/kr)* (53b)
8 Examples
| f= 1/3, kefkyy = 10; a=1/;, b=35
Then ‘
o = —0.8333 oy = 0.0405 oz = —0.0102
0 = —2.225
X = 0.52907 = 1.663 = 95.2°
Xz = 14710m = 4.622 = 264.8° X3 = 2w
Xy = 2.52907 = 7.942 = 95.2°
X5 = 3.4710m = 10.91 = 264.8° X = 4n
Xy = 4.5200mr = 14.24 = 95.2° Gy = —0.396
H, = 2.573 (54)

and to second-order terms in ¥

Co =1 — 3.775vi — 839450  C) = 3.92vi + 8.458450
Cy = —0.184r5 — 0.085437*
Cy =0  C4= 0.036v5 4 0.00260p2
C5 = —0.014005 — 0.00141»* (5 = 0
‘ Cy = 0.0063¥7 + 0.000070% (55)

We find t_hat .

7 .

> Ck = 3.774vi + 8.3743p? (56a)

.1

which indieates that the departure from one in Cj is just cancelled
out by the higher €. Thus

i Cr =~ 1.0 = x(0) (57)

0

as it should be.!* In Figs. 2 and 3 we plot, versus », the linear
approximation (in v} to

By = ‘Zk!

Or = arg z; By = fzk'f 0 = arga’ (58)

in dashed lines and the results based on Section 5 in full lines.
Where the two curves coincide, full lines are drawn.

n f= 1/2, kp/kM =10; a=1, b = 10
Then to »* terms

’ . kmr
o = —0.910 Co=1— 4491 X = )

(c/c') = 1/b% = 0.01 (59a)

" Note that Concus’ tables are not quite accurate enough for our
purpose. For instance, if we changed X1 = 0.5290 to X1 = 0.52895,
then the »2 coefficient in Ci would change to 8.3988.

M/ avcust 1973

e

Hence
Ce=0 k=2046,...
Cy = 4.63vi Cy = —0.171vi Cy = 0.037vi
Cy; = —0.0135v2 Cy = 0.0063v7 (59b)

and, to first-order terms,

9
3 Ci = 4.496vi (60)
1

m f=2/, kp ky = 50/3; a= 2, = 100/3
This example puts us outside of the range of Concus’ tables,
The eigenvalue equation now is

2§‘tan§‘+—1g—0§"tan2§"=0 (61a)
Let
=20 {' =20 (61b)
Then
L & tan &' + 3 $tan £/2 =0 (61c)
2 100
Concus’ tables are now applied with
d=1, b=003 X=2%X/2 (62)
One obtains to v! terms
X = 1403 = 80.38° X, = 1.739 = 99.60° X; =
A X, = 4.55 = 260.8° Xy = 4.880 = 279.6° (63)
and we find to ! terms
a = —0970 oy =1—506ri O, = 346w
Cy= 18w C=0 Cy= —0.1160  C; = 0.0824u
i Cr = 1.0 (64)
0
9 Summary

Mathematical Features. The salient mathematical feature of the
two:media thermal wave problem is the biorthogonality of the ex-
pansion of a given execitation (be it real or complex) into complex
eigenfunctions and the association of the latter with complex
eigenvalues. In contrast, the seemingly more difficult stress
problem [3] calls for a real eigenfunction expansion only. Another
somewhat unexpected feature (if one judges by past experiences)
is that the task of determining the zeroth eigenvalue is non-
trivial and requires effort comparable to that required for the
higher eigenvalues. A further interesting observation is that
the modulus of an eigenvalue z; does not necessarily increast
monotonically with the frequency ». For instance, in the rang
0 € 7 £ 1 the modulus of the first eigenvalue varies from 0.528
to 0.500. Beyond » 1 |z1| increases again. Still another
surprising result is that while we labeled the eigenvalues as 2o, %
2y, . : ., in order of their ascending moduli at very low frequencies
this order does not necessarily maintain at higher frequencies
For instance, by Fig. 2(a), in the range » ~ 2.7 to » ~ 20 the ro¢!
2 has a lower modulus than z,. Nevertheless, it is proper to refe]

“to the function pait ¢o(y), Yoly) associated with 2o as the funds
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mental mode over the entire v range. Indeed, it must be re-
membered that the physically important parameter is not 2, but
the decay constant Mg, (6c). And this, considered further below,
behaves as expected, see Fig. 5.

Since in our numerical Example I, to which Figs. 2 and 3 per-
tain, kar/kz = 0.1 (our numerical results in this section will all
refer to Example 1), it follows from the definition (146) that

— (1 = an/r)puc(l — [P (65)

vV =
is a negative quantity when s /27 < 1, which is the case for

(pc)u = (pc)r (66a)
For then

s /r = kae/kr (66b)

as we now assume. We may retain all our previous results if in-

stead of the temperature distribution (2¢) we now contemplate
T = ¢z, y) (67)

Le., we reverse the sign of the frequency,
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Q= —w (68a)
and correspondingly also introduce the frequency parameter
P=—p=8/x (68b)
For then
v = (1 — nu/re)Pu(l — ) (560)

is a positive quantity.i®

Physical Features, The imposed surface temperature profile
x(y) (which, in practice, is essentially constant over the width of
several laminae) gradually distorts, as it propagates down the
composite, into an assembly of nonuniform normal modes that
die out at various rates. Tig. 4 plots, for the conditions
of Example I at » = 0.1, 1.0, and 10.0, the most persistent
mode, @o(y), Yoly). Of greatest concern is the question: s the
rate of decay fast enough to prevent occurrence of significant thermal
siresses due to this nonuniformity and to preclude the risk of
delamination? This entire aspect of the problem deserves further

15 Alternatively, by the remark in the paragraph afte.r (14), we
could retain v as a negative quantity and continue to use Figs. 2 and 3
drawn for positive » by merely reversing the signs of 6, 8.

aucusTt 1973 / 319

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



exploration. (So also does a correlation with other related work
in the composite area such as [7, 8].)

The decay constants Aer, Ai» are plotted for the specifics of
Example T in Fig. 5. Recalling (10), (60), and (65), one may
write'®

(A = DO+ N) = [22 + iPy(1 — )Y

v /2
=[a;2-—y2+i 2oy 4 —————— = say,
1 — sm/nr

(£ + )Y = [(VE F 92 + £)/2]'

+ ibgn MIVE + 2 — £)/21 (89)
In particular, for
v = 0.1: 2 = 0.209977 — 0.200705%

= 0.290470 f—43.7067°

' = 0.099939 + 0.0786147 = 0.127153 |38.1891° (704)

one obtains
&+ in = 0.00381 + 0.0268: Ao = 0.1865 + 0.1620¢ (70b, ¢)

Had we proceeded in the alternate way suggested by footnote
15, not adopting (67) but retaining the (2¢) expression, and ac-
cordingly used

%o = 0.209977 + 0.200705¢ (71a)
appropriate for a negative v, we would have found
& + in = 0.00381 — 0.02687 Ao = 0.1865 — 0.1620¢ (71b)

This reflects the fact that a switch from e='! to ¢ leaves the
decay rate unchanged but introduces a phase reversal.

18 The formula in the second line of (69) is stated on page 17 of [9].
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Fig. 5 provides another important observation. The low.
frequency approximation to Ao, (dashed line) is above the rigoroyg
value (full line) for » > 0.4.  Thus, use of the static values of the
matertal properties gives an exaggerated estimalte for the rate of decay
when v 18 not small enough.
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o.m. currn | Heat, Mass, and Momentum Transfer During
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ey | the Melting of Glacial lce in Sea Water
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The velocity, temperature, and concentration distributions near a melting surface of
glucial, or pure, ice in saline water are determined for laminar flow conditions using
integral techniques. Estimates are mude of the relutive thicknesses of the momentum,
thermal, and mass diffuston boundary layers for a variety of the appropriate flow and
thermal parameters. 1hese findings are applied to the melting of glacial ice in sea
waler, but they also are applicable to other systems in which heat, mass, and momentim
transfer occur simultaneously with phase transformation. The speed of sound at con-
stant pressure in sea water 15 a function of temperature and salinity, and the variation
of sound speed with changing environmental conditions plays an important role in
underwaler acoustic propagation. The results of the heat and mass transfer analyses
are employed to determine the sound speed profiles within the temperature and salinity
boundary layers near the melting glacial ice for free-stream water temperatures of 5 and
10 deg C.

Introduction in which these transport processes occur simultaneously with
phase transformation.

Tms HEAT TRANSFER PROCESS near a melting flat
surface has been investigated by Yen and Tien [1]! and more re- Prohlem Formulation
cently by Pozvonkov, Shurgalskii, and Akselrod [2] under condi-
tions of laminar flow and forced convection. The former study
is concerned with an extension of the classical Leveque solution
to the melting process, while the latter is a more refined applica-
tion of the Karman-Pohlhausen integral method. It is instruc-
tive 1o apply the latter energy-balance type of integral solution to
the transfer processes that simultaneously occur during the melt-
ing of an iceberg in sea water, and to estimate the rate of melting
and the relative thicknesses of the momentum, temperature, and
salinity boundary layers in a simple model situation. The results
are applicable to the determination of the changes in sound speed
near a melting iceberg, since the speed of sound in water at con-
stant pressure is influenced by changes in temperature and

The melting problem is formulated by considering the bound-
ary-layer equations (4] for simultaneous heat, mass, and momen-
tum transfer. The phase transformation is assumed to occur
under steady-state conditions, so that o coordinate system fixed
to the melt interface is appropriate. This is a valid approxima-
tion for a large body such as an iceberg. The fluid phase is
further assumed to be of constant density, and the assumption of
a pure solid phase ensures that the results will be applicable to
the melting of glacial ice. Physical properties that appear in the
governing equations are considered to be constant for the system
outlined in Fig. 1. The governing equations in the absence of &
pressure gradient are:

selinity (3]). The present analysis also accounts for the subcool- continuity
ing of the solid below the melting temperature and the effect of ou o)
this subcooling on the heat and mass transfer rates. The —+ =0 1)
methods described here are applicable to other physical systems oz oy
momentum
——— du ou 1 o%
u - 4 vE = — 2)
ox ¢ oy Re oy? (
! Numbers in brackets designate References at end of paper. energy
Contributed by the Heat Transfer Division of THE AMERICAN - " o
SociEry oF MecHANICAL KNGingeRrs and presented at the ASME- " ot + vt 0_1_ - l _ ﬂ 3)
AIChE Heat Transfer Conference, Atlanta, Ga., August 5-8, 1973. o dy Re Pr oy?
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FREE STREAM TEMPERATURE T _al’
UNIFORM CURRENT U dy

SALINITY Ceo

e

y=0*

where the parameter B accounts for the heat conduction into the
solid after the method of Griffin [5] or Roberts [6].2 These equa-
tions are in nondimensional form and are related to the physica]

system by the transformation

g r = — = —
5, I YT
V4 MELT GENERATIONB, O u= L =l g
Ve U op U
X .
7 7777777777 777777 T — Tw 7~ T, C— Cr
PHASE BOUNDARY, TEMPERATURE Tg T = o S =7 &
SOLID PHASE VELOCITY Vg = F z 0 o — Crp
SOLID PHASE. TEMPERATURE To . eor(Tw — T) 5 en(Tr — To)
Fig. 1 Schematic diagram of the flow near the phase boundary between i ¥7s

ice and flowing sea water, with coordinates fixed to the interface

where the Schmidt number is denoted by Se

7/7, the Prandt]

number by Pr = /&, and the Reynolds number by Re = UL/5,

" oC e o0 1 o (4) The Peclet number is denoted by Pe = UL/&. The boundary
oz oy  Re Sc oy? conditions on the system are

The absorption of latent heat during the melting results in a ther- g=0 a=0 3=i(X) T=Tr C = Cr
mal energy balance between phases jo> oo G=U T T, C=¢C.

oT = - _.ﬁM S @Ij _'If “(Z:F_; To) of, 5) and reduce in the nondimensional coordinates to

: = (5)
oy ly=0+ (Tow—Trp)Kr Kr(To — Tr) O ly=0-
B . . . 2 The heat duction i id i i i

where 77 is the rate of melt generation per unit surface area. This one_di;en:?on;?nh::t10;;33%&2; ?ghi . S ;t‘;a;in ﬁi(‘llh?z :ii‘}‘)méﬁg

energy balance along the interface reduces to

steady-state velocity {7s.

Nomenclature
a; = coefficient of ith order appearing Pe = Peclet number for the fluid phase, { = normalized coordinate defined in
in the quartic temperature ULa— Table 1(c)
profiles Pr = Prandtl number for the fluid n = normalized coordinate defined in
A = fluid-phase melting parameter, or phase, o~ . Table 1(a)
;‘ﬁe)f;_;_l number, Gpr(lTe — Re = Reg}?:SISSUI};TPeI for the fluid 7 = kinematic viscosity (mZsec™t)
F s _ § . s .
b; = coeflicient of 7th order appearing Sc¢ = Schmidt number for the fluid W= no&‘isi;zti((ib)comdmate defined in
P -
. e . ) phase, 7y 1 .
1.n the quartic ve.loclty profile S = local spf;ed of sound in water (- £ = nor.mahzed rate of Mass genera-
B = sohd—phasg sub(_:ool_l_ng parame- sec—1) tion along the melt interface
tel_" Cps(Lr — To)d ™ T,T = local temperature (deg C); nor- P = mass density (kg-m~?)
¢, = specific heat at constant pressure malized temperature Subscripts
(J-kg—1deg C—1) @, u = local streamwise, &, velocity (m- " ", . d broberti he melt inter
¢; = coefficient of 7th order appearing sec™1); normalized velocity - u; properties at the melt, inter-
in the quartic concentration U = free-stream velocity (m-sec™1) 'ace . .
profiles #,v = local transverse, 7, velocity (m- 8 = SOlfld properties at the melt inter-
C, C = salinity or concentration (parts sec™); normalized velocity ace . .
per thousand); normalized sal- % % = streamwise coordinate defined in ref = reference quantity defined in the
inity or concentration Fig. 1 (m); normalized coordi- text
D = parameter defined in Table 1 ) nate . ' 0 = conditions in the solid a.t large dis-
P ameter defined in Table 1 7,y = transverse coordinate defined in tances from the melt interface
= parameter define . . .
=P o m_ able Fig. 1 (m); normalized coordi- o = conditions in the fluid phase at
h = heat transfer coeflicient (J-sec—! nate large distances from the inter-
_ m~%deg C1) @ = thermal diffusivity (m2-sec™1) face
- ! . _ oo e . b . .
K thellilléﬂ COH_CiuCthty (J-sec™t 7 - dlffusmrT coefﬁc‘lent (m?-sec™) _m = subscript relating to the momen-
m~!-deg C1) 0, 8 = boundary-layer thickness (m); tum boundary layer
[, = " e ) ; normalized boundary-layer R K
L chalactens.’clc l?ng‘th sc'ale in the ik y-lay ¢t = subscript relating to the thermal
streamwise, %, direction (m) thickness boundary laver
Le = Lewis number for mass diffusion §** = characteristic integral scale de- u. Y a§-fe1 .
in the fluid phase, J&— fined in equations (10a)-(12a) ¢ = SUbSC}‘lpt relating to the mass dif-
§T = latent heat of fusi ! T _'l A, = ratio of boundary-layer thick- fusion boundary layer i
eat o uSl_(’n( “kg™) nesses defined by equations % = local quantity. .. Re. = Reﬁ
Nu = Nusselt number, fgk 1 (13) and (14) duantity, €8, fez L
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y=0 w=0 v =1 £ =9p/U T=0 C=0

y— u=1 T=1 =1

The subcooling of the solid is denoted by the temperature dif-
ference Tr — T, the temperature of the solid phase far from the
interface being equal to To. The rate 'of fluid mass generation at
the interface is related to the melting rate of the solid by the con-

tinuity equation
UF(%) = ('l_)i) 7s(%)
PF

1t should be noted that the melting rate 7, is generally a function
of %, as borne out in the analysis that follows. The results will be
a useful approximation in that flow regime where the boundary-
layer thicknesses (and the melting rate) vary slowly with dis-
placement in the free-stream direction.

When equations (1)-(4) are integrated over the momentum
(8.), thermal (8,), and mass diffusion (d.) boundary layers, these
equations become

B O
fota, 8n) — 1} = —fo o dy (®)

1
i{a,,.f (1—u>udw}—s=—~ )
dz o
1
{f(l‘T’”d”}‘f‘RepraJ ®
1

when the boundary-layer thicknesses 6 are each normalized by
the length scale L. The assumptions of zero gradients for tem-
perature, velocity, and concentration at the edges of the respective
boundary layers are made. For the case of ice melting in sea
water, the inequalities

6m>6t>6c

ave satisfied for large x by virtue of the relative magnitudes of the
Prandtl and Schmidt numbers for water. These simultaneous
integral equations can be simplified by making the approximation
that the momentum, temperature, and concentration boundary
layers bear a constant ratio to one another, or that the ratios

5t 66

6—”"—A1 (S;=A2

are independent of z. The infegral equations given in the fore-
going paragraph then reduce to

*k da’", — _1, Qlf (10)
dx Re 0y |y
dé, 1 oT
dorx — = . 11
bodz Re Pr oy Z,_0+3’: (D
d5 1 C
¥ — 12
dz  Re Sc oy y=0+$ (12)
where
1
Sn** = f 1~ wudw (10a)
0
1
0% = f (1 — Thudn (11a)
o
1
8,%* = f (1 — Cud{ (12a)
0

Journal of Heat Transfer

denote, respectively, the momentum (8,,**), energy (§,**), and
concentration (8,**) thicknesses. Equations (10) and (11) are
similar in form to those presented by Posvonkov, et al. [2] for
heat transfer only. The melting rate £, as yet undetermined,
appears in each of equations (10)-(12).

These equations are solved by approximating the velocity,
temperature, and concentration distributions with polynomial

functions. A Pohlhausen quartic is chosen for each as follows:
T = a0+ am + am? + asp® + am?t 7I=61
i
= by + b + b + bt + bt © = ;’
C=ctal toft+alta {=

The governing integral equations are each dependent on the melt-
ing rate £ and so the unknown coefficients in the three profiles
are determined from the physical conditions listed in Table 1.
The method of solution is similar to that of Griffin and Szeweczyk
[8] and Posvonkov, et al. [2], butis extended here to include heat,
momentum, and mass transfer simultaneously with phase trans-
formation in the flow. The temperature profile is dependent only
on the thermal parameters 4 and B

T() = a(n — 39* + 39° — 7%) + (67 — 8n® + 3n%)

3 4 A

— 14+—D -1 D =

D {\/ e } 1+ B

as listed in Table 1(a). The heat-balance and momentum equa-

tions evaluated at the melt interface lead to a solution for the
velocity profile

where

ay =

u(w) = bi{w — 3w? + 3w? — wi)

¥
6 m

where the matching condition at ¥y = 0 and the solution for the
unknown parameter b are outlined in Table 1(b).

A similar approach leads to the mass concentration or salinity
profile

e =

+ (6w? — 8w? 4 3w?)

w =

alf — 30+ 30 — §Y)
+ 65— 8+ 30§ =

as shown in Table 1(c). It should be noted that the matching
conditions at ¥ = 0in Table 1(a—c) are determined by evaluating
the momentum, energy, and mass diffusion equations (2)-(4) in
conjunciton with the interfacial energy balance (5) aty = 0.

The parameter Le is the Lewis number for mass diffusion, the
ratio of Prandtl and Schmidt numbers. The parameters 4, and
Ay are determined by dividing equations (11) and (12) by equa-
tion (10) upon the assumption that A; and A are not functions
of the space coordinates. The two results of these operations are

Alz - 61}1** Ala/l(l + D) (13)
6;** Al Pr b1 + (.llD

At — 0n** \ Le AC, + e, DA, (14)
e Pr Aty + aD

when the integrals in equations (10a)-(12a) and the unknown a;,
b;, and ¢; are evaluated as shown in Table 1.

The ratios A, and A, follow from equations (13) and (14) for
specified values of the physical parameters. The thermal-
boundary-layer solution to equation (11) is

AuGusT 1973 / 319
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Table 1 Quartic polynomials for approximating temperature, velocity, and concentration distributions

(@) Temperature

() Velocity

(¢) Salinity

4 4 4
T(xly) = 2 aini u(x;y) = E biwi C’(x,y) = E cj{j
i=0 7=0 =0
¥ - Y =Y
= 6t @ 5,,, g‘ 66
Conditions Conditions Conditions
y =0 y=20 y =10
poo (LYo 1oT _o (2T)() - EBrow _o (3L)(2C) _ Ledc
r=0 (3) = Do w=o (5)E) = 5o c=o  (G)E) =B o
y=86 (=1 y=08m (w=1) y=95 (=1
poy T _ 9T _ _, o _ou_ _, 30 _wC_
T=1 =~ =l oy T oy T C=1 =0
Coefficients Coeflicients Coeflicients
o = 0 bo = 0 Cy = 0
3 4 6F _ 6H
a1_5<\/1+§D—1> bl__—l-}—?)F 61_1+3H
A F_2PI’A1 _2L6A1
D=1 + B - alD - a1D Az
a2=6—3a1 b2=6—3b1 02—6_‘301
az = -8 + 3Ct1 b3 = -8 + 361 C3 = —8 + 301
d4=3_a1 b4=3—b1 04_‘3"01

l/2
b (20t o) -

T 65** Pez

after Pozvonkov, et al. [2], and the thicknesses of the momentum
and mass diffusion boundary layers then follow from equations
(13)-(15).  The rate of melting follows from equations (5) and
(15) and is

(16)

* ok 1/s
g \/]TGT = aD { L }

2a,(1 + D)

Likewise, the rate of heat transfer at the interface, or Nusselt
number, is

i
Nux = _—x = {

1/2
@ o
< 1
s : Pe,\’ (17)

2(1+D)6

The salinity or concentration Cr at the phase interface is not
known a priori, but it can be determined from a mass balance on
the dissolved species at the melt line 7 = 0. This balance is, in
general,

e = —pY ?—? + Cr(ie + ) (18)
OF {7=0

where 77t (kg/m®sec) is the flux of dissolved species at the inter-

face; 7 (kg/m2sec), the melting rate, is from equation (5); and

p is the density of the mixture. Since the solid phase is impervi-

ous to the dissolved.species (7, = 0) during the melting of glacial

ice, the foregoing equation reduces to

—Crin = —p¥ 3

7=0

ol
i

or, in the normalized system introduced earlier,

(=)
_N\Cs/ (E) <a£> (ﬂ) Le (19)
[ <g> pr) \3F Je=0 \8: ) aD

©
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The concentration of dissolved species Cr is the result of a balance
between the bulk motion and the rate of diffusion and is inde-
pendent of space coordinates.

Solutions for Heat, Mass, and Momentum Transfer

The equations deseribed in the preceding section were solved on
a CDC 3800 computer for a range of values of the thermal and
flow parameters. Computations for the ratio of the thermal and
momentum boundary layers are illustrated in Fig. 2. These re-
sults indicate that the thermal boundary layer increases in thick-
ness as the Stefan number 4 is increased,? but different subcooling
conditions in the melting solid phase (B = 0.0, 0.2, and 0.5) have
little effect on the thermal-boundary-layer thickness for 4 2
0.40. A practical limit for 4 at standard conditions for water is
A £ 1.25, which represents T, — T7 = 100 deg C. The ratio of
the mass-diffusion (salinity) and momentum-boundary-layer
thicknesses is appreciably affected both by the fluid Stefan num-
ber A and the solid Stefan number B. The greater relative
thickness of 8, with increased 4 is due to the change in the rates
of mass and momentum transport in the boundary layer as the
temperature of the water is increased. The rate of mass trans-
port approaches the momentum transport rate in the water as the
temperature T, is increased, since the kinematic viscosity 7 of
the water drops sharply with rising temperature.

The change in the boundary-layer thickness ratio A, with the
solid Stefan number B can be understood when reference is
made to Fig. 3. Increased thermal transport to the solid de-
creases the rate of melting at the interface (for 4 constant) with
a corresponding decrease in the thickness of the layer over which
the dissolved species mix with the pure water generated at the
boundary between phases. The increased rate of melting that
accompanies increased Stefan number A (or greater thermal driv-
ing force T, — T is also evidenced by the results in Fig. 3. The

3G, 8. H. Lock suggested in his rapport “Heat Transfer With
Phase Transformation’’ at the Fourth International Heat Transfer
Conference that the parameter A be named the Stefan number in
honor of the scientist who pioneered the study of heat transfer i_ﬂ
systems undergoing melting and solidification. The parameter B
a form of the Stefan number for the solid phase.
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Fig. 2 The ratio of thermal and momenfum boundary-layer thicknesses
A; and mass diffusion and momentum boundary-layer thicknesses A; as
a function of Stefan number A; three conditions of increased heat con-
duction into the solid are denoted by increasing values of the solid
Stefan number B

concentration gradient at the melt interface is plotted in Fig. 4.
The decreased value of the gradient dC/d¢ (¢ with increasing
Stefan number A is a result of the thickening of the mass diffusion
boundary layer d, with increased temperature differences 7., —
Tr. Likewise, an increase in the solid Stefan number B results
in a decrease in . together with a -corresponding increase in the
concentration gradient near the melt interface, as indicated by the
results plotted in Fig. 4. )

Some representative results for heat, mass, and momentum
transfer are summarized in Table 2. The momentum thickness
8 ** is unaffected by changing thermal conditions, but noticeable
increases can be seen in both the energy and concentration thick-
nesses as the Stefan number 4 is increased. The lower values of
8.** and 8,** that oceur with increased subcooling of the solid
result from the decreased melting rates that accompany the con-
duction of heat into the ice. The heat transfer coefficient at the
melt interface (denoted by the Nusselt number Nu).is shown in
relation to the equivalent Nusselt number for flow over a flat sur-
face with no melting,

Nug, ret (Pr)="/* = 0.332(Rez)"/? (20)

The change in the Nusselt number with increasing Stefan number
A has been described previously by Pozvonkov, et al. [2], for the
case B = 0.0, and the increased heat transfer coefficient due to
subcooling of the solid (for fixed A) is shown in Table 2 for the
conditions given by B = 0.20, 0.50. The results for the Nusselt
number at B = 0.0 also compare favorably with previous comi-
putations by Yen and Tien [1], who applied the classical Leveque
solution for the thin thermal boundary layer to the problem of
steady-state melting in forced flow. A recent communication by
Yen and Tien [9] illustrates the good agreement between the two
methods for B = 0.0.

Speed of Sound Near Melting Glacial Ice

Knowledge of the speed of sound as a function of environmental
conditions is important in underwater acoustics for determining
the refraction and propagation of sound in the ocean. Tt is
possible to use the temperature and salinity profiles from the
foregoing analysis to model the sound speed variation near melt-
ing glacial ice in sea water. This model situation offers insight
into the physical processes that interact to produce changes in

Journal of Heat Transter

the sound speed in a polar environment. The speed of sound in
sea water is a function of temperature, pressure, and salinity.
Empirical equations have been developed over the years, using a
mass of experimental data for widely varying conditions and sea-~
water samples, to precisely relate the sound speed to those
parameters that determine its variation in the sea.

The classical results of Del Grosso [3] are useful for determin-
ing the sound speed changes that occur in the thermal and mass
diffusion boundary layers near melting ice in sea water. When
pressure changes are absent, the equation for sound speed is

S = 1448.6 + 4.618T — 5.23 X 10272 4 2.3 X 10478
+ 1.25(C — 35.0) — 1.1 X 10~%C — 35.00T
+ 2.7 X 1073(C — 35.0)T*
X = 2.01077(C — 35.0)%(1 4+ 0.577T — 7.2 X 10-3T%) (21)

where the sound speed Sis in the units of meters per second, the
temperature T is in degrees Centigrade, and the salinity C is in

010

0.08—

006 —
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D- —

|§'|3
0.04}—

0.02—

I
0 ol 0.2 03 04
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Fig. 3 The rate of melting at the phase interface 5\/@ as a function
of the Stefan number A for three conditions of solid subcoocling denoted
by the Stefan number B
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Fig. 4 The normalized concentration gradient dC/d¢|¢—o, or rate of mass
diffusion at the melt interface, as a function of the Stefan number A for
three conditions of solid-phase subcooling
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Table 2 Heat and mass transfer results

8o [ Nuz s
B S ** S 8 ** o b NU, Zrot v (Pez)'/:
(A4 = 0.10, Pr = 10.27)
0.00 0.117 0.0594 0.0217 0.133 0.449 0.938 0.0299
0.20 0.117 0.0592 0.0202 0.126 0.448 0.946 0.0192
0.50 0.117 0.0590 0.0188 0.120 0.447 0.955 0.0155
(4 = 0.20, Pr = 7.91)
0.00 0.117 0.0652 0.0315 0.180 0.499 0.890 0.0452
0.20 0.117 0.0652 0.0291 0.169 0.499 0.904 0.0382
0.50 0.117 0.0648 0.0264 0.157 0.493 0.923 0.0312
(4 = 0.50, Pr = 4.30)
0.00 0.118 0.0815 0.0557 0.309 0.629 0.782 0.109
0.20 0.118 0.0815 0.0519 0.289 0.629 0.812 0.094
0.50 0.118 0.0799 0.0474 0.266 0.620 0.837 0:078
(4 = 1.00, Pr = 2.32)
0.00 0.118 0.1006 0.0837 0.480 0.797 0.650 0.200
0.20 0.118 0.1006 0.0795 0.452 0.797 0.686 0.175
0.50 0.118 0.0994 0.0741 0.419 0.781 0.730 0.149

parts per thousand (ppt). More recent correlations are now
available [10] for sound speed in sea water as a function of tem-
perature, pressure, and salinity.

Some results using equation (21) are plotted in Fig. 5 for water
temperatures T, of 5 and 10 deg C. For each case the salinity of
the sea water far from the ice was taken as 35 ppt and the melting
glacial ice was considered to be at the temperature 0 deg C.  The
ratio Cr/C, was determined from equation (19). The distance
from the ice-phase boundary is normalized by the thermal
boundary-layer thickness 0, in the figure just mentioned, and the
thickness ratios 8./8; and 6,/8,, are noted. When the water tem-
perature is 10 deg C, the change in sound speed reaches 80 percent
of the total change at y = 8. = 0.308,. At this point the salinity
C = 35 ppt, and the temperature is 5.5 deg C. The change in
sound speed appears to be confined to a layer near the phase inter-
face where the temperature and salinity are rapidly changing
with distance from the region of melting, as might be expected
from the heat and mass transfer analysis.

Summary

Integral methods of solution have been used for the simultane-
ous calculation of the momentum, thermal, and mass diffusion
boundary layers during the steady-state melting of pure (glacial)
icein sea water. ' ’

The results show that the principal driving forces for the simul-
taneous transport processes are the Stefan numbers for the fluid
phase A = &r(Tw — Tr)M ! and solid phase B = &p(Tr ~
To)ﬂ -1,

The momentum, energy, and mass diffusion equations for the
fluid phase are interdependent due to the appearance of the melt
velocity at the interface —or the rate of mass generation due to
phase transformation—in each of the three equations. The
mass diffusion equation is used to model the sea-water salinity
distribution near the melting ice.

The effect of increased fluid Stefan number 4 is to increase the
thermal boundary layer thickness, while the solid phase Stefan
number B does not greatly affect the thermal boundary layer for
A < 0.50. The rate of mass generation at the interface and the
thickness of the mass diffusion boundary layer are both appre-
ciably affected by the parameters 4 and B. The effect of larger-
Stefan number 4 is to increase both the mass diffusion boundary-
layer thickness and the rate of mass generation. Increased sub-
cooling of the solid decreases both the melting rate and the mass
diffusion boundary-layer thickness when 4 is constant.

The results of the caleulations have been used to model the
effects of temperature and salinity on the speed of sound near
melting ice in sea water. Sound speed profiles are presented for
water temperatures of 5 and 10 deg C and fol a free-stream
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salinity of 35 ppt. The results show that for both cases 80 per-
cent of the change in sound speed occurs in the mass diffusion
boundary layer.

Acknowledgment

The author wishes to thank the Naval Research Laboratory
(NRL) for the support of this work. Further, the many helpful
comments of R. A. Skop of NRL and Y. C. Yen of the U. 8.
Army Cold Regions Research and Engineering Laboratory are
appreciated. One of the reviewers for the JOURNAL or HpaT
TrANSFER is to be thanked for pointing out an untenable as-
sumption in the original mass transfer development.

References

1 Yen, Y. C., and Tien, C., “Laminar Heat Transfer Over a
Melting Plate, the Modified Leveque Problem,” J. Geophy. Res., Vol.
68, No. 12, 1963, pp. 3673-3678.

10 - ,
0.8 I l
086 - /
>‘|co" /
04 / i =0.07,
Co
35
- =046,
o2 8m
% _o30
8t
00 L |
1400 1420 1440 1460 1480 1500

SOUND SPEED, §
METERS PER SECOND

Fig. 5 The speed of sound in sea water § as a function of the normal
distance from the melt interface for a free-stream salinity condition of 35
ppt and water temperatures of 5 deg C (solid line) and 10 deg C (dashed
line); the salid temperature T, = Odeg C

Transactions of the ASME

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2 Pozvonkov, I'. M., Shurgalskii, K. F., and Axselrod, L. S,
wHeat Transfer at a Melting Flat Surface Under Conditions of Forced
Convection and Laminar Boundary Layer,” International Jowrnal of
Heat and Mass T'ransfer, Vol. 13, 1970, pp. 957-962.

3  Del Grosso, V. A., *“The Velocity of Sound in Sea Water at
Zero Depth,” Naval Research Laboratory Report 4002, 1952.

4 Bird, R. B., Stewart, W. E., and Lightfoot, 1. N., Transport
Phenomena, Chapter 19, Wiley, New York, 1960.

5 Griffin, O. M., “On the Melting of Solids to Non-Newtonian
Fluids,”” Chem. Engr. Sci., Vol. 25, 1970, pp. 109-117.

6 Roberts, A. L., “On the Melting of a Semi-Infinite Body
Placed in a Warm Stream of Air,” J. Fluid Mech., Vol. 4, 1958, pp.
506-528.

Journal of Heat Transfer

7 Kays, W, M., Convective Heat and Mass Transfer, Chapters 10
and 14, MeGraw-Hill, New York, 1966.

8  Griffin, O. M., and Szewezyk, A, A., “An Analytical and Ex-
perimental Study of the Melting of Bulk Solids on an Inclined Plane
Heated Surface,” in: Heat Transfer 1970, Vol. 1, Elsevier, Amster-
dam, 1970.

9 Yen, Y. C.,.and Tien, C., “Heat Transfer at a Melting Flat
Surface Under Conditions of Forced Convection and Laminar
Boundary Layer," International Journal of Heat and Mass Transfer,
Vol. 14, 1971, pp. 1875-1876.

10 Del Grosso, V. A., and Mader, C. W., ‘“‘Speed of Sound in the
Sea Water Samples,” J. Acous. Soc. Am., Vol. 53, No. 3, Part 2, pp.
961-974.

AUGUST 1973 / 323

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



J. C. MUEHLBAUER

Department of Mechanical Engineering,
Clemson University,
Clemson, S. C.

J. D. HATCHER

Transient Heat Transfer Analysis
of Alloy Solidification

Approximate solutions are obtained for the temperature distribution and rate of phase

change for the transient one-dimensional solidification of a finite slab of a binary alloy.

D. W. LYONS

College of Industrial Management
and Textile Science,

Clemson University,

Clemson, S. C.

J. E. SUNDERLAND

Department of Mechanical and
Aerospace Engineering,
University of Massachusetts,
Ambherst, Mass.

Introduction

TRANSIENT heat transfer problems involving phase
changes occur in areas such as solidification of castings, food
processing, polymer production, welding, etc. Few exact solu-
tions for the temperature distributions have been found for these
problems due to inherent nonlinearities. An exact solution for
the temperature distribution and phase change position of a
melting or solidifying semi-infinite body was reported by Neu-
mann [1].1 The body was initially at a uniform temperature
and the surface temperature was impulsively changed and held
at a constant value so that a phase change occurred. For this
problem the phase change position was proportional to the square
root of time. Several investigators such as Weiner [2] and
Citron [3] have studiéd the problem of multiple phase changes
and obtained solutions similar to those found by Neumann.

Approximate solutions for this problem were reviewed by
Muehlbauer and Sunderland [4]. The application of approxi-
mate solutions to the solidification of castings was reviewed in an
excellent paper by Jones [5].

“No closed-form exact solutions have been obtained when the
freezing medium has finite thickness except for the case of zero
superheat. Thus approximate methods must be used to de-
seribe the process analytically. One of the most useful tech-

! Numbers in brackets designate References at end of paper.

Contributed by the Heat Transfer Division of THE AMERICAN
SocieTY oF MECHANICAL ENGINEERS and presented at the ASME—
AIChE Heat Transfer Conference, Atlanta, Ga., August 5-8, 1973.
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The alloy is selected to avoid the euteciic composition so that solidification takes place
over a range of temperatures.

perature distribution.
while the other surface is insulated. Temperature distributions are determined ana-

Iytically and experimentally and are in reasonably good agreement.

The slab s initially superheated and has a uniform tem-
Solidification occurs after one surface is cooled by convection

niques is the heat-balance integral method developed by Good-
man [6,7,8]. Tien and Geiger [9] used the heat-balance integral
method to obtain approximate solutions to the solidification of a
binary eutectic. They used a time-dependent surface tempera-
ture. Cho and Sunderland [10] presented an exact solution for
the temperature distribution and rate of phase change for a semi-
infinite body where the phase change occurred over a range of
temperatures. This solution assumed that the surface tempera-
ture was instantaneously changed and held at a constant tem-
perature different from the phase change temperature range and
the initial temperature. This exaect solution and Goodman’s
integral techniques were used to determine the temperature dis-
tribution in a finite slab with a constant temperature at one face
while the other face was insulated.

An experimental study for solidification has been presented by
Bailey and Dula [11]. Their investigation indicated that the
rate of freezing of finite slabs of water is similar to that found
using Neumann’s solution. Experimental studies related to sol-
idification of metals have been reported by Bishop, et al. [12] and
Bishop and Pellini [13]. No analytical comparisons were pre-
sented; however, excellent experimental data were presented for
several alloys. Simurik [14] presented an experimental method
for observing the freezing of castings. The method used a wax
model and the phase change front was optically observed. Hills
and Moore [15] used Goodman’s integral method to study the
solidification of lead and tin. They obtained good agreement be-
tween analytical and experimental results.

The current work is concerned with the transient one-dimen-
sional solidification of a superheated finite slab of a binary alloy
where the change of phase occurs over a range of temperatures.
All physical properties of each phase are assumed to remain con-
stant but may be different for different phases. One surface of
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the slab is exposed to convection heat transfer, while the other
gurface is insulated.

Problem Statement

During the solidification process the slab may be composed of
a liquid region of molten metal, a region that is both liquid and
solid (two-phase or mushy region), and a solid region. These re-
glons may exist singularly or simultaneously. Since they do not
all exist throughout the entire solidification period (from pouring
until the casting reaches ambient temperature), the solidification
process is divided into smaller time intervals. If the cooling rate
is sufficiently low that the two-phase and solidified regions do not
occur all at the same time, the sequence of events that is likely
to occur is shown in Fig. 1.  In the first time interval or stage the
gurface temperature is lowered by convective cooling. The re-
gion of the slab influenced by the heat transfer lies between the
cooled surface and a plane denoted by P(¢). This stage con-
tinues until the surface temperature drops to T4, the liquidus tem-
perature, at which time stage 2 is initiated. In stage 2 there
exists a two-phase region and a liquid region that is only partially
affected by surface cooling. However, if the cooling rate is very
low, the entire liquid region may be influenced by surface cooling
hefore the two-phase region forms. In such a case, stage 2 will
not occur and the process will go from stage 1 directly to stage 3
where there is a two-phase and a liquid region. In stage 4 the
entire region is two-phase. In stage 5 the solid and two-phase re-
gions exist, and the final stage, stage 6, involves cooling of the
solidified slab. The situation of very rapid cooling that would
vield solid, two-phase, and liquid regions existing simultaneously
is covered by Muehlbauer [16].

The temperature distribution for each stage is determined by
first changing the variables and then using Goodman’s [6] heat
balance integral techniques. The energy liberated due to solidi-
fication in the two-phase region is treated as a pseudo specific
heat, Cp = A/AT as suggested by Paschkis [17], where AT is
the difference between the solidus and liquidus temperatures.
Similarly, a pseudo thermal diffusivity & can be defined by

B k
7 p(Cp + Op)

so that the energy equation for the two-phase region becomes
similar in form to that of the other regions.

A slab of thickness 2L with convection at the boundaries can
be divided into a slab of thickness L with convection at one
boundary and no heat flow at the other boundary because of the
symmetry of the mathematical problem. The boundary condi-
tions are thus

Analytical

First Time Period. During this period the temperature at po-
sition £ = 0 is reduced to T} at time #;, when the effect of surface
cooling has penetrated to a position x = P(4), where P(t,) < L.
This period is graphically represented in Fig. 1. The problem
statement for the affected liquid region is:

aTLl agTLl

o = ay, ot 0<z<P 0<i<ty (1)
z =P T =T (a)

oT
z=P 2o (b)

ox

OT]A TL1 — TA
=0 2 i

v oz R1 (C)
t=20 P=290 (d)

Using the heat balance integral technique with an assumed
temperature profile in the affected liquid region of the form

T = a+ bz 4 ca? (2)
the temperature profile is found to be

(P — z)t
T =Ty~ (To— Ta) m 3)

with the effective cooling distance P(¢) given by
P
P2+ 4PR, — 8R2In {1 + om ) = 12at (4)
1

This period ends when the temperature of the free slab surface
reaches 7% The time ¢ when this occurs is given by

y o= 2B Y To— T\ (To— Ty
T 3ar o\ - T, Ty ~ Ta

To+ T
—In <1 + T4—b — Ta>l %)

During the second period there exists a
Part of the liquid region is

Second Time Period,
mushy region and a liquid region.
not affected by the surface cooling until time ¢, when the effect

T T —-T
z =20 o - R 4 of cooling reaches the position x = L. The mathematical state-
* ¢ ment of the problem using the illustration of Fig. 1 for the liquid
and region during stage 2 is
Nomenclature
«, b, ¢ = temperature profile coefficients P = distance of cooling penetration & = pseudo thermal diffusivity, k/p
that may be functions of time R; = ratiok/h X (Cp + Cp)
C, = integration constant in equation s = liquidus phase front position n = dimensionless variable,
(20) t = time N TR
. t; = time constant B/2V &t — )
Cp = specific heat A = h
- . T = temperature = latent heat
Cp = pseudo specific heat . .
b= b amsfer coeffici Tj: = temperature variable p = density
¢ = heat transfer coe .01ent T4 = ambient temperature
k = thermal conductivity T, = liquidus temperature Subscripts
K = thermal conductivity ratio, Ty = initial temperature j = L, M, S designate liquid, mushy, and
kL/kA[ T, = solidus temperature solid l'egions, reSpeCtriVely
Ky = thermal conductivity ratio, v = solidus phase front position i = 1,2, 8...6 designates time when
kar/ks z = distance from cooled surface used with ¢; designates time inter-
L = slab length a = thermal diffusivity val when used with other symbols.
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STAGE | o<ty
Entire slab superheated

T
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) |
e ——n |
STAGE 2 H<t<t,

Development. of two phase
region with P{t}<L

Tvl |
PO ——ste— Liquid —Y

s(r)-——»:

STAGE 3 t<t <ty
Development of two phase
region for time after P(t)=L
but before initiation of solid
region.

Fig. 1 Sequence of events that are likely to occur during solidification of a binary alloy with extended freezing range

a§;2=aLa;sz s<z<P 4<t<t
z=P Trz = To
z =P b;m=0
T =3 T =T
0712 0T

T =8 I{L

ox ox

3

[

b T2 = T
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(6)

(@)

()

{e)

(d)

(e)

Ty

e N

STAGE 4 ta<t<ty
Entire slab two phase

Ty _/’//—'(/

|
e S0l ——se—pTte,—
— V(1) ——!

]

STAGE 5 t4<t<t5
Development of solid region

—

—_—— 4

STAGE 6 ts<t<tg
Entire slab solidified

t =1 s=20

()

Clearly the number of restraints (a)-(f) exceeds the number of
constants of integration of equation (6); however, these equations
will be used later to determine constants that appear in poly-

nomial approximations of the temperature distributions.

For the mushy region during stage 2,

0T a2 _ 0T
=a
ot ox?

0<a<s

T =38 Tz = Th

w0 Mo _ T Ta
ax Rz

h<t<t

M

(a)

(®)
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and additional conditions are given by equations (6) (d)~(f).
The temperature profile for the liquid region is found using the
heat balance integral technique to be

P —z\2
Try = Ty — (To — Tby(P—-s) ®)

The temperature profile for the mushy region is found by a change
of variables

v ®
K Va(t — t)

in equation (7). From the transformed equation, the tempera-
ture profile for this region is found to be

Tz = Ty ~— (Tb - TA)

erf <—'*"g—-‘“~....___> — erf (—_x._—:~>
N VEE — 1) oV al — t)
L - erf (——‘S—~—___>
2VaE( — &)

Virait — 4)

(10)

The effective cooling distance P(t) is found by a heat balance
on the liquidus phase front s(¢). This yields

Tz = Ty +

To— T
= 2Ky \oo
P s + I lTb — Td}

\/“_—— s &
X {32 + Vrai — ) erf A0 P Ut — )

The liquidus phase front is determined using a technique sug-
gested by Goodman [6]. The boundary conditions Tz, = T
at s(ty and Tare = T at s(t) are differentiated with respect to time
by the chain rule. The time-derivatives of the temperature pro-
files are replaced using the energy equations of the liquid and
mushy regions. Making these substitutions and equating the
results yields ‘

(11)

[s5A _ 8
P—s 20—t

(12)

Combining with equation (11) yields the following implicit ex-
pression for the lHiquidus phase front position:

sKy  Th—Ta
ar(t — ) To— T

l . }
eXp —_ - _
% 20— %) - (1)

By Ve = ) e s

This period ends when the effect of cooling spans the entire
slab, i.e., P(t) = L, t = t,, Time ¢, is found by placing P(¢) = L
in equation (11) and solving in combination with equation (13).

Third Time Period. Liquid and mushy regions exist during the
third period, which ends at #; when the liquidus phase front reaches
the position z = L. With reference to Fig. 1 the problem can be
described mathematically for the two regions. For the liquid
region: )

oTrs 01
o or ox?

s<a<l fH<t<t (14

Journal of Heat Transfer

z =1L 0T r3/ox = 0 (a)
xT =8 Trs = Th (b)
0Trs OTus
= K = =
z =3 L. o0 (c)
t =1 Trs = Tr1a (d)
i =1 § = 8 (e)
For the mushy region:
0T s - 0 s
T=a oa? O0<z<s L<t<t (15)
=8 Tus = T (@
0T a3 Tus — Ta
=0 oMy My LA
e dx R ®)
t=1bh TMs = T (e)

and additional conditions are given by equations (14¢) and (14e).
The mushy-region temperature distribution is the same as for
the previous period, equation (10), except the time continues to
ts and T'ar2 becomes T'ag; and R, becomes Rs. '
For the liquid region, the heat balance integral technique gives
the temperature profile as

2
(Ty — Ta)2La — x* 4+ s? — 2Ls) exp I- m]
— 4

, — (16)
2K (L — s) {Ra + Vra — 4) et 72-‘&——_(:%”}

To determine an equation for the liquidus phase front position,
the logarithm of an expression obtained from the boundary con-
dition ’

oT oT
z = Ky, L _ M3

ox ox

17)

is differentiated with respect to time. The resulting equation is
then integrated from time £ to ¢ by using the law of the mean.
This yields )

Bop(t — t) + (L — 8)2 — (L — &)t = (L — 3)5_12

s? 82
axt — &)  4a(t. — &)

(18)

8

Rs + Vra(t - ) erf zvm
+ In s
2

Ry + Vma(ty — &) erf VAt =

where [L — s(t)]n?is [L — s(¢)]? evaluated at time & such that
tr < b <63 Toevaluate [L — s(f)]z? seb £ = tzand s(¢) = Lin
equation (18). However, the time {; is unknown and is deter-
mined from the fourth-time-period results. :

Fourth Time Period. Throughout the -fourth period, the slab
exists in the mushy state, and the following equations apply:

2
aTM*=aaT”“ O<a<l H<t<y (19)
ot - Qux?
z =1L oTany _ 0 (a)
oz
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OTrs  Tras — Ta
w=o0 Oz T o4 b
v oz R4 ( )
t= 1 Tas = Tass (c)

This period ends at time ¢, when the temperature at position

= (reaches 7', which signifies the start of solid formation.

Following the heat balance integral technique up to the point
of applying the initial condition produces a tempelatule profile
of the form

3a(t — t3)

Tas = Ty + Ci(z? — 2Lz — 2LR,) exp {-— T* 1+ 3LE
4

} (20)

At time {3 the error-function form of T3 does not satisfy the no-
heat-flow boundary condition at position 2 = L. To avoid the
difficulty of matching a polynomial profile and an error-funetion
profile to satisfy the initial condition, the error-function form of
T'aa is approximated at time ¢ with a polynomial 7 of the form

Ty = a + br 4+ ca? (21)
subject to the conditions
oT'
e=L =2 <0 (22a)
ox
x =1L Ty =T (220)
0T T;
o = s OTars 220)
oz oz

With the resulting polynomial approximation for T’y replacing
Tus in the initial condition Ty = Ty at { = t5, the constant C;
in equation (20) is determined. The temperature profile is

Tae =Ty

3a(t — 1)

— T oLy — o -
(Ty — Ta)(2LRs 4 2Lz — 2*) exp ‘ It 1 3LR,

4 ; (23)

T L
2L — — f
{Rs + VTal ~ 4) erf 2Val - h)}

At time /3 and position # = L, the temperature is 7. This con-
dition when applied to the temperature profile yields
. L L
Ta(ts — &) erf —— =+ R, — Ry (24)
Vel -t ety e w2

which may be solved to obtain the time £, which is required also
for the third-time-period solution. A combination of this equa-
tion and equation (23) gives the temperature profile as

LR, + 2Lz — z?%)

=T Ty~ T
Tars s+ (T 4) 1" + 20R,

! 3ot — t3)
X ex - 25
p{ L? + 3LR,| (25)
The fourth period ends when the temperature is 7', at position
¢ = 0. When this condition is applied to the temperature profile,
an expression for time ¢ is obtained

L2+ 3L Ty —
b g LT BB =_LZ£

2R,

T, — Ty L + 2R

Fifth Time Period. A mushy region and a solid region exist dur-
ing the fifth period as the solidus phase front moves from position
x = 0to position x = L. The problem statement for this period
becomes the same as the third period if appropriate notational
changes are made by replacing the mushy and liquid regions with
solid and mushy regions; respectively, The temperature profile
for the solid region becomes
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Tgs = Ty — (T — Ta)

v x
—_— e ———————
24/ st — 1s) 2V st — t)

Rs v
e ————— + erf ——————
Vimas(t — ts) 2V as(t — )

and for the mushy region it is

| exf

27

Tus = T,,‘

(T, — Ta)2Lz — a2 + 0% — 2Lv) exp ‘__ _,Ll
dos(t — 1)

—
(t—n}

2vV e
(28)

+
2K (L — v) {Ra + Vot — 1) ert

The solidus phase front position can be obtained from:

p2

3as(t — 54) + (L - v)z — L= (L - 0)522 {40&3“ — 1)
Vmas(t — t)

v
1 1 rf ———
" 'n< e 2\/ozs(t—t4)>} )

where [L — v(t)]p? is [L — v(i)]? evaluated at time & such that
t4s < & <. To determine [L — »(t)]g,? set ¢ = {; and v(t) =
in equation (29). However, time {; is unknown and must be de-
termined by the results of the sixth time period.

Sixth Time Period. During the sixth period the slab is cooled to
ambient temperature. Iiquations (19) for ‘the. fourth period
apply for this period if the necessary notational changes are made
to replace the mushy region with a solid region. The tempera-
ture profile is given by ’

9LRs + 2La —
T = Ta+ (10 — Tg) 22000+ 200 — 22 {

' 3as(t — tr,).
L? + 2LR;

"~ L7+ 3LR,
(30)

and the time ¢; can be determined from the graphical solution of

=£+R6~R5

2Vas(ts — t) 2 B

\/7ras(t5 — t4) erf

Experimental Investigation

To establish the usefulness of the analytical technique, tem-
perature profiles were measured for the solidification of a super-
heated binary alloy. The alloy was cooled in a mold placed in a
wind tunnel.

Alloy. A lead-tin alloy was chosen as the casting material be-
cause of its low but wide melting range. 'The two compositions
used were 8020 and 50-50 lead—tin (by weight). The properties
required for the two alloys were obtained from several sources and
are listed in the Appendix. The latent heat of fusion, mean
specific heat as a liquid, and mean specific heat as a solid for the
50-50 alloy were obtained from Koerner [18]. The density as
a function of temperature for the 50-50 alloy above 361 deg F
was obtained from Koerner, and the remainder of data for both
alloys was obtained from the ASM inetals handbook. The
thermal conductivity as a funétion of temperature for both alloys
was obtaingd from a procedure suggested by Hsu [19]. This
method develops property data as a volumetric function of each
constituent of the alloy. Hsu has validated the expression for a
liquid, but nothing is available for the solid mixture. Due to the
lack of available data, this same method was used for the solid
phase. The latent heat and the mean specific heats for liquid
and solid for the 80-20 alloy were obtained, based on the method
of Hsu. '

Cooling Equipment. The mold was mounted flush with an inside
wall of the wind tunnel shown in Fig. 2.  Air was supplied to the
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Fig. 2 Wind tunnel

test section through a nozzle constructed to the requirements
gpecified by ASME [20]. With the addition of straightening
ducts and screens, the turbulent eddies were reduced to a mini-
mum. An accurate prediction of the convective heat transfer
coeflicient on the surface of the mold was obtained using a well-
established equation given by Kays [21]. )

Mold. The sides of the mold, Fig. 3, were constructed from 1/,
in. steel, and the base plate was made of aluminum. The
top plate served as a cover and was put in place after the alloy
was poured. During the tests the sides and top of the mold
were covered with 8 in. of glass-wool insulation with a thermal
conductivity of 0.0266 Btu/hr-ft-deg F at 80 deg F and 0.0433
Btu/hr-ft-deg I at 600 F. = This minimized the heat loss and im-
proved the one-dimensional solidification.
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Thermocouples

(

L
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Fig. 3 Mold for alloy solidification
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Fig. 4 Temperature profiles for solidification ;f 50~50 lead-tin alioy
initally superheated to 507 deg F
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Temperature Measurement. The temperature meagurements were
obtained with 1/¢-in-OD. ceramic-insulated grounded thermo-
couples. These thermocouples had a time response of 0.34 sec
for recording 68.3 percent of a step temperature change in a
water bath from 60 to 212 deg. F. The emf output of these ther-
mocoupleés was. recorded using a multipoint recorder. The
thermocouples were inserted through the side of the mold at 1/»-in.
intervals from the cold surface of the mold, and one thermocouple
was placed just at the cold surface of the mold.

Procedure, The alloy was melted and the composition was
varied by addihg appropriate amounts of lead and tin. While
the alloy was being melted, the mold was preheated. When the
mold and alloy were at the desired uniform superheat tempera-
ture, the alloy was poured into thé mold, and the top plate and
top insulation were replaced. The wind tunnel was started and
the thermocouple recording equipment was marked at zero time.
Upon completion of a test, the solidified alloy was sectioned and
analyzed to determine variation of composition in the vertical
direction from the cooled surface of the mold.

Results and Discussion

The temperature distribution for a 50-50 lead-tin alloy that
was initially superheated to 507 deg F is shown in Fig. 4. Fig.
5 shows the temperature distribution for an 80-20 lead—tin alloy
that was initially superheated to 550 deg T,

The analytical and experimental results show reasonably good
agreement. Some of the differences may result from experimen-
tal errors in location of the thermocouples, the influence of the
thermocouples on the solidification of the alloy, inaccuracies in
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Fig. 5 Ter;np‘eru!ure profiles for solidification of 80-20 lead-tin alloy
initially superheated to 550 deg F
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the analytical development, and composition changes in the alloy
as solidification occurred. The casting was sectioned and a
five percent variation in composition was measured. Another
source of error resulted from the uncertainty in the property
data, which was determined by the techniques previously dis-
cussed.
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APPENDIX

Property Data. The property data used for the calculation of
the analytical results for the 50~50 lead-tin alloy and 80-20 lead—
tin alloy are presented herein.  The following values for the 50-50
lead—tin mixture by weight were obtained from Koerner [18]:

Latent heat of fusion = 23 Btu/lb,,. |
Mean specific heat as a liquid = 0.046 Btu/lb,,-deg F'.
Mean specific heat as a solid = 0. 051 Btu/lby~deg F.

The corresponding value for the 80-20 lead-tin mixture by weight
were obtained based on Hsu [19]; the values used were:

Latent heat.of fusion = 6.5 Btu/lb,,.
Mean specific heat as a liquid = 0.0393 Btu/Ib,-deg F.
Mean specific heat as a solid = 0.041 Btu/lb,,-deg F.

The density temperature data were obtained from the ASM
metals handbook with certain portions supplied by Koerner [18].
These data are presented in Fig. 6. The values of thermal con-
ductivity as a function of temperature for pure lead and tin, Fig.
7, are from Hsu [19]. The values of the thermal conductivity as
a function of temperature for the two alloys were developed ac-
cording to Hsu {19, p. 15]. The values were developed as the
sum of the two components’ thermal conductivities, each being
adjusted by the volumetric percentage of the element in the mix-
ture. Hsu [19] has shown this procedure to be valid for a liquid
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put has not validated the method for a solid.  In the absence of Tnitial temperature of alloy = 507 deg F.
datafor a solid mixture, this method was used to obtain thermal-
conductivity values for the solid mixture.

The air property data were obtained from the gas tables [22].
A veloeity traverse of the boundary layer along the cooling plate
indicated the velocity profile satisfied the !/;-powerlaw for a tur- 20-20 Pb-Sn
pulent-houndary-layer velocity profile.

The following are the physical conditions that existed for both
sels of data presented in Figs. 4 and 3:

Ambient. temperature of air = 74 deg F.
Alr dynamic pressure = 7.93 in. of 11,0,
Melting range of alloy = 361 deg ¥ to 421 deg F.

Initial temperature of alloy = 550 deg F.
Ambient air temperature = 63 deg F.

Air dynamic pressure = 7.6 in. of H.0.

50-50 Pb—Sn Melting range of alloy = 361 deg F to 531 deg F.
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Optimization of Finned Tubes for Heat
Transfer in Laminar Flow’

The heat transfer of fully developed laminar flow in internally finned tubes 1s investigated
analytically. If there is no heat generation in the fluid, the highest Nusselt number is
obtained for the tube with 22 fins extended to about 80 percent of the tube radius. Its
value 15 almost 20 times that for the finless tube.

When there is heat generation ot

sufficiently large rate, the number of fins is reduced from 22 to 16 in order to obtain the
highest Nusselt number.

Introduction

IN’I‘ERN;\LLY FINNED TUBES have been employed
for many years in compact heat exchangers [1, 2].2 Most re-
cently, the use of this type of tube has been considered in the de-
sign of gas-cooled nuclear reactors and jet engines of nuclear-
powered airvcraft. Various arrangements of internal fins have
been investigated in the recent few years [3-5]. The continuous
straight and spiral fins are the most common examples.

The apparent purpose of fins is to provide additional surface
area for increasing the rate of heat transfer if a given temperature
distribution is maintained at the surface, or for lowering the
average surface temperature when heat is applied to the surface
at a given rate and a given distribution. This statement, how-
ever, is rather loose, for the hydrodynamic aspect has not been
considered. The presence of fins in a tube will alter the flow
pattern and hence the flow friction. The flow may break down
into vortices at edges and will slow down in troughs. If fins are
continuous and straight, the former may be negligible, while the
latter is important. For the same rate of mass flow, the larger
the number of fins and their height, the higher will be the flow
friction, and hence the pumping power. .Therefore the investi-
gation on heat transfer performance of finned tubes in turbulent
flow is usually conducted under the condition of constant pump-
ing power. For laminar flow, such a criterion is not needed, since
the Nusselt number is independent of Reynolds number for
fully developed velocity and temperature fields.

In spite of the importance of internally finned tubes in the de-
sign of compact heat exchangers, no results of analytical studies

! This study was supported in part by the National Science Founda-
tion under grant GK-23688.

2 Numbers in brackets designate References at end of paper.

Contributed by the Heat Transfer Division for publication (with-
out presentation) in the JoUuRNAL or HEaT TRANSFER. Manuseript
received by the Heat Transfer Division May 23, 1972. Paper No.
73-HT-M.
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have been reported in the literature, and only limited experi-
mental information is available. Fluid friction and heat transfer
data for single-phase water flow in the turbulent regime were re-
ported by Bergles, et al. [3,4]. They found that the greatest
increase in heat transfer was achieved with tubes having short
spiral fins. On the basis of the nominal heat transfer area, the
Nusselt number was found to be as high as 170 percent more than
that for a smooth tube. Hilding and Coogan [5] tested turbu-
lent air flow and found that straight fins of larger height give
better heat transfer performance.

The analytical study of heat transfer in turbulent flow through
a finned tube involves the production and suppression of turbu-
lence, the mechanism of which has not yet been understood. In
view of the damping effect of fins on the intensity of turbulence,
straight fins will be more effective in improving the heat transfer
performance for laminar flow than for turbulent flow. Taking
into account the increase of solid—fluid contact area and the
change of flow pattern, we can expect that a certain combination
of the height and spacing of fins will give the highest improvement
of heat transfer performance. This is the main purpose of the
present study.

Since finned tubes have been considered for heat exchangers in
nuclear-powered engines, the effect of heat generation in the fluid
on the heat transfer coefficient will be studied with particular
attention.

Statement of Prohlem

The problem to be investigated is concerned with the momen-
tum and heat transfer in laminar flow of a single-phase fluid
through an internally finned tube as shown schematically in Fig.
1. The fins are straight and continuous along the axis of the
tube and are equally distributed around the wall. Properties
of the fluid are assumed constant. The thickness of fins is
neglected, for otherwise the problem would involve many aspects
of the particular system to be chosen. The velocity and tem-
perature are assumed to be fully developed. A constant and
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Lo (o), 1ot 1 dp? ”
r* or* or* r*2 0f? u dx* )
1 0 or* 1 o2T* 1 oT*  Q*
Il il el — g% X P+
r* or* < br*) + r*2 062 a ' ot k "o

The boundary conditions are

oT* G ® 7] 0
u¥ = 0, —a—r;=il~ for r* = 7%, ——70505-2—0
4)
oT* q 2* 00
u* = 0, g Lk— form* <r*¥ <re*, 6= :i:g 6))
ou* oT* 6o
Fig. T Geometry of the internally finned tube ?d =0 W =90 for0 <r*<m* 0= :i:_2_ )

For the steady state in the temperature field to be established,

uniform heat flux is assumed to apply steadily over the eylindrical the following condition is to be satisfied:

surface. A constant and uniform heat flux is also assumed at
each fin. The last assumption is not quite realistic, but will g7+ b0 /2 ro¥
simplify the analysis considerably, for otherwise we have to con- 75 = l: f (gun*/k)d0 + f {Que*/k)dr*
sider a specific system so that the heat conduction in the solid 0 ik
and the heat convection in the fluid can be analyzed simul- 02 it o
+ f f (? + q)*) r*dr*dﬂ:I/
0 0
for the channel of circular cross section as shown in Fig. 2. The
momentum and energy equations are, for 0 < r* < rg* and lx*l <

taneously.
Under the foregoing conditions, the problem can be formulated
05/2 0¥ g%
f f — r*dr¥d@ (7)
®, 0 o @
Nomenclature

pep @Q* = rate of heat generation per u* = velocity
u unit volume u = dimensionless velocity =

o3 dp* dT* Q:* = rate of total heat transfer i ro*? dp*
go* dx* da* ) “ uo dz*

through solid—fluid inter-
defined by (14) u, = mean dimensionless velocity

¢, = constant parameter,

face
, gu* = heat flux at tube wall =

80/2 1
cz = constant  parameter, 1 Qs*/2 wro* + 2wml*, w = = f / f w(r, O)rdrdd /
(Iwz*/qu* 0 0
ro*? ap*\* gwe* = heat flux at each side of fin 90/2 1
qo* dx* = W * f f rdrdf
cp = specific heat at constant g% = Q.*/mDo*, reference heat 0 Jo )
pressure flux Umo = mea;rii dimelzslgnless velocity
. * ) = evlinde o of finless tube
D Do = 4((;:,‘::;;6%3?;1;2&)1) - oo 3‘ = :Z?;:gllcal coordinates U = dimensionless velocity for
Do*/ro* P T ro* = radius of tube 0<r <' ! a.t 0 = +00/2
Do*, Dy = diameter of finless tube, o=t = = a = thermal d1ffus1v1t3r ) ]i/ pey
Do = Do*/re* = 2 Re, Res = Reynolds number, Re = B = qu*/q0*% B2 = qm /@
f = friction factor g)u:;‘D,,*/p, Reo = pun* 6 = angle (g /cn‘cular sector,
= Creen’ : 0"/ M b = am/m
@ Glsenfg function - defined T'* = temperature A = heat generation parameter
~ Y (, ) , ) T.* = averaged temperature over = 1*Q*/qo*
G = generalized Green’s function ~ entire cross section U4 = viscosity
defined by (25) ‘ T = (T* — Tu*)/(qo*re*/k) p = fluid density
Z - h}:eat tr;insfet‘icoef’ﬁment Ty* = bulk %uid temperature = ®* = dissipation function de-
= thermal conductivity 60/2 (1
Z*,l = height of ﬁn, ] = l*/?‘o* f f u*T*T*d?‘*d@/ © - diii:;ed. b}; (3) dissioati
0 0 = nsionless issipation
m = number of fins 00/2 1 2u\?
Nu = Nusselt number defined by f f wrr*dr*df function = <—)
(33) o Jo or
p* = pressure Tam* = averaged temperature over

Pr = Prandtl number
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Equation (7) is obtained by integrating both sides of (2) over the
cross section of the channel, and the following relation for fully
developed temperature has been used:
ar* _dry
dz*  da*

(8)

By introducing the dimensionless quantities as defined in the
Nomenclature and using (8), equations (1)-(7) take the form

Lo,y Lo ©)
r or or rt afr
10 oT 1 sz
il = — B il 10)
roor ( br) T " 0% au — A — o, 0) (
bT
u = 0, = B forr =1, ——*@*SHS@’ (11)
2 2
oT [
u=0 -—==xf forrn<r<l 0= +— (12)
rdf
ou oT o
= —~ -0 for0 <r < = H— 13
55 0, >0 or 0 <r<m, 6 2 (13)
where

00/ 2 1
€ = —‘]: ﬁlda +f 182(17‘
0
60/ 2
f f A+ c@)7d1d0:l/

60/2 1
urdrdf (14
ﬁ fo (14)
Solution for Velocity

The boundary conditions on u, (11)-(13), are of the mixed type.
In order to obtain the analytical solution for %, we can divide
the circular sector into two regions by a circular arc of radius r.
This approach will be quite lengthy, and therefore we do not use
it. If, however, we let U(r) denote the velocity for § = 6,/2 and
0 < r < ry, then the boundary condition over the contour of the
circular sector is of the Dirichlet type. If G(r, 0[1", 0’ is the
Green’s function associated with the Dirichlet problem, we have

u(r, 8) = f f G, 8], 0'y'dr'de’
60/2
! o ?ﬂ
- j:) Ur )[DB’ <r, 0[7 f 2>
00 d?"
— wG(T, 0!1‘, —_ ?)]7

Differentiating both sides of (15) with respect to 6, setting § =
0:/2, and using the boundary conditions (13) for u, we obtain

1
f K@r\UE)dr' — f(r) = 0 (16)
0
where the kernel K (rir’ ) and the function f(r) are defined by

Ky = 2T [aeae G(r, 0o/2r", 00/2)

o2 )
DGDHG(T 00/2'7 ——90/2)] a7

00/2 1y
f f = G(r, §o/2]r", 0" y'dr'df’  (18)
&/2 VO of
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Equation (16) is an integral equation in the form of a Fredholm,
equation of the first kind. Its solution will be discussed later,

The Green’s function G(r, 8, 8’) can easily be constr ucted
by the standard method of a partial eigenfunction expansion (6]
for " <,

o«
G(r} 0'7-" 0/) = E i ,-’mnlz(?-—mnlz — rmnlz) sin % mn
n=1

1 o1 1
X (0 -+ E%) sin - mn (0’ -+ Py 0o> (19a)

For »’ > r we simply exchange r and »’,
be rewritten in closed form as

The series in (19¢) can

1 .
G(r, 0]7", 0y = — {—-ln [r’" + pim

4

— Qpmitpimi2 oog 1.;_ (0 — 0’)]

m
4+ In l:l + pmplm . Dpmi2pimi2 aag ,2_ (0 — 0’)]
+ In [7‘”‘ + pimo— Qpmi2pini2 aog _.1;1 (00 - [7] -+ 0’)]

— In [1 + pmpim— Qpmlipim/2 o8 j’;l (00 + [/} + 0/)]} (19b)

We substitute (196) and (19e) into (17) and (18), respectively,
to obtain

mi2 m pim
Kol (rr) [r + 7

P (7"" — T/m)z

_ 1 + rmplm ] (20)

(1 — 1‘”’7"'”)2
16 = r2 —~ pm(2n—1)/2

Jr) = _~E nz=1 ;n2(2n — 1) — 16 e

Now the problem is to solve (16). We wish to use a simple,
though approximate, method whose accuracy will be discussed
later. We divide the radial length (0, 7)) into N intervals. Let
1 =1,2,3, ..., N be the primary nodal points and j = 1, 2, 3,

, N the secondary nodal points. We assume that U(r) re-
mains constant within each interval, Then (16) can be written
as a set of algebraic equations

N
2. Uit

i=1 Arj

Ky r')dr’ = filr;)

or, in matrix notation,

Fig. 2 Geomeiry of a circular sector of the tube
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Fig. 3 Dimensionless velocity distributions at 0 < r < r; and 0 =
+6,/2 for various values of m and/

[4al|Ti = 1£]

where the maftrix elements are given by
7'j

Ai:’=f
A
2

= — (riripue)™? (

m

(22)

K(rs, #')dr’

1 1
M — 7'j+172"" 1 — 7'7:’"7"]' 11 2™

2 1 — !
o )m/2 23
— ( irj—-1/2 <7'im 7.]__1/2111, 1 — Timrj—1/27"> ( )

with

Ar; Arj
Tipe =15 + "2i’ Pioyp = 15 — 71
Calculated results from (22) are shown in Fig. 3 for a wide
range of values of the spacing and height of fins, which are char-
acterized by the parameters m and [, respectively.
Substituting (19) into (15) gives the velocity distribution

1
ulr, §) = %f M(r, v, OYU@" )dr'
0

+ i i 32
or 2 @n — 1)[m2@2n — 1)2 — 16]
. 1 1
X [?.2 - 7-(n—1/2)m] sin |:»,n <n — E) <0 + 5 00>:] (24:)
where
i\
M@, r',0) =m (T) <T’”’2r”"/2 cos — 0)
. 2
1

m rim o Qpmi2pmi2 gin % 8

4

1

1+ pmplm . Qpmi2pimi2 gin ﬁ /7]
2

1

+

rm - plm _I__ Qpmi2p/mi2 gin ﬁ 0
2

1

. m
14 pmplm + Qpml2pimid gin —2_ [}
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Some calculated results from (24) for various values of m and
[ are shown in Fig. 4.

Solution for Temperature

We wish to solve (10) for T'(r, 8) satisfying conditions (11)-(13)
by the use of a generalized Green’s function. By the method
of partial eigenfuniction expansion and the use of the well-known
symmetry condition [7, 8], this function can be constructed as

GO, 0, 0) = =2 L 2 a gy — g, 0], 0 (25)
4T 2
where
1
glr, B, ') = o {In [r2m + p'2n — Zpmp'm cos m(f — 6')]
+ 1n [1 + rimpt2m — Qpmpim gog () — ')

+ In {rm 4 pom — 2pmp'm cos m(@ + 67)]

+ In {1 + r2mp/2m — Qmpim gog m(f -+ 0/)]} (26)

The solution of (10) is then determined up to an additive con-
stant,

Fig. 4(a) Equi-velocity lines u/u,, for / = 0.8 and m = 2

Fig. 4(b) Equi-velocity lines v/u,, for !/ =08andm = 8
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Fig. 5(a) Isotherms (T — T)/(Tep, — Tp) for ] = 0.8 and m = 2
00/2 oT
TG, 0) = ¢ + f G(r, 81, 6’)()—7, (1, 6")do’
1]

1_ , 1 oT (, 1 dr!
-+ ﬁl G(?,H'? ' 00) 'O’é“, <7 , 500) ”
6/2 1 .
+ f f [ + A + PGy, Ofr, 8" )r'dr'd8’  (27)
0 0

Substituting (25) into (27) and using condition (14), we obtain

o1
a

1 1 0/2 1
- ﬁzf g ((7‘, o}, Y 90) dr' + f f (e + N+ )
71 = . 0 0

X [1’3 r2 — g(r, O, 0')] rdrdd’ (28)
2r

1
T4, 8) = C+ — i+ — = (1 — 19,
2 T

The constant C is determined by

60/2 1
f f T(r, Oydrdf = 0
0 0

Now we can caleulate T'(r, 8) from (28). If the tube wall and
fins are very thin and are of the same material and same thick-
ness, and if the heat is applied electrically, then we can assume
that 82 = (i/2, since heat is transferred to the fluid from both
sides of the fin. Some calculated results from (28) are shown in
Figs. 5(a) and 5(b).

(29)

Friction and Heai Transfer Coefficients

For fully developed ﬂow, the friction coefficient is obtained by
the halance of frictional and pressure forces as

dp*/dz* D.*

7= puyn*2/2 4 (30)

If we follow the usual practice of deﬁning the Reynolds number
on the basis of the hydraulic diameter D,*, we obtain

Dg? 2
fRe = — =
C2Um Un[1 + m(l — /T2

(31)

Some calculated results of (31) are shown by dotted lines in
Fig. 6. However, a better correlation for the friction factor is
obtained if we write
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Fig. 5(h)

Isotherms (T — To)/(Tam — Ts) for/ = 0.8 and m = 8

20001

1000]

=7

llllll

50

T

(32)

as shown by solid lines in Fig. 6.

Now we consider the heat transfer performance of finned and
finless tubes. It has been shown in [4, 5] that the hydraulie
diameter is not suitable for correlating data of heat transfer in
finned tubes.

We define the heat transfer coefficient and the Nusselt number
for finned as well as finless tubes as:

h

s* ) hDo*
Q ko (33)

T — Nu =
TDH*(Ten™® — Tp*) b

where @,* is the rate of heat transfer at the interface of the solid
and fluid, 7,* is the temperature averaged over the interface,
and T* is the bulk temperature of the fluid. Reasons underlying
the definitions (33) are: they reduce to those of finless tubes;
the finned tube replaces a finless tube of the same nominal
diameter, which alone describes the compactness of a heat ex-
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changer; for a given prescribed tempelatule of the solid surface,
1 (and hence Nu) dictates the rate of heat transfer, or con-
yersely for a given rate of heat transfer it determines the average
emperature difference between the fluid and the solid surface,
an important factor in the design of heat exchangers.. Some

- ealculated results of Nu without and with heat generation are
shown in Figs. 7 and 8.

Limiting Cases: Finless and Full-Fin Tubes

Since the velocity distribution was calculated numerically by
» method that has not been used by other investigators, we con-
sider two special cases whose results are well known: finless
and full-fin tubes. For finless tubes, (24) and (28) reduce to

-

Z
r2 ]
(-5 -me (-5-3)

u(r) =

()

and (31) and (33) become
FRe = 2/umo

Nu = Doﬁ:/( ,81 + Calimo >

since umo = 1/8, Dy = 2, these yield the well—kriown results of f Re
= 16 and Nu = 48/11 in the absence of heat generation and
dissipation. For full-fin tubes, i.e., [ = 1, (24) and (28) for ¢, =
0 reduce to

(34)

(35)

12 32
) = — —(=1)tDie T o
uir, 0) or 2 (=1 n(m2nt — 16)

X (r? — 7"';"’2) cos %mn@ (86)
1 7
ro,0 =0+ (- o e sa+a(2) (5 -)
2 & . 1 \ cosmn b
o 2D (""f L)
LI 1 1
U B s Rmk o+ 4) \3mk o+ 24
4 1 . ! :
. e Yy — p(mki2) +2
Tk — 4 |:16 =)= o rap L7 )j“
32 = & 1

Z E (—1)”n(mzkz —_

mm? K=18,5 ne1 16)(k? — 4n?)

8mn
(mk + 2mn + 4)(mk — 2mn + 4)

p(mki2) +2

2mn -
mn? — 16 "

2
— 4 —
|:mzn'3 — 16

Equation (36) is identical with that reported by Fckert, Irvine,
and Yen [9], and hence the friction coefficient is as shown in Tig.
9. Equation (37), however, is different in form from that in
[9]. Calculated values of the Nusselt number, as defined by
(33), from' the temperature distribution given by (28) with », =
0, A\ = ¢z = 0, and B, = B, are also shown in Fig. 9. The Nusselt
number Nu defined in this paper is related to the Nusselt number
Nug used in [9] by

mk + 4 ] mn
(mk -+ 2mn + 4)(mk — 2mn 4 4) "
cos mnd (37)
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Nu = (1 + m/m)*Nug (38)

In Fig. 9 are shown the results of Nu from (38) calculated by
reading the values of Nup from Fig. 3 of [9]. It is seen that
they agree well qualitatively, but not quite so well quantita-
tively, with a maximum error of about 9.6 percent. This error
is probably due to the fact that the series solution of equation
(13) in [9] was truncated somewhat earlier in their calculation.
Of course we could also calculate Nu through the use of series
(37), but the definite integral in (28) was used for the present
caleulation to yield accurate results.

Discussion and Optimum Fins

Before we discuss the results shown in Figs. 3-9, a few remarks
are in order on the approximate numerical technique that was
used in obtaining the matrix (22). The accuracy of this method
has been discussed in [10] with regard to the use of fundamental
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Fig. 8 Effect of heat generation to Nusselt number
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Fig. 9 Friction factor and Nusselt number for full-fin tubes

Greeri’s functions (i.e., those in an infinite region), of incomi-
plete Green's functions (i.e., those satisfying homogeneous bound-
ary conditions only over a part of the surface), and of Green’s
functions (i.e., those satisfying homogeneous boundary conditions
over all the swrface). For a piecewise-smooth surface, the less
the incompleteness of the Green’s function, the more accurate
is the result obtained by this approximate techniqie. Therefore,
excellent results for u can be obtained by this technigque for the
present, problem.

Asg shown in Fig. 4(a) for m = 2 and I = 0.8, the equi-velocity
lines form two symmetric loops with the highest value in loop
eyes. This is in contrast to the flow pattern of concentric loops
for finless tubes. Two types of loops occur in Fig. 4(b) for m =
8andl = one at the center that may be referred to as the
primary loop, while those bétween fins are secondary loops.
Tor this combination of m and I, the highest velocity oceurs in
the eyes of secondary lops. If 1 is kept at the value of 0.8, the
increase of m tends to shift secondary-loop eyes toward the tube
wall, but the highest velocity is shifted from the secondary to the
primary loop. Loops of isotherms of these two cdses are shown
in Figs. 5(a) and 5(b). For the case of [ = 0.8 and m = 2, the
lowest temperature occurs in the two eyes. For I = 0.8 and
m = 8, the lowest temperature takes place along the tube axis.
For either case, the highest temperature is at the base of each
fin. It was found, but not shown here, that a further increase
of [ and m shifts the location of higheést temperature along the
fin toward the tip. If, however, there is heat generation at. a
large rate in the fluid, the highest temperature occurs at the tube
wall near the fin base.

The dependence of Nusselt numbe1 upon the parameters [
and m is quite complicated as shown in Fig. 7. For a given
value of I, the maximum Nusselt number occurs at a certain value
of m but not at the highest value of m. For a given value of
m < 8 the Nusselt number goes through first a minimum and then
increases with increasing . For a given value of 8 < m < 30,

" the Nusselt number not only goes through a minimum but also
a maXimum as / increases. Short fins of any number and long
fins of very large number may cause a decrease in Nusselt number
to below the value of a finless tube. The optimum value of
Nusselt number is found as 86.82 at { = 0.795 and m = 22.

The increase of Nusgelt number with fin height [ is of great
interest, as shown in Fig. 7. For instance, with 20 fins, the in-
crease of [ from 0.2 to 0.4 decreases the Nusselt number by 6.17
percent, though the solid-liquid contact area is increased by
54.3 percent; increasing ! from 0.6 to 0.8 increases the Nusselt
number by a factor of 12.8 while the solid-liquid contact area is
increased only by 26.6 percent. To understand this surprising
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change of Nu with respect ! and s, we have to look into the de-
tailed velocity and temperature distributions in the primary and
secondary loops. For short fins (I < 0.32), no secondary loog i
found in either the velocity or the temperature field; the highegt
velocity is along the tube axis, and the highest temperature ; is
around the fin base where the fluid is nearly stagnant. As [ ip.
creases; secondary loops of both temperature and velocity begin
to appear. When [ is increased to about 0.8, the hlgh—veloclf,y
flow in the primary loop joins force with the flow in the secondar 'y
loop in heat convection.

As I — 1, the primdry loop will begin to vanish, and the hlghest
temperature will oceur at a region around fin tips where the fluig
is almost stagnant. Consequently the heat transfer coefficient,
drops drastically from the optimal value of 86.82 to that of the
full-finned tube, 17.98.

We have also examined the effects of dlsmpa’mon and heat
generation on the Nusselt number on the basis of the same tota]
heat transfer rate. It is found that the effect; of dissipation ig
insignificant for all eases, and thevefore it is not shown in any
figure. However, the increase of the rate of heat generation
decreases the Nusselt number appreciably. For A > 2.4, the
optimum value of m changes from 22 to 16, as can be seen in Fig,
8. Thus if the rate of heat generation in the fluid is so large that
A > 2.4, the tube with 16 fins extended to about-80 percent of
the tube radius gives the highest heat transfer coefficient,

Calculations have also been made for finned tubes with 8, =
81, and it was found that the Nusselt number as shown in Fig, 9
does not change appreciably from that with 8; = 81/2. In other
words, the Nusselt number is not quite sensitive to the selection
of values of Bs.

From the above discussions, the following conclusions can be
drawn: (a) the installation of internal fins in tubes improves
the heat transfer performance more effectively for laminar flow
than for turbulent flow and (b) the Nusselt number for laminar
flow in the optimized finned tube can surpass that of many
cases for turbulent flow in a finless tube such as [11]: Pr <
10 and Re < 104 Pr < 1, and Re < 3 X 104 Pr < 0.03 and
Re < 108, More discussions on (33) and Fig. 7 can be found in
[12].
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Stochastic Optimization of
Convective-Fin Design

I the design of convective fins, stochastic variations in fin dimensions have traditionally
been handled by the use of sufety fuctors.
of safety factors and thus an overly expensive design.
He approach that not only analyzes the probabilily of system fuilure but also uses this
analysis to synthesize the optimal design.
difficulty are described and compared.

Often this process resudls tn a mulliplication
This paper presents a probabilis-

Four methods of varying accuracy and
The method based on the RMS approximation

for the variunces appears Lo be most useful for destgn purposes.

Introduction

A'r prisENT, allowance for stochastic variations in
material properties and dimensions in engincering designs is based
upon the use of safety factors. The magnitude of the safety
factors is based on experience with past failures. One of the
shortcomings of this practice is that there is a multiplication of
safety factors throughout the design, so the final design is too
costly. This problem has been recognized, and several anthors
have attempted to rectify the situation. Shigley [1],! for ex-
ample, has suggested the nse of probability distribution functions
for the mechanical properties of materials. Haugen [2] has
developed relationships between the probability of system failure
in terms of the probability of component failure. Several recent
publications [3-5] deal with particular heat transfer applications.

The present paper takes the probabilistic approach a step
further. Not only is the probability of system failure analyzed,
hut the failure analysis is used to devise the optimal design.
The result is a synthesis of the optimal design rather than just
an analysis of an existing design.

The system considered herein is a reasonably simple system:
the convective fin of rectangular cross section.  This problem is
chosen beeause of the commercial importance of fin design, but
also because the problem exhibits a nonlinear relationship be-
tween the dependent and independent variables that is char-
acteristic of more complicated problems. Tt is hoped, therefore,
that some of the findings reported herein concerning the rela-
tive merits of exact and approximate methods for predicting
the probability of failure are applicable to more complex prob-

! Numbers in brackets designate References at end of paper.

Contributed by the Heat Transfer Division for publication (with-
out presentation) in the Journar or Heat Transrer. Manuscript
received by the Heat Transfer Division October 26, 1972. Paper
No. 73-HT-0.
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lems. Another advantage of the fin problem is that there are
only two independent variables, so the results can conveniently
be portrayed.

Theoretical Development

Of the many uncertainties associated with fin design, including
the uncertainty or variability of thermal conductivity and con-
veetive heat transfer coefficient, the ones considered in this paper
are those associated with the physieal dimensions of the fin: the
length and thickness. The problem to be solved can therefore
be developed as follows: The heat transfer rate per unit length
on one side of the fin is [6]

Q = (hkt)'\/*(1y — T4) tanh (RL2/kt)'/ )
or, in dimensionless form,
¢ = 7'/ tanh (A /7'/?) (2)
A stochastic dimensionless length
A= N(l + 8)) = hL/k 3)

is introduced where Ay is the mean value of A and 8y is a random
variable assumed to be distributed parabolically according to
the equation

3 oa? Y 1/
f(”é)ua)\) 1 - ,—-’)‘20’5)‘S6)\S5 LI

" 4(6op) 5oa?
4)
= 0, elsewhere

with mean of zero and variance o5\ Similarly, a stochastic di-

mensionless thickness
r=14(1 + 8,) = ht/k (5)

is introduced with probability density function f(os,, 6,). These
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Table 1  Accuracy of typical simulations at a single Ay, 79
Percentage
error in
N P vy T
exact 0.9362 0.0014071 —
evaluation
10 1.0000 0.0013173 6.382
100 0.9600 0.0013722 2.480
1000 0.9400 0.0014014 0.405
5000 0.9356 0.0014080 0.064
10, 000 0.9361 0.0014073 0.014
evaluation at:
g = 0.08
h = 0.1437
70 = 0.009169
oy = 0.1
odr = 0.1

parabolic probability distribution functions are more repre-
sentative of the true distribution functions of A and 7 than the
frequently chosen normal or Gaussian probability distribution
function, since the normal distribution funection indicates there
is a finite probability that A or 7 become negative or extremely
large. The parabolic distribution does not allow this when real-
istic values of o\ and o5, are used.

The average total cost per fin produced can be approximated
by an equation of the form

C, = alty + (6)

where ¢ is the cost per unit volume of fin material and ¢, is the
fixed cost per fin, including fabrication, tubing, etc. Since some
fins may be rejected because they do not meet the heat transfer
requirement, the cost per acceptable fin is then

_ c1\eTo Ca
Plg>q¢) Plg=g)

1
a

4

where P(q¢ > ¢.) is the probability that the design meets or ex-
ceeds the ¢ requirement ¢». The optimization problem here con-
siders both the cost of rejecting unsatisfactory fins and the cost

of conservative design. The variation of the second term wity
respect to Ag and 7o is usually small, so we can simply optimizg
Co==C"s — co/P. Minimizing this cost is equivalent to mip;.
mizing the total volume of material per acceptable fin,

by = N0
Plg > g¢) @®)

The minimum value of vr for given ¢, os\, and s may he
found by searching over Ay and 7. Since an algebraic expression
for P(g > g¢.) cannot be obtained, the search offers considerahlg
difficulty. Various methods for evaluating P and hence vy gre
described in the following section. The methods differ in ac-
curacy and degree of difficulty.

Determination of the Cumulative Distribution
Function for q

By Simulation, The simplest method of obtaining P is by
digital simulation. Given ¢, Ay, To, 0s), and os, a random
number generator provides properly distributed values of 8y and
0, that are used in equation (2) to obtain ¢. This is repeated
N times; the number of times n that ¢ > ¢. yields

P== 9)

While easy to program on a computer, the method is not practical
for this problem. If N is too small, P is not accurate enough for
the optimization process. For very large N, a high degree of
accuracy may be obtained, but running times on the computer
become prohibitively long. Table 1 shows some representative
simulations at a single Ay, 7o point for various values of N and
compares the results to a more accurate method that is intro-
duced next.

By Integration. Another method is to develop P by integrating
the joint probability distribution function fi,,(A, 7) over the ap-
propriate limits, thus obtaining

Pg>aq) =1—ffi.O\71)d\dr=1—F (10)

Nomenclature
@ = tanh a/a g = stochastic dimensionless heat o, = standard deviation of q
C. = average material cost per ac- transfer rate = Q/[k(Ty — os = standard deviation of variation
ceptable fin Tl of &
C, = average production cost per fin g- = dimensionless heat transfer rate o5 = standard deviation of variation
¢ = cost per unit volume of fin requirement of &,
material g = mean value of ¢ ox = standard deviation of A
¢; = fixed cost per fin g1 = mean value of ¢ at Amin, Tmax o, = standard deviation of 7
flg, 6) = probability distribution func~ ¢ = mean value of ¢ at Amax; Tmin 2 = variance parameter defined by
tion defined by equation (4) @ = heat transfer rate equation (21)
fx = probability distribution func- S = safety factor T = stochastic dimensionless thick-
tion defined by equation (11) ¢ = fin thickness ness = ht/k
far = joint probability distribution T, = ambient temperature 7o = mean value of 7
function for A and 7 Ty = fin root temperature
fr = probability distribution func- vy = average volume per acceptable  sybseripts
tion for 7 fin = Aero/P _ limit of d dabl
F = cuamulative probability  dis- vp, = average volume per acceptable max = upper 1m1t. of random variabe
R . in probability distribution fune-
tribution function for ¢ fin evaluated by exact calcu- .
h = heat transfer coefficient, lation of P . . tmn’ . . .
& = thermal con ductivity o = ho/o/? min = lower hm}t' of 1'a.nd0.rn V.amable in
n = number of successful fins in d) = stochastic variation in A p.roba,blhty distribution func-
simulation 6. = stochastic variation in 7 tion .
N = number of trials in simulation Ay = sech?a 00 = evaluation at 8y = 6, = 0
L = fin length A, = tanh a/(2a) — sech? /2 .
P = probability that heat transfer A = stochastic dimensionless length ~ Superseripts
requirement is met = P(g > = hL/k * = optimal value
q-) Ao = mean value of A .= root mean square
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Table 2 Definition of expressions for P{q > q,)

Case Region 7 limits
n<q Le<sa Trmin 10 7(¢r, Amin)
IL 1S qgr < q2 Tmin U0 Tmax
III. Q2 X Gr T(Qr, )\mnx) 10 Tmax
o= G I qr < [/} Tmin O T(Qr, Amin)
1. 73} S‘ qr T(q'r, )\mnx) to Tmax
g2 < q La=ae Tmin 0 T(¢r, Amin)
I e<¢<a (N, ¢2) to 7(\, ¢r)
1. ¢ < ¢r 7(@r, Amax) O Tmax

where the integration limits encompass all A and 7 for which

< q. For A and 7 statistically independent, fi.,(A\, 7) =
AT (). From equation (4), by the substitution ox = Aoa
and the coordinate transformation implied by letting fadA =
J(asn, Ox)d0x

P e
A= 457N

5oyl ], 0< N — 57
BN

X on <A< N+ 500 (11)

=0, elsewhe\;re.

A similar expression can be written for f,. The only difficulty
in evaluating the integral is determining the limits of integration.
The region over which the integration occurs is the intersection
of the rectangle Tmin < 7 < Tmaxy Amin < A < Amax and the semi-
infinite region ¢ < ¢.. Because ¢ = ¢, is a line of negative slope,
the outline of this intersection will be either a three-sided figure
in various orientations or a four-sided figure, depending on which

side Of Amaxy Tmin and Amin, Tmax the line ¢ = ¢, falls. In either
case ¢ = ¢- forms one side of the figure. If we let

@1 = Tuonx'”? tanh (Amin/Tmax”?) (12)
and

G = Tmin”? tanh (Amax/Tmin'/?) (13)

and constant ¢ lines are plotted for ¢ and ¢, the various cases
are evident. The cases are listed in Table 2 along with the cor-
responding integration limits, values of F; as evaluated from
equation (10), and expressions for P(¢g > ¢.). In the table,
functional forms such as 7(gr, Amin) imply that 7 is to be deter-
mined according to equation (2) with ¢ = ¢- and A = Amin.

These integrals may be evaluated numerically to a high degree
of accuracy, and the results are exact in the sense that no assump-
tions have been made concerning the form of the distribution
function for g. The results of this exact solution will be com-
pared to the approximate solutions to be derived next.

By Two-Dimensional Taylor's Series. The exact solution requires
rather long computation times (but not as long as the digital
simulation). A root-mean-square approximation might be
used based on a Taylor’s series expansion for ¢ [3], so that

og
%, o +

<66>\)00 ol + <06T>00 05 (15)

The subscript 00 implies that the function is evaluated at o) =
8, = 0. Now, if @ = N/7"*

o7y _ N
<05)\>m = MAgsech? oo == N\Ay

20

2. 0" (14)

q = qu -+

and

0l =q— qu =

(16)
<ﬁ> = (1,"/2/2) tanh & — (\o/2) sech? & = NA, (17)
0

08,
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A limits Integral Plg 2 q)

Amin tO )\(gr, T) FI 1 - FI
)\(Qh 7') to )\(q,-, 'r) F[[ 1 - FI —_ Fu
Agry 7) £0 Amax ar Py
Amin 0 )\(q,—, 'r) F] 1 — FI
)\(Qr, T) t0 Amax 1)II PII
Amin tO )\((Ir, T) FI 1 — FI

min 10 Amax Fu 1 ~F —Fn
Mgr, 7) 10 Amax P P

g = 70'/? tanh @ = a)\ (18)

Under this linear approximation, since A and 7 are independent
random variables, ¢ is parabolically distributed; therefore, an
algebraic expression for P(¢ > g¢,) can be derived. For the
parabolic distribution analogous to equation (11),

for ¢ < qw + 5,
P(q 2 q) =10
for goo — 520 <'¢r < qu + 5",

qoo-+ 512, 3
P > r) = 1
¢ 2¢) j; 167y [

3 &~ gu)* 3 g — qu +}
0(5'/) Tq 4(5'2) Ty 2

for ¢ < quw — 50,

. (g — 900)2] dq

bl

or

Plg 2 q) =

Plg > ¢) =10 (19)

With this algebraic expression for P(¢ > ¢), a two-dimensional
search over Ay and 7, for given o4, 05, and ¢. can easily be con-
ducted to find the minimum vyp.

By One-Dimensional Taylor's Series. The foregoing two-dimen-
sional, root-mean-square (2D RMS) method is simpler than the
exact solution but is still somewhat awkward since the optimiza-
tion is over two variables. Jakob [6] shows that for an optimal
deterministic fin

a = 1.4192 (20)
If this is assumed true for the stochastic case at all times, then
Ay, A, and a are constant. The problem now involves a one-
dimensional search over Ay (or 7o) to find the minimum vr.

The optimal values of Ao/qs, To/¢:% and vr/g,® are found to be
functions of Z only, where

Z = (Moa? + A0s,2) (21)

Numerical Results

Computations were performed with each of the above meth-
ods for numerous values of ¢, os, and o5, to minimize vy, opti-
mal values of Ay &= Ao*) and 7y (= 7,*) were obtained.

Although according to the one-dimensional, root-mean-square
method (1D RMS), \*/qr, To*/q,% and vr*/q,3 are functions of
2 only, this is not true in the exact and 2D RMS methods. The
results suggest, however, that for practical purposes Ae*/g-,
70*/g:2, and vr*/g.® are functions of os and o5, only. Table3
shows some results indicating this for several values of g

The 2D RMS method provides a good approximation to the
exact results for Ag*/¢. with the maximum percentage of error
in the results in Fig. 1 being approximately 1.34 percent. The
1D RMS method is a poor approximation to the exact solution
for Ao*/g- (Fig. 2). The ervor is a result of the assumption that
No/7T9'/? is constant. Nonetheless, the maximum error is 12.54
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Table 3 Lack of dependence of \*/q., 79*/q,% and vr.*/q,® on q,

Qqr [F)N Tér M*/Qr "'O*/qr2 UTz*/q73
0.02 0.1 0.1 1.7959 1.4326 2.7483
0.04 0.1 0.1 1.7960 1.4326 2.7483
0.06 0.1 0.1 1.7960 1.4326 2.7483
0.08 0.1 0.1 1.7960 1.4326 2.7483
0.02 0.1 0 1.9452 1.2641 2.5271
0.08 0.1 0 1.9455 1.2640 2.5271
0.02 0 0.1 1.5941 1.5426 2.5271
0.08 0 0.1 1.5966 1.5403 2.5271

percent. The maximum error in 73* /g2 for the 2D RMS method
is approximately 1.90 percent (Fig. 3). In Fig. 4 the maximum
error for the 1D RMS method is seen to be 13.62 percent.

Fig. 5 shows vr,*/q* as a function of os and o5, Where
vy, is vp evaluated at Ao* and 7,* using the exact computation
for P. The values of A\p* and 7,* are, however, found by minimiz-
ing vy using the various approximation schemes. The maximum
error in the given data for vr,*/g.* is 0.94 percent for the 2D
RMS method and 3.66 percent for the 1D RMS method.

For the 1D RMS method, As*/g and 7% /¢ can be shown as
functions of 2 alone (Fig. 6).

Fig. 1 Optimal \j/q, determined by exact and 2D RMS methods

ro/ay

Fig. 2 Optimal \¢/q, determined by exact and 1D RMS methods
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Computation times for the four methods are compared in
Table 4, which shows estimated relative timings for each method,
These values are for comparative purposes only; actual timingg,
relative or absolute, are highly dependent on the type of com.
puter, search algorithm, initial values, ete.

The stochastic optimization approach given previously is gy.
perior to a safety-factor approach, but for the convenience anq
comfort of designers familiar with safety factors, the optima}
safety factor is

8* = 74"/* tanh (\*/70"'/%) /g, (22)

The numerator is the nominal value of ¢ for A\y* and 7*, and o
is the design or required value of ¢. Fig. 7 shows 8* as a fune-
tion of o and gs, for the 2D RMS and 1D RMS methods,
respectively, with exact results included. These values of S dg
not determine the optimal fin, however, since there are two de-
sign variables, Ao and 7. However, if the designer used Ay*/
7,*'/* = 1.4192, which is consistent with the 1D RMS approxi-
mation, 8* is a function of Z only, as shown in Fig. 6. This
relationship can be correlated by the linear equation

8* =14 2% (23)

The utility of this last equation is shown in Table 5. Tt is
desired to design an optimal fin given ¢, = 0.08, osn = 0.1, and
o5, = 0.1. An exact solution is given, along with an optimal
safety-factor solution found by using equations (20) and (23).
Finally, a solution is given with a more conservative safety factor,
in which the designer has decided, in this example, to design the
fin for a value of g that is 30 percent higher than the normally
required value.

-~
:/// ~———— exact
———— - 2D RMS
1.2 1 I 1 1 )
0 0.02 0.04 0.06 0.08 0.10
Yt

Fig. 3 Optimal 79/q.2 determined by exact and 2D RMS methods

=—a—-——1D RMS
1 2 ]

0 0.02 0.04 0.06 0.08 0.10

Fig. 4 Optimal 7o/q,? determined by exact and 1D RMS methods
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-
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ofr 34 L /% Jdi.04
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1.2 1 ] 1 ] } 1.00
0 0.01 0.02 0.03 0.04 0.05
b
Fig. 6 No*/a,, 70*/q.%, and §* versus =
Gonclusion

Four methods of determining the optimal fin design have been
discussed. The two-dimensional method, based on the lineariza-
tion of ¢ to determine its variance, provides results close to the
exact solution. Since in this problem Ae*/70*/? remains rela-
tively constant, a one-dimensional method may also be applied
to determine the optimal safety factor. In other problems a
similar multidimensional analysis could be conducted in search
of groupings of variables that are almost constant so that a
similar reduction in dimensionality could be effected.

All methods provide an optimal safety factor, but equation
(23) gives S* as a function of 2 alone. Although only an ap-
proximation, the use of this safety factor with equation (20)
is convenient for designers and provides them with a rational
and nearly optimal selection of the fin dimensions.

Although the fin problem is not representative of all problems
in engineering, the results of this investigation are at least en-

Journal of Heat Transfer

———— 1D RMS
B — - ——2D RMS

1.00 L L — - 4
0 0.02 0.0 0.06 0.08 0.10

Osr

Fig. 7 Optimal safety factor

Table 4 Compadrison of computation times

Optimization Estimated relative
method computation time

simulation 39,656

“exact’” by 8292

" integration

2D RMS 25

1D RMS 1

Table 5 Comparison of exact, optimal safety-factor, and arbitrary
safety-factor solutions

Percentage
Safety - excess in
factorS o To P Vrs  UTL/Qd U1/t
optimal 0.144 0.00917 0.936 0.00141 2.75 —
1422 0.140 0.00968 0.954 0.00142 2.77 0.71
1.3 0.166 0.0137 1.000 0.00227 4.43 61.2

couraging with regard to the use of linearization schemes for
stochastic optimization and design.
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The Use of Singularity Programming in
Finite-Difference and Finite-Element
Computations of Temperature

This report contains a description of « numerical technique designed to overcome the
difficulties associated with the usual solution of two-dimensional discretized thermal
problems when there are singularities arising from point sources or disconbinuous

boundary conditions.

The method is here applied to both the finite-difference and the

Sinite-element approach by incorporating in the numerical computations the known ana-
Iytical form of the singularities.

$1 Introduction

‘ THL UsUAL numerical method of solving linear two-
dimensional field problems with singularities, such as those
arising from point sources or from sharp boundary corners, is to
refine the mesh, but this can be done only at the expense of in-
creased conﬁputing effort, and frequently it is not possible to know
when the mesh has been sufficiently refined.

A more promisitig approach is to superimpose a closed-form
analytical solution and a numerical solution in the vicinity of thé
singularity. This can be done in both the finite-difference and
the finite-element methods of solving the field equations. Motz
[1]* presénted one of the first demonstrations of this technique in
solving a Poisson edquation for a sharp reertrant corner by finite
differences, and this approach was later extended by Woods[2]
to classical linéar elastic problems.  Morley [3] and Fix [4] have
applied the technique to_elastostatic eigenvalue problems solved
by the Rayleigh-Ritz techniquie. .- Fix has shown that only if the
singular solution is adjoined to the polynomial function used in
the numerical solution is the normal acciiracy of the finite-dif-
ference operator achieved. Eniery and Segedin [5-8] have used
superposition in conjurnction with finite-differerice methods to
solve several fracture-mechanics problems. ‘The use of super-
position with finite-element algorithms is typified by the solutions
of Wait and Mitchell [9] to Motz’s original problem. Yamamoto
[10, 11] has utilized the method for the solution of fracture-
mechanics and stress-concentiation problems. Pian and Tong
[12] have used the technique in their hybrid finite-element model

1 Numbers in brackets designate References at end of paper.

Contributed by the Heat Transfer Division for publication (without
presentation) in the JoURNAL or HEar TransrER. Manuscript re-
ceived by the Heat Transfer Division September 13, 1972. Paper
No. 73-HT-K.
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for fracture analysis. Gallagher [13) gives a review of the dif-
ferent superposition models available. In this paper we would
like to demonstrate the applicability of superimposing analytical
solutions to thermal problems and to illustrate how the method
can be incorporated into the usual finite-difference and finite-
element computer codes. The superposition technique used
herein was termed singularity programming in [14] and should
not be confused with the usual superposition method where a
singular solution or a Green’s function is adjoined to a second
solution, whose values are then adjusted such that the com-
bined solution achieves the correct boundary conditions. In
singularity programming, the singular solutions are used to
generate an effective (or pseudo) spatially varying heat source,
which is usually only considered close to the point of the singu-
larity. )

In §2 and §3 the finite-difference and finite-element approaches
are outlined. In §4 they are applied to problems of point sources
of heat. The solution is found for a range of mesh sizes, and it is
shown that with singularity programming, striking accuracy can
be obtained with a coarse mesh. In §5 a discontinuous boundary
condition is treated for which the singularity functions are
known.

In §6 the method is applied to thermal singularities caused by a
boundary corner. In contrast to the previous sections where the
singularity function was known completely, here the form of
the singularity is known, but not its strength. Further effort is
thus required to evaluate these singularity strengths K. Usually
there are several singularity functions that must be considered,
and it may be that the evaluation of the several K’s does not yield
consistent values. It has been found that by including extra
singularity functions consistency can be obtained. In this sense,
the technique is adaptive in that the need for higher order singu-
larity functions can be detected. In §7, singularity programming
is applied to a problem involving an instantaneous plane source.
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g2 Finite Difference Singularity Programming

Consider a region R with the bounding surface OR and let the
yariable T satisfy the field equation of conselvatlon of energy?

VT +Q+¢=0 €))

' where @ represents distributed heat sources and ¢ represents point
gources of heat and the boundary condition on dR

BT =g @)

Replacing the derivatives in equations (1) and (2) by finite-dif-
ference expressions of the form

a?T T(x + Az) —~ 2T(z) + T(z — Az) ot éa,_z
Dr— Ax? ozt 4!
and ignoring the error terms will yield good approximations

except near “‘singular points.” A singular point is defined as any
point in 2 + OR for which T or a derivative of T in the Taylor
series expansion for 7" becomes infinite or large in such a way that
the corresponding error term in the finite-difference equations
cannot be ignored. Such singularities can be found at point
sources of heat, or at abrupt changes in boundary conditions or
abrupt changes in direction of the boundary tangent as at re-
entrant corners. Iere nearness is characterized not by the
physical distance  but by the distance in terms of the number of
nodal points, for if Az — 0 the error term will tend toward zero
for any nodal point not at the singularity.

Hence it is usual to treat singular problems by reducing the
mesh spacing Az in order to keep the error terms negligible.
While this remedy can be effective if the troublesome derivative
is large, it is inadequate if the derivative becomes infinite at the
nodal point in question, and in any case the price to be paid for
this is a mesh size so small that the computational effort required
can hecome prohibitive. )

The essence of singularity programming is to assume that 7’ can
be decomposed into two parts:

P Ny
T=T+ 3 3 KPS:? =

p=1 1=1

AT
T+ 3 K8 =T+EKS: @)

j=1

where P is the number of singular points in £ + oR, N, ‘s the
number of singular functions to be considered at each singular
point, N is the produect P X N, and in the last form of equation
(3) the Einstein summation convention is used. 7" is “smooth”
in the sense that the finite-difference approximations involving T
have acceptable accuracy. The S, termed singularity functions,
are assumed to satisfy the homogeneous form of the equations for
T, namely when point heat sources are absent,

sti = OmR
BS: =

or to satisfy only the field equation when point sources are present

(40)
0 on OF near the singularity

K.V2S, +Iq—‘ =0 (4b)
C

In the former case the K; depend upon the boundary conditions

that cause the singularity, while in the latter case the K, are

known through the magnitude of ¢. Birkhoff [15] gives the

derivation of several singularity functions for the Poisson equa-

tion. Generally speaking, S; is found by solving V2S; = 0'in

polar coordinates, i.e., S; = r (4 cos nf 4 B sin n0), with 4, B,
* and n adjusted to satisfy 8S; = 0in R near the singularity.

It we denote the finite approximation to V?and 8 as ¢ and B,

it f ollows that
Or = OT + K:O S

? Although the derivation is for constant thermal properties, the
extension to variable properties is easily carried out.

Journal of Heat Transfer

Since T is smooth, {7 is a good approximation to V27T, and we
have

OT = VT + K; OS;
= VI — KV + KiOS: ®
or
OT = K:O8: — Q/k
Correspondingly we find upon assuming that BT = 87
BT = BT + K«(BS; ~ 8:) ©

g+ KB — B)S;

It is thus apparent that the presence of singularities can be taken
into account by adding the pseudo heat sources K; OS; and the
pseudo boundary conditions K;(B — B)S; to the actual heat
sources @ and boundary conditions g and solving the set of equa-
tions (5) and (6). The solution then proceeds by taking the
standard finite-difference program and adding to each nodal
point the pseudo source term and to each boundary nodal point
the temperature or flux pseudo boundary dontribution Ki(B —
B)S:. " In evaluating these terms, ¢ and B are the operators used
by the program. For example, if V?is modeled by {T(z, ity
= 2T(@, ) + TG, j — D}/Ax? 4+ {TG + 1,5) — 2T, §) + T
(t—1 ])}/AJ2 then {S; would be evaluated by substituting S;
for 7' in the preceding formula. It is usual to neglect all OS;
whose values are less than 1 percent of ¢S;in ‘the immediate
vicinity of the singularity, Likewise, most problems in which
the boundary is a large number of nodal points away from the
singularity will have a negligible contr ribution to g.’

For problens where both K; and S; ‘are known, this is all that is
needed.

When the singularity strength is unknown, K; can most con-
veniently be found by first solving two subsidiary solutions in the
following way:

i

1 Solve for 7 from
OT° + Q/lﬂ =
BT =g

7

which corresponds to the usual finite-difference solution ignoring
singularities

2 Solve for T from

OTa = 08 BIY = (B - B)S: 8)

The solution of equations (5) and (6) is then written in the form
= T° + KTt (9)

3 In order to evaluate K;, we now collocate by insisting that
the energy equation (1) hold at points on the boundary at which
we have hitherto required only satisfaction of the boundary con-
ditions.? If {*is the finite- dlffelence form of V? on the bound-
ary, we have .

O = K;0*Si — Q/k
or

O¥F = Ki(O*S — O — Q/k (10)

4 Equation (10), when applied to the regquisite number of
boundary points, will yield sets of algebraic equations for K.
It is best to use points on the boundary near the singularity to
determine K;, for at points far from the singularity, S; becomes

3 One of the simplest ways to detect the presence of a singularity is
to check the satisfaction of the energy equation at boundary points
(normally this check is not made since the energy equation is usually
not applied at a boundary point). Fven weak singularities will
usually display gross errors near the singular point.
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smooth and ( — V2)8; approaches zero quite rapidly. Because
of truncation errors, the use of points for which ¢*1' + @/k and
O*8; — O*T;! are small often leads to ill-conditioned equations
and consequently erratic values of K; (see [14] for examples).
When using several boundary points to determine K, if the
values are equal we say that K; is consistent and that the solution
has been found. However, if the values are not equal, either the
nodal spacing is too coarse or some important singularities have
been neglected (see §4 in the following). )

5 Tf there are multiple singularities, each singular point gives
rise to values of K;, say K4 and K;®. However, when using
boundary points near singularity 4, the truncation error will ad-
versely affect the values of K. The best procedure is to
evaluate K;4 using points near 4 and K;# using points near B,
which corresponds to (O — V?2)8; being equal to zero at points far
from the singularity. This can always be achieved by refining
the mesh sufficiently. Otherwise it is best to regard the terms in
K8 as known perturbations in the equations for 4 and vice versa,
and continually correct until convergence has been achieved.

§3 Finite-Element Singularity Programming

The appropriate integral to minimize for steady thermal
problems {16] is

1L 2T\ 2 T \?
=5 [ (LG + G ]-or) o [ v
(11)

where g, is the outwardly directed heat flux on the boundary of
any element that does not have a prescribed boundary tempera-
ture.

We subdivide R into elemental areas and let the temperature
be expressed in polynomial form by the basis functions

T =oy+ o + oy + ... + KiS; (12)

or

T = (Hla} + HK} (13)

where (f) is a row vector whose components are functions of x and
y and {«} is a column vector of coefficients; (S) is a row vector
whose components are singularity functions and { K} is a column
vector of singularity strengths. If the temperatures and the
singularity functions at the nodal points are denoted by 17’ and S,
respectively, we have

(7} - 181K} = (4){a} (14)
where [A] is a square matrix whose rows are (f) evaluated at the
nodal points and [.S] is a matrix (not necessarily square) whose
rows are (S) evaluated at the nodal points. Solving for {oz} we
have

{a} = (417} — (A1 (SH{K} (15)
or
T = (HAI T} — (NAIISHE) + (H{K}  (16)
If we define
W= (A {kalfa)™(fo) + Bu(f) TR A
N = [A7 kol fo)7(S0) + Iy fi)T(Su)} [4 7]
P o= 5alSa)™(8e) + ky(Si)T(Sy)
_ an)
R = Qi
0 = 8)
4 = [47Y

where (f;) = (0f/dz), superseript 7' denotes transpose, and M,
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N, P, R, and O are the integrals of M et seq. over the elementg]
area, we find for constant k, and &,

I=-[{Pr{M{T} + (N — MS{K}}

L

2 .
+ (K} r{@v — ST B} + (P — N7S — STN + STMS){Kk})
+ 2RA{T} — 2RAS{K} + 20{K}] (18)

[Differentiating with respect to 7'; and K, we find the lineay
equations for the element to be

oI N .
o, = MU+ OV — MK} + ATR" =0 (9

ol a N a N " n

K (NT — STMTY{ T} + (P — NTS — STV + STMS) (K}

— STATRT 4+ 07 =0 (20)

Here M is the usual thermal-conductance matrix [16] and ATRT
is the usual thermal source term; the underlined terms are the
additional terms due to singularity programming.

Singularity programming is implemented by taking a standard
finite-element thermal analyzer and adding the underlined terms,
In general these terms are added only to the conductance matrices
of the elements near the singularity. Some testing must be done
to determine how far the influence of the singularity extends, and
thus how many elements must include these terms, but normally
the distance is not large. Inasmuch as S must be evaluated in
each element (for example if § = 7 cos nf, r is measured from
the point of the singularity to the nodal point of the element,
and thus § is not independent of an element’s spatial position or
orientation) and the integrating routines for N, P, and O must be
rather carefully formulated in order to achieve a satisfactory
aceuracy, as well as the fact that the inclusion of S in very many
elements effectively expands the band width of the matrix, it is
best if the singular terms are added only to elements close to the
singularity where the effect of singularity programming is most
noticeable. ) ’ ‘

The polynomial portion of 7' is determined by the type of ele-
ment, used: bilinear for three-node triangles, bicubic for four-
node quadrilaterals or six-node triangles, etc. Inasmuch as one
of the primary aims of singularity programming is to yield im-
proved accuracy in the simplest manner, the bilinear poly-
nomial &y + a1z + iy was chosen. The choice was dictated by
the observation that almost all existing finite-element thermal
analyzers are based upon bilinear polynomials and by previous
tests of the bicubic and hybrid models [16] indicating that only
the six-node triangle was better. However, the difficulty of
automatic mesh generation for the six-node triangle discouraged
its use.  Furthermore, if singularity programming is valid, then
the singular function should account for all of the ill-behaved part
of T and the polynomial basis should need to treat only the
smooth part of T', and for this the bilinear form should suffice.

In general, equations (19) and (20) are sufficient to define the
solution, and when the element contributions are combined and
the flux boundary integral included, if necessary, equation (11),
the solution to the set of equations will yield 7' and {K b

§4a  The Point-Source Prohlem—Known Value of K

Consider a square region (—1/, < x < /5, —1/p <y < 1/;) with
zero boundary temperature and with a steady line source of heat
of strength K = 1.0 Btu/hr-ft located at the centers = y = 0.
The singular solution S is given by ‘

—1
S = Py In */R) (r? = a2+ 42) and R = reference length
(21

Transactions of the ASME

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



w S
vt

source X

Finite Element Singutar Finste

X Sppular  Studard  Difference
1/3 (¢} e

/5

/6 e}

110 A

i ——
770 \vd

Fig. 1

To establish the element thermal-stiffness matrix, a source of heat
of strength 1/7e? was uniformly distributed over a circle of radius
e centered at + = y = 0. The stiffness matrix was formed and
then e was allowed to approach zero. Fig. 1 compares the
temperatures on the diagonal obtained by the standard finite
element, singular finite element, and singular finite difference.
Tt is obvious that the singular techniques using a mesh spacing of
Az = Ay = 1/; are as accurate as nonsingular methods using Az
= Ay = /3. And of cowrse near the singularity even the finest
regular mesh cannot retain any reasonable accuracy, as evidenced
by the temperatures computed at the source as indicated by the
limiting lines on the figure. The values of T shown for points on
the diagonal that are within the singular element enclosing the
point source were estimated by interpolating the smooth part of
T and adding 8. 1In fact, one of the major shortcomings of the
standard procedure is its inability to provide for any reasonably
accurate interpolation near the source.

§4h The Two-Point Source Problem—K Known'

When two point sources of unit strength, S; and S,, are placed
abz = —0.125,y = Oand at z = 0.125, y = 0 respectively, see
Fig. 2, the singular functions are again known, but now we must
consider the interaction between the two singularities. Fig. 2
compares the standard finite-element and the singular finite-
element solutions, and the superiority of the singular element
with Az = Ay = 1/; is apparent. The success of the singular
element is due to its ability to extract from the numerical solution
the singular part. The dashed curve in Fig. 2 shows the smooth
part of the solution (i.e., T — K;S; = T) for Az = /4, and its
smoothness is readily observable.

In computing this solution with finite differences by imaging
about the line z = 0.0, care must be taken to consider the effect
of 8; by ineluding the term S in the region —0.5 < z < 0.0, in
wddition to ¢S, Table 1 gives a comparison of the temperature

Table1 Tatx = Qandy = 0
B Ax = Ay = 1/3 Az = Ay = 1/
T (08, = 0) —0.199 ~0.179
T (08, = 0) —0.187 —0.177
T (OS, = 0) 0.132 0.155
T (O8, = 0) 0.144 0.157

Journal of Heat Transfer

Comparison of temperature along the diagonal

ata = 0,y = 0 when {8:is and is not considered. Apparently,
for Az = 1/;, where the singular points are separated by about
six mesh increments, the second singularity no longer contributes
to the pseudo heat source term because (¢ — V2)S: has suf-
ficiently approached zero.

§3 Discontinuous Boundary Conditions—K Known

Consider the rectangular region shown in Fig. 3(b). The tem-
perature is prescribed to be zero for 0 <z < 0.25and 0.75 < z <
1.0 and unity for 0.25 < @ < 0.75. Because of the discontinuous
change in temperature at & = 0.25 and 0.75, there is a singularity
in the heat flux at these points. The appropriate singular fune-

tion is
_0-0 22)
T
with the corresponding heat flux on y = 0 of
1 fcos 8  cos b,
w= <* - = (23)
m T 7
[--]
o T AX Swgelar Srandard
o4 T Z; ° A
unedt y
Sources yn o —
: J\{\“ 4 yis )
32
70,
0al L
——— 10—+
A
f_@: 0.2+
2 A N
- — —_— -
0. I':_- ’E 7 smaoth
(ax= 1}
Q0 1 1 1 1 —1
0.5 0.4 0.3 0.2 -0.1 0
X

Fig. 2 Comparison of the temperatures along y = 0 pfedi:led by

and standard finite~element proced

es
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Fig. 3(a) Temperatures on the lower surface calculated by singular and
standard finite-difference procedures

Because the usual finite-difference procedure assumes that the
value of a function at a nodal point represents the average value
over the region —Az/2 < & < Az/2, the singular point was
placed at the center of a mesh interval. The computations were
made by assuming that the insulated lower surfaces was a plane
of symmetry. Consequently it was necessary to introduce the
images of the singular points 1 and 2 in the calculations. Figure
3(«) is a comparison of the temperatures calculated on the lower
surface by the standard finite~difference and singular finite-dif-
ference procedures. Acceptable accuracy is obtained by the
standard technique only for Az < /4, even though the singular-
ity is far removed from this plane, whereas Az = 1/, suffices for
the singular procedure. The heat flux on the upper surface y =
0,0 < 2 < 0.25is compared in Fig. 3(b). As expected, even the
use of Az = /s with the standard procedure is not adequate,
while Az = 1/; with the singular approach is quite satisfactory.
The heat flux for the singular procedure is calculated according to

aQTSi:Jg. }

¢ = (smooth + {sing. = k[ATsmocth +
oy

_ {A(T  Pane) + OTTU—’ (24)

where A is the finite-difference form of 0/0y and T sing. /Oy is de-
termined analytically.

§6 Interrupted Heat Flux—K Unknown

Consider the rectangular area shown in Fig. 4 where the flow of
heat from the left boundary to the lower is impeded by an insu-
lated splitter plate extending from = 0 to z = 0.5. The gen-
eral form of the singularity function is

S = r*(4 cos nf + B sin nf)

where 4, B, and n determined from the boundary conditions near
the singularity for the configuration of Fig. 4, namely ¢, = 0 on
0 = 7 and —1r, are

n =-—(m = 1,2, 3,...) where « is the included angle
@
(27 in this case)
and
sin mar
A =B
cos mw

In this case there are at least two operative singular functions

348 / aucusT 1973

AY  Singvlar Standard
i/ ‘@

Q

iflo A

Y14 +

/18 %

Yoz T &
xne 7=/ Y]

3
X
3
&
Ry
°
"‘.....]l

Fig. 3(b) Heat flux on the upper surface calculated by standard and
singular finite-difference procedures

n = 1/, and n = 3/, that give rise to infinite terms in the finite-
difference expressions for 027'/02? and 227 /0y Consequently,
there are two values of K; to be determined.

§6a Finite-Difference Singularity Programming

Using the singular finite-difference technique with only S, (n,
= 1/,) and applying equation (10) at the nodal point at the tip of
the splitter and at the next two nodal points on the splitter, see

Fig. 4, we find the results of Table 2. We note that: (a) K,
Table 2 Evaluation of K; when K; is neglected
Ar = Ki(P) Ki(Q) Ki(R)
t/g 1.1567 1.1023 1.0108
1/19 1.1490 1.1132 1.0688
/16 1.1453 1.1187 1.0835
/9 1.1432 1.1219 1.0920

varies significantly from point to point; (b) K; evaluated at the
tip varies as Ax is diminished. This type of variation, namely
point to point and with Az, suggests that the next singularity
function with n, = 3/, must be considered. By including K8
and solving the set of simultaneous equations at P and @, P and
R, and @ and R, we find the average K, K; and their standard
deviations given in Table 3. By including K, we note that the

Table 3 Simultaneous evaluation of K} and K,

Az I é o (Ky) K, o ()
A 1.1325 0.0012 —0.492 0.013
L1 1.1326 0.0016 —0.431 0.075
Y 1.1334 0.0029 —0.429 0.063
o 1.1338 0.0018 —0.442 0.050

values of K, agree to within 0.1 percent and that the standard
deviation is less than 1/, percent. This type of consistency is
taken to be indicative of a satisfactory solution. Furthermore
amesh of A = 1/; is seen to be quite as good as A = 1/, The‘
values of K, do not appear to be as consistent, showing a deviatior
of about 15 percent. This order of variation is not unusual ant
appears to be related to the greater sensitivity of the numerics
to strong singularities (n = !/;) than to the lesser ones (n = 3/2}
The importance of evaluating K; lies not with its own value but
with its effect upon the consistency of K;. Table 4 lists the cow
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Fig. 4(a) Comparison of singular and standard finite-difference values
of heat flux along the splitter plate

Table 4 Temperature at point A

A T, K7 KyT? Ty (= T° 4+ KT 4+ K,T?)
1/ 0.1735 0.0073  0.0007 0.1815
1/ 0.1784  0.0038  0.0003 0.1824
/6 0.1801 0.0025 0.0001 0.1827
i/ 0.1809 0.0018 0.0001 0.1827

tribution of 7, K, T and K,T? to the temperature at point 4 of
Fig. 4. The contribution of K,7? even with the coarse grid of
Az = Ay = 1/yis only 0.4 percent of 74 and less than 10 percent
of the effect of X;T'. Consequently the 15 percent variation in
K, is not incommensurate with a variation of 0.5 percent in K.

§6h  Finite-Element Singularity Programming

The splitter-plate problem was also solved using the finite-ele-
ment method with square elements. In this case the number of
elements that included the singular effect was varied. Fig. 4
illustrates the case where 12 elements included the singularity
functions. Other cases were generated by expanding or contract-
ing the singular-element region in a nearly circular pattern.
Table 5 lists the values of K, K;, and T4 and compares them to
the finite-difference singularity programming results. In these
finite-element calculations the values of K; and K appear to be
more dependent upon the number of singular elements than upon
the total number of elements. Even when all of the elements are
singular, the finite-element results for K, and K, are significantly

1 AKX Singuler Standard
5.0 7 a 5
/8 X
1”12 A
/16 a
40T 1720 — o

o

W
S,
sl

¥

0 Il Y L ! I
NPT T T T
0.5 0.6 0.7 0.8 0.9 1.0
X
Fig. 4(b) Comparison of singular and standard finite-difference values

of the vertical heat flux

different from the finite-difference results, although the values of
T4 are not. This is caused by a compensation between the
effects of K;Tt and K, that tends to adjust K; to offset any
errors in K,72.  The errors in K; and K, apparently stem from
the finite-element formulation. For square elements (obtained
by adjoining four triangles and condensing out the central point),
the boundary points on the splitter plate have the equations (Fig.
4) )

$Te — +(Tp + Tr) — £Tc — $Tp — 75 = 0 (25)

which, by use of the Taylor series expansion, may be written as

+...=0
Q

—ay 2T \ ~ (Aypver (26)
oY le

Thus to an accuracy of (Ay)? the finite-element algorithm satis-
fies neither the field equation V27" = 0 nor the boundary condi-
tion 7' /0y = 0, but rather a weighted sum of both. As a conse-
quence of this combined boundary condition, the singularity
strength is not accurately evaluated.

§6c Gomparison of Singular and Nonsingular Techniques

Regardless of the small error in K; produced by the singular
finite-element technique, the resulting answers are significantly
better than any normal finite-element or finite-difference method,
as shown in Table 6. Figs. 4(a) and 4(b) give a comparison of
the singular finite-difference and usual finite-difference values for

Table 5
Finite element Finite difference
Az Number of singular elements K; (K; = 0) K, K, Ta K, K, Ta
Ya 2 (all elements singular) 1.285 1.285 0.091 0.170
Y4 2 1.277 1.276 0.067 0.179
6 1.234 1.234 —0.032 0.179
8 (all) 1.224 1.224 —0.045 0.178
s 2 1.275 1.275 —0.056 0.182 1.1325 —0.492 0.1815
6 1.232 1.232 —0.048 0.182
12 1.212 1.212 —0.077 0.181
18 1.203 1.203 —0.086 0.181
32 (all) 1.195 1.195 —0.094 0.181
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Table 6 Comparison of values of T4 by different methods

1st-order 2nd-order 1st-order
triangular triangular quadrilateral
Ay element (16) element (16) element
1/ 0.1429 0.1176
1/ 0.1591 0.1737 0.1579
1/s 0.1659 0.1771 0.1674
1/s 0.1697 0.1784 0.1717
11 0.1721 0.1741
/1y 0.1738 0.1756
1/ 0.1759 0.1775
/20 0.1772
/24 0.1781
/s 0.1793

the heat flux along the splitter plate and on the liney = 0, z >
0.5. The singular heat fluxes were calculated asin §5. For both
figures there is a substantial error in the finite-difference results
even for the finest mesh (A = !/y) at points closer than 0.1 to the
singular point. In both cases the singular results for A = 1/, dif-
fered by less than 0.001 from the singular rvesults for A = 1/3.

Fig. 5 compares the heat flux along the splitter computed by
the standard and singular finite-element methods with the singu-
lar finite-difference results.

§7 Transient Singularities

Although it is conceptualiy possible to include in the singular
finite-element method transient singular problems—such as a
transient point source—the numeric difficulties are so great that
the method loses much of its appeal. In general, transient
singular solutions are not available in analytic form, or if they are,
they are so complex that the necessary spatial integrations are
nearly impossible to perform. Inasmuch as the intent of singu-
larity programming is to reduce computation times, and since
transient singularities are not necessarily singular for all times
(viz. the instantaneous point source), these problems are best
treated by either singular finite-difference techniques for which no
spatial integrations are necessary or by standard discretization
techniques. If we define V to be the finite-difference approxima-~
tion to 9/dt, the singular finite-difference procedure gives

6 |-
oo
Fitte Element
5L AX  Singvlar  Standard 3?"
/4 [ O N
g [ Ja
e ] /E‘
116 O
o f
il
>
sla
Y A

0 i L L L A
0. 0.1 0.2 0.3 0.4 0.5
X

Fig. 5 Comparison of singular finite-difference and standard and singu-~
lar finite-element values of heat flux along the splitter plate
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1st-order 2nd-order Singular Singular
finite finite finite finite
difference difference element difference
0.170
0.083 0.133
0.151 0.174 0.181 0.1815
0.166 0.178 0.1824
0.173 0.180 0.1827
0.176 0.181 0.1827
VT — o7 = K(VS — O8) (29)

where V can be any desired time discretization; it is chosen here
as the Crank-Nicholson differencing [16].

Consider the region shown in Fig. 6 where a plane source of
heat is located in the center. At the point P, located at » =
/1, the temperature should be approximately that near a plane
source in an infinite region, namely

Tret = *——Qi exp [—(zp — %5)%/4xi] (30

2+/ ki ’ ¢ )

where 2, is the location of the source. Tig. 6 is a comparison
of the results obtained by standard and singular finite-difference

techniques. A base time step Aty was taken to be the usual ex-
plicit stability limit [16].

Aty = Az?/4x 31)

Time steps of 2, 4, 8, and 16 Af; with the singular finite-difference
procedure gave values of 7', that were identical to each other and
t0 T'ret to within 1075, On the other hand, the standard finite-
difference procedure with time steps as small as A#/16 showed
reasonable accuracy only for k¢ > 0.01.

Furthermore, since time increments less than Af/8 gave
nearly equal values of 7', for k¢ > 0.001, there is no possibility of
improving the standard technique by further reductions in time
step unless the spatial mesh is simultaneously refined.

§8 Conclusions

It has been demonstrated that both singular finite-element and
finite-difference algorithms are powerful tools for yielding striking
improvements in accuracy and reductions in computing time for

11
Singuvlar Finrte Difference
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Fig. 6 Normalized temperature at point P due to a unit plane source of
heat
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problems that contain points of singularity. Although the singu-
lar finite-element algorithm tends to give slightly inaccurate
values of the singularity strength K, the overall accuracy of the
method and the ease with which the singular strength K is auto-
matically computed compared to the need for choosing the
poundary points in the singular ﬁnite-djfference method renders
it the logical choice for implementation.

One of the major attractions of either approach is the ease with
which they are implemented. In finite-difference methods, one
need only add a pseudo source term to the true source term. For
the finite-element method, subroutines to evaluate the extra
matrix terms are all that are needed. Thus existing computer
codes can be easily modified.
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Heat or Mass Transfer in Laminar
Flow in Conduits With Constriction

Analytical solutions are obtained on the effects of boundary constriction on heat or mass
transfer at the entrance region in a well-developed steady laminar flow in symmetric and
axisymmelric conduits subjected to uniform wall temperature or mass concentration,
The solutions are limited to the fluids of constant properties with neghigible viscous
dissipation, moderate Reynolds number, and large Peclet or Schimidt number, and the
spread of the wall consiriciion is large compared to the mean width or radius of the con-
dutts. It is found that both the bulk temperature and heat transfer vate at the wall are
-oscillatory in nature, and their amplitudes decrease drastically as the fluid moves away
from the entrance. Near thermal entry length, the bulk fluid temperature approaches
its mean value with vawishing oscillation, but the heat transfer rate at the wall stays
oscillatory in nature due to the irregularity of the wall. The thermal entry length
changes very litlle from the corresponding straight-wall condmts These results are
also true for the mass transfer. '

J. C. E. CHOW
K. SODA

Department of Energy Engineering,
University of Hlinois at Chicago Circle,
Chicago, 1il.

duits with sinusoidal wall variations and are compared with those
of the conduits with straight walls.

Introduction

ANALYSIS of forced convection and mass transfer in
laminar flow inside a conduit has been the subject of extensive
study since the publication of Graetz’s paper in 1855 [1].1 Until
now, little analytical work has been done on the effect of irregular
«wface upon the nature of heat and mass transfer in a conduit,
due to the lack of hydrodynamic data [2]. Recently, Chow,
et al. [3, 4], have obtained hydrodynamic solutions on steady (@)
laminar flow with moderate Reynholds numbers in conduits with
irregular swrfaces, whére the spread of roughness is large com-
pared with the mean radius of the conduit. These results are

Formulation of the Problem

Consider a Newtonian fluid of constant fluid properties flowing
steadily in & conduit. The boundary of the conduit is given by

=1+eg(a:),e=g-,,x= (1)
Yo

L
A

where z’, y’, a, and A are, respectively, the longitudinal and
transverse (or radial) axes of the conduit, the height of the wall

of considerable interest, especially for blood flow in arteries with
stenoses: and for membrane oxygenators using parallel plates
with wavy surfaces. The hydrodynamic solutions are used here
to obtain temperature and mass concentration distribution and
heat and mass fluxes from the wall in the entrance Ieglon for a
fluid with constant fluid properties and negligible viscous dissipa-
tion subjeeted to uniform wall temperature and mass concentra-
tion for symmetric parallel plates and axisymmetric tubes with
arbitrary wall variation. We are able to obtain the solution
nring Green’s functions. Numerical results are presented for
the bulk fluid temperature and the Nusselt number for the con-

' Numbers in brackets designate References at end of paper.

(‘ontributed by the Heat Transfer Division for publication (with-
out pregentation) in the JournaL oF HEaT TRANSFER. Manuscript
rec «;Ived by the Heat Transfer Division April 28, 1972 Paper No.
73-HT-N.
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constriction, and the characteristic length along the x’ axis over
which the significant changes in fluid quantities occur; g(z)
descnbes the wall va,natlon relative to the mean half—wulth (or
radius) yo'. At &’ = =/, the wall temperature and mass con-
centration are suddenly changed from 77 = Ty to 7' = T/
and ¢’ = G to ¢’ = (., respectively, and maintained there
for the remaining conduits. The equation governing the heat
transfer is the same as that for the mass transfer with negligible
viscous dissipation. Thus, in the following, we shall consider
the equation governing the heat transfer only, which is also
applicable to the mass transfer problem by replacing the tem-
perature T/ by the mass concentration €’ and the Prandtl num-
ber »/a by the Schmidt number »/D. The symbols », &, and D
are, respectively, kinematic viscosity, theimal dlffus1v1ty and
mass diffusivity.

The steady nondlmensmnal energy equation governing the
temperature field for constant fluid properties and large Peclel
number in plane symmetric and axisymmetric conduits is

Transactions of the ASME
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PI‘RE&(;[/,,,T,: - ‘//-IT-H) = T y)y; m = 0,1 (2)
7 f ! 7
Pr=z,Re=uoy0,5 =y~0,y -y
o v A :l/o'
T — T, K1/1
T = = 3
TO’ - Twl, uﬂ’y0,m+1 ( )

where 1o’ and ¥’ are, respectively, the average longitudinal ve-
Jocity at the cross-sectional area %.’. The stream function,
which is related to the longitudinal and transverse (or radial)
velocity components «’ and o', respectively, is given by,

_J_m‘nb s v ="j‘//’x’ 4)

The superscripts m = 0 and m = 1 correspond to plane sym-
metric and axisymmetric conduits, respectively, and the sub-
seript comma denotes partial differentiation.

The initial and boundary conditions are the conditions specify-
ing the uniform temperature across the conduit at z = o, the
equality of temperature on the wall, and the symmetric condition
on the axis of symmetry. These are, reéspectively,

T =1 atz < o 5)
T=0 aby = 1, &> (6)
Ty=0 aty = 0,2 > o )

We have neglected the viscous dissipation terms in equation
(2). This is permissible since the order of magnitude of the
viscous dissipation term to the conduction term is 4uuo’?/
k(T — T') and is small for moderate Reynolds number.. The
symbols u and x denote the dynamic viscosity and heat conduc-
tivity of the fluid, respectively.

Methods of Solution

The boundary condition, equation (6), can be made inde-
pendent of the x axis by the following transformation of the inde-
pendent variables:

y

X=x,Y=n‘Tw) @)

In terms of X and Y, the governing equation, equation (2), and
the initial and boundary conditions, equations (5), (6), and (7),
become, respectively,

PrTx = Yl = 5o S TR )y ©)
T=1 X < Xp (10)

T7T=0 at Y =1, X > X, (11)
Ty=0 at¥=0X>X (12)

The solutions of equation (9) satisfying equations (10)-(12)
are first expanded in series in terms of §, and the asymptotic
solutions are sought in the limit of § — 0.

T(X,Y: Pr, Re,¢8) = Z 0T (X,Y: Pr, Re,e) (13)
: n=0

TYXL,Y: Re, 6 8) = 30 6u(X,Y: Re€)
) n=0

(14)

The substitution of the above series into equation (9) and the
subsequent collection of equal powers of ¢ yield the set of per-
turbed equations. The equations governing the different orders
of the temperature field can be put into the following form:

Journal of Heat Transfer

1
(1 — YZ)T",_\— = <P Re 5) (I(m‘r,m l)(Y’mflv Y))

+ Kn®u(To, Ty o oo, Trt: Yo, ¥y v o oy W)
n=20123... (15)
The corresponding initial and boundary conditions are
To=1,T, =0 forn > 1at X £ X, (16)
Tw =0 at Y =1, X > X, (17)
Tay =0 at Y = 0, X > X, (18)

In equation (15), the source function ®,, the constant K,,, and
the explicit forms of the stream function ¥, up to the second order
of 0 are [3 4]

B =0 (19)
n
= > WuxTory — YryTex) n>1  (20)
=1
form = O:
1
Ky = —— 21
! 3¢ )
Yo = (Y3 — 3Y) (22)
3 3 33 3
= CReegxV [~ = Vo b — ¥t — o yr o =) 2
Y1 = ctReeq.x ( AT +14) 23)
3cYe
Y = ——(‘kgx — ng.xx)(¥? — 1)
+ Re2cPe?ng.xxF(Y) — Relclelq x2G(Y) (24)
form = 1
1
K= —— 2
! 4c 25)
Yo = (¥t — 277 (26)
R 2
Y = ;;C gxY2Ys — 6V + 9V? — 4) @7)
R
Yo = —ceBegxt — g H(Y) — ol X 1y (g
where
1518 462
S P(Y) = yi - 11y y? — == ys
"(¥) 1540( BT 5
3279 v — 1213
35 35
1 165 2244 627
G(Y) = — n 2y 222y 2y
T = =55 (Y TR 7
4111 2875
_1._ Y3 — ——— Y
49 98
Y2 — 1))
HY) = ( )
3
I(Y) = % (32712 — 305Y% 4+ 75078 — 713Y% + 23674)
1
¢ = —-
2

The solution of equation (15) satisfying the initial and bound-
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Table 1
K BoK BlK
0 1.6815953222 2.70436441990
1 5.6698573459 6.66790314493
2 9.6682424625 10.6733795381
3 13.6676614426 14.6710784627
4 17.6673735653 18.6698718645
5 21.6672053243 22.6691433588
6 25.6670964863 26.6686619960
"7 29.6670210447 30.6683233409
8 33.6669660687 34.6680738224
9 37.6669244563 38.6678833469
Table 2
K AOK AlK
0o 0.420876657180 0.0939337679236
1 0.395860429674 0.0375198383265
2 0.393809856830 0.0234421243406
'3 0.393256290093 0.0170471104066
4 0.393032212597 0.0133936093750
5 ' O 392920173537 0.0110298085662
6 0.392856337860 0.00937523183708
7 0.392816582482 0.00815231980450
8 : 0.392790172160 0.00721163558319
9 0.392771745488 0.00646558481357

ary conditions, equations (16), (17), and (18), are obtained first
by solving the homogeneous part of the equation by separation
of variables followed by constructing the Green’s function to
satisfy the inhomogeneous part [5]. The solutions for the differ-
ent orders of 7', are:

zeroth order:

1
Ty = f Y'm(1l — Y?)G(X,Y; Xo,Y')dY’ (29)
0

nth order:
X 1
T, = f f (X, Y)G(X,Y; X', Y )dY'dX’
Xo 0
n>1 (30)

where Green’s function G is given by

GX,Y; X\ Y)= 3,
, K=o Anx

Zng(X — X'Warg(Y"YWur(Y)

@)
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1
A = f Y'm(l = Y Wrt(YAY (32)
. 0
Knfni? [X—X'+X%
_ no— _ oommi m—1
Znx(X — X') exp[ PrRes on mHOK :I
(33)
Warx(Y) = i e withas = 1, a1 = —M—,
2 2(1 + m)
e B
“T @ m oD T2 6y

Bnk is the Kth eigenvalue. The values of Bnx and Anx are
given in Tables 1 and 2, respectively.

Heat Flux and Nusselt Number
The heat flux at the wall is

oT’ _ Ty — Ty g a5
o' |w - yol Nl ( )
where
— n/
n' = —y'V1 4 degx’ N = v (36)

In terms of (X,Y), equation (35) becomes

Tw' — Ty oT nx oT1oX
LN B bl ~ X ) 22102
oW Hax + ( " > aY]bN

+ (1 ?E) g’] - BTV ety O
n oY K ON vy ?/0( n oY Vel

87

oT’

on’

The Nusselt number based on the mean width (or radius) and
the bulk fluid temperature is
) (38)
Y=l ’

Ng = ¥ 2T _ (V1 + edy.r) (L oT
Tw,_T,an,w n \7T oY

f TY,ydY

A

f Yord¥

0
Discussion of Resuits

In the following, we shall present the heat transfer solution in

graphical form for the conduits with sinusoidal wall variation
(see Fig. 1). First, the effects of the wall constriction upon the

where

39)

s dead

wall variation

duit with si

Fig.1 C
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fow pattern in a plane symmetric conduil is shown in Fig. 2 for
§ = 0.1, ¢ = 04, and Re = 25. The figure shows the occurrence
of separation and subsequent reattachment in the divergent part
of the conduit. The streamline pattern is quite similar to the
corresponding axisymmetric flow.

For a small conduit constriction ¢, the energy dissipation (or
average pressure drop) along the conduit is negligible compared

T

— e 02

0 e 1 ' e
O 02 04 06 08 [0 |2

X

Fig. 2 Streamlines for § = 0.1, ¢ = 0.4, and Re = 25 for a plane
symmefric channel

0 0.1 02030405
. <

Fig. 3 Energy dissipation per unit time and per unit length: (o) Re =
25 and 5 = 0.2; (b) Re = 25 and 6 = 0.1; (c) Re = 12.5and § = 0.2;
(d)Re = 12.5and § = 0.1

1.0 T
ol .
T Re € F X
a 25 04 0. 025
b 25 0.4 0. 075
001" 4 ¢ 12502 0. 0.25 i
d 125 0.2 0.1 075
e STRAIGHT WALL
0.00! I ' L
0.00! 0.0l ol 1.0 100
2 X=X
3FRe Y,

Fig. 4 Bulk temperature via nondimensional axial distance for plane
symmetric channels
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with the straight-wall boundary, but it increases rapidly as €
increases above 0.1 and approaches infinity as e approaches one,
the latter condition corresponding to the complete blockage of
the conduit. This is shown in Fig. 3.  Any increase in Re or §
also causes a substantial increase in the energy dissipation. It
is also found that the pressure drop is higher in the convergent
section than in the divergent section due to higher wall shear
stresses.

Since the hydrodynamic solutions are obtained up to the second
order of 4, the foregoing results are qualitative in nature if the
following relations are not strictly satisfied for plane and axisym-
metric conduits with sinusoidal wall variation, respectively,
Rede « 1.39, 1.350% (48¢% + 1) + 0.00702 (Rede)? [(40/¢) + 79]
« 1, and Reed/(1 — €)/? « 1.433, (1 + 0.987¢) €? < 1.50.
Nevertheless, the asymptotic solution up to the second order of
0 gives the essential flow characteristics obtained numerically
[6] and experimentally [7] in a tube with local constriction
where the parameter 8 is of the order one.

The effects of a wavy wall upon the bulk fluid temperature
versus the nondimensional axial distance are shown in Figs. 4
and 5 for the plane symmetric and the axisymmetric conduits,

respectively. It is readily seen that at a low Reynolds number
1.0 T
Ol .
T Re € ] Xa
a a 25 04 0.1 0.25
0.0 |- b 25 0.4 0. 075 .
¢ 12,5 0.2 0} 0.25
d 12502 0.l 0.75
e STRAIQHT WALL
0.001 L L L
0.001 ool O.t 1.0 10.0
XX
1
2P Re Y,

Fig. 5 Bulk temperature via nondimensional axial distance for axisym-
metric tubes

O ] | ] 3 1 |

0 .02 04 06 08 o 12 J4
2 X=X
3P/Re A

Fig. 6 Nusselt number via nondimensional axial distance for plane
symmetric channels
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Fig. 7 Nusselt number via nondimensional axial distance for axisym-
metric tubes

and with a small conduit eonstriction, the bulk fluid temperatures
vary very little from the corresponding straight-wall conduits
except that they are oscillatory in nature with decreasing ampli-
tudes as the fluid moves away from the thermal entrance. As
one increases both the Reynolds number and the conduit con-
striction, the behaviors of the bulk temperature stay almost the
same as in the previous case, except that the amplitude of the
oscillation is much more pronounced.

Again, as in the case of the bulk fluid temperature, the Nusselt
number fluctuates markedly with respect to its mean as one in-
creases the Reynolds number and the conduit constriction.
But the Nusselt number stays oscillatory in nature throughout
due to sinusoidal variation of the wall. At a low Reynolds num-
ber and with a small conduit constriction, the mean coincides
with its corresponding straight-wall conduit, but as one increases
both the Reynolds number and the conduit constriction, the
mean becomes considerably high compared with the correspond-
ing straight-wall channel. Due to the oscillatory nature of the
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local Nusselt number, the thermal entrance length can be de.
fined as the distance from the entrance where the amplitudes of
the local Nusselt number become constant. The thermal entry
length changes very little from that of the corresponding straight
wall conduits. The reason for this is that the concave part of
the conduit enhances the heat transfer rate, but the convex parg
of the conduit decreases the heat transfer; thus the overa]]
effects of the concave and the convex parts upon the heat transfer
rate seem to cancel each other out. Also, the overall effect of the
position of the thermal entry makes little difference upon the bylk
thermal temperature and the Nusselt number, except very closg
to the thermal entrance.

In conclusion, our analysis of steady laminar flow in conduitg
with continuous constriction subjected to constant wall tem-
perature shows that there exists a large local temperature and
Nusselt number fluctuation as compared with a conduit with g
straight wall, with very little change in the thermal entry length,
As long as the flow field remains laminar, the foregoing conclusion
is valid even if & is of the order one.
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Unsteady, Combined Radiation and
Conduction in an Absorbing, Scattering,
and Emitting Medium

The transient cooldown of ¢ gray, absorbing, isotropic scatiering, emitiing, and conducl-

ing medium bounded by groy, diffusely emitting and reflecting parallel plates is con-
sidered. Numerical solutions are obtained for the initial boundary-value problem with
a discontinuous decrease in temperature at one boundary. The quasi-steady equalion
of radiative transfer is solved using Gaussian quadrature and o matrix eigenvector
technique together with explicit numerical solution of the unsteady energy equation.
Temperature and energy flux distributions are presented for variations of optical thick-
ness, boundary emisstvity, albedo, and conduction—radiation parameter.

Introduction

INTERACTIVE conduction and radiative transfer in
materials has been a subject of increasing technical interest in
recent years. In part this interest has developed as a natural
outgrowth of many studies involving independent convective,
conductive, and radiative energy transfer. On the other hand,
much activity also is directly attributable to significant technical
applications such as heat transfer in fibrous insulations, heating
and cooling of glass, radiative behavior of cryodeposits, and
volume reflecting heat shields. Undoubtedly, additional appli-
cations will follow the enhanced understanding engendered by
continuing research in this area.

The classical problem of energy transfer through an interven- -

ing medium between two diffusely emitting and reflecting parallel
plates is considered here. The plates are agsumed to be gray and
of uniform temperature. The medium absorbs, scatters, emits,
and conducts in accordance with the equations of radiative
transfer and energy conservation and Fourier’s law. Both the
steady-state and unsteady problems are treated, steady-state
solutions being obtained as the asymptotic time limit of the
transient problem. Such an extensive literature exists in the
independent fields of conductive and radiative transfer and in the
combined processes for special types of materials that it is in-
appropriate to attempt here to cite the many pioneering re-
searches in these areas. We will therefore review only those
earlier researches having direct bearing on the present problem.

! This research was performed under NASA-Ames grant NGR 37~
008-003.

Contributed by the Heat Transfer Division for publication (with-
out presentation) in the JourRNAL oF HeaT TRANSFER. Manuscript
received by the Heat Transfer Division September 21, 1972. Paper
No. 73-HT-J.

Journal of Heat Transfer

Copyright © 1973 by ASME

Among the early significant papers in one-dimensional combined
radiative and conductive transfer was the study of steady-state
simultaneous transport in absorbing media between black parallel
plates by Viskanta and Grosh [1].2 The same authors extended
their work to include the effect of surface emissivity [2]. Vis-
kanta [3] later considered the same problem but included scat-
tering as well as absorption and emission effects. More recently,
Doornink and Hering treated the problem of transient combined
radiative and conductive transfer [4]. In the latter work, the
authors considered the transient development of temperature and
radiation fields in nonscattering media between black parallel
plates. The present work extends the problem of Doornink and
Hering to consider the effects of isotropic scattering and nonblack
boundaries.

The method of idempotents, discussed by Frame [5], was ap-
plied by Hsia and Love [6, 7] to the analysis of radiative transfer
between parallel plates separated by a nonisothermal medium.
In these significant studies the authors made no attempt to
couple the temperature field and the radiation field through the
energy equation. In the present work the idempotent technique
of Hsia and Love has been utilized to study transient interactive
radiation and temperature fields in absorbing and scattering me-
dia between parallel plates.

Analysis

The simultaneous transport of energy in a gray, absorbing,
scattering, emitting, and conducting plane layer may be described
in terms of the geometry shown in Fig. 1. The present calcula-
tions assume that thermal and radiative properties are tempera-
ture-independent, scattering is isotropic, and the index of refrac-

2 Numbers in brackets designate References at end of paper.
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tion is unity. Recognizing its azimuthal symmetry for the
present problem, the intensity field in the layer at a given instant
may be considered dependent only on the optical thickness 7 and
the cosine u of the elevation angle §. Thus the dependent vari-
ables of the ecombined radiative and conductive problem may be
expressed as T'(7, {*) and I(r, u, t*) where the dimensionless time
{* has been nondimensionalized using the characteristic conduc-
tion time L?/a.

The analysis of energy transport by radiation and conduction
in a plane layer is governed by the quasi-steady equation of ra-
diative transfer

1
M dl (Ty My t*) = '—I(Ty My t*) +' Cﬂ] f
dr 2

+ n2(l — wo)lse(T) (1)

SCu, p/ (T, ', t*)dp’
1

and the conservation of energy
or _ kvl
ot*

To? d(]R

o7 xB dr
where Fourier’s law of conduction, the dimensionless time, and
the optical depth have been employed in equation (2). These

equations are coupled through the radiative-heat-flux divergence
term in the energy equation where:

1
qr(T, t*) = 27rf uI(r, p, t*)du 3)
—1

and through the temperature-dependence of the blackbody in-
tensity function Ipp.
Defining the dimensionless temperature © and dimensionless
radiative flux 'z as
7 - Tl dr

0 = Fp =
Ty — T4 # oyt

the initial and boundary conditions for diffusely emitting and re-
flecting boundaries may be stated as

Table 1 Nondimensional parameters for simultaneous conduction and
radiation in a plane slab

- (@)

Geometric nomenclature for radiative transfer between paralle|

Fig. 1
plates

O, 0) = 1, 0<r<m7 (4a)
0(0, t*) = 0, t* >0 (4b)
O(ro, t*) = 1, t* >0 (4c)
-1
IO, g, t*) = 2(1 — €1)f wIO, p', t*)du’
0
+ alBp[O(0, t%)], w> 0 (4d)
1
I(TO; Hs t*) = 2(] - ez)f M,I(TOI .u/) t*)d:u/
0
+ &Iss[B(r, 1¥)], uw<0 (de)

The analysis and results of this study can be completely de-
seribed in nondimensional terms using the independent and de-
pendent variables already discussed and the parameters shown in
Table 1. The parameters wo and 7o are intrinsic to the analysis
of radiative transfer and are determined for a given layer thick-
ness by the characteristics of the media. However, when the
interaction of a radiation field and a temperature field is con-

Equation Parameter name Symbol " ’ £ ;
Equation of radia-  optical thickness o= (s + k)L sidered, the conservation (.)f energy equation mush also be in-
tive transfer cluded. Thus the conduction—radiation parameter N enters the
albedo of single scat- s s problem. In this parameter, both thermal and radiative
tering “ T 59k T B properties of the medium are involved. The remaining two
Conservation of en- conduction-radiation X8 parameters, the emissivities and temperature ratio of the surfaces,
ergy parameter N = X enter through the boundary conditions. Thus we can hope to
Boundary condi- surface emissivities a @ gain some understanding of the u}ﬂuence of the medla. throu.gh
tions surface temperature examination of the effects of varying N, wy, and 79, while varia-
ratio 0 tions involving the emissivities and temperature ratio are repre-
Nomenclature
¢ = heat capacity of medium s = scattering coefficient of medium €, € = emissivities of bounding surfaces
I' = dimensionless heat flux, ¢/o7* S = phase funection of medium § = elevation angle
Fr = dimensionless radiative heat flux, { = time 6, = temperature ratio, T1/T
qr/o Ty t* = dimensionless time, al/L? 6 = dimensionless temperature, (7' —
I = intensity T = absolute temperature T)/(Te = T1)
Iss = blackbody intensity T, = absolute temperature of cold po=cos 0 .
k = absorption coeficient of medium boundary p = density of medmn;
¥ = thermal conductivity of medium T, = absolute temperature of hot T = optical depth, f Bdy
L = thickness of medium boundary 0
n = index of refraction of medium y = coordinate distance measured T = optical thickness of medium,
& = conduction-radiation parameter, “from boundary 1 f L Bdy
XB/4aT53 o = thermal diffusivity of medium 0
¢ = heat flux B = extinction coefficient of medium, wo = albedo for single scattering of me-
¢r = radiative heat flux s+ k dium, s/@
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Fig. 2 Effect of albedo and boundary emissivity on the unsteady temperature and energy flux distributions in scattering, absorbing, and emitting

media between parallel plates, N = 0.005, 7y = 1.0,8; = 0.5

sentative of the specific configuration and imposed conditions of
the problem formulation.

Six~ and eight-point Gaussian quadratures were employed to
reduce the differential-integral equation (1) to six or eight dif-
ferential equations and the integral boundary conditions (4d, )
to algebraic equations. The differential equations of radiative
transfer thus obtained were recast in matrix form. Utilizing the
boundary conditions, equations (4d, ¢) and a specified instan-
taneous temperature distribution, the matrix of the six (or eight)
intensities describing the radiation field at each point in the
medium was determined using the idempotent technique of Hsia
and Love [7]. With the radiation field determined, the energy
equation was solved for the temperature using the explicit finite-
difference technique. Thus with the temperature distribution

at the next time interval determined, the new radiation field may

be calculated and the cycle continued. In the calculations pre-
sented, 7 and 21 nodes were employed in the steady and unsteady
solution of the energy equation respectively.

The solutions described here were obtained on the University
of Tulsa Sigma VI and the NASA Ames Research Center IBM

Journal of Heat Transfer

360/67 digital computers. Typical run times to steady state were
1 to 2 min for 7 nodes and six-point quadrature on the Sigma VI
and 2 to 20 min for 21 nodes and eight-point quadrature on the
IBM 360/67. TFurther details of the analysis and solution tech-
nique are discussed in [8].

Results and Discussion

Studies. have been made of both steady-state and transient
energy transfer between infinite parallel plates. As indicated
above, the solutions were obtained by numerical approximation
to the energy equation and the equation of radiative transfer.
It is estimated that the maximum error in the solutions is about 2
percent. In most cases, the error is believed to be much smaller.

Steady-State Heat Transfer. Extensive comparisons were made
with steady-state results reported in the literature to validate
computational procedures. All steady-state results discussed
here were obtained using six-point quadrature and 7 conduction
nodes. Computations of steady-state temperature distribution
were made for comparison with the nonscattering results of Vis-
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Fig. 2 Effect of albedo and boundary emissivity on the unsteady temperature and energy flux distributions in scattering, absorbing, and emitting

media between parallel plates, N = 0.005, 7y = 1.0, 0; = 0.5

kanta and Grosh [1] for 7 = 1.0. Iixcellent agreement was ob-
tained for N = 0.01, 0.1, and 1.0 for 6, = 0.1 and 0.5. Additional
computations were performed to validate the program for prob-
lems including isotropic scattering. Comparison of radiative
flux and temperature distributions-with those of Viskanta [3] for
7o = 1.0, N = 0.1, 6, = 0.1 and 0.5, and w, = 0. 0.5, and 0.9997
also indicate excellent agreement. Space does not allow the
inclusion of these results, but the senior author will be happy to
supply them to interested readers. Tt should be emphasized
that the present results were obtained by an entirely different
technique than those of Viskanta and Grosh [1] and Viskanta
[3]. Thus the present results are both validated by and lend
support to these sources. ’ ’ :
Unsteady Combined Radiative and Conductive Heat Transfer. Solu-
tions have been obtained for the transient thermal response of a
plane layer of a scattering, absorbing, emitting, and conducting
medium bounded by diffuse, opaque gray surfaces. Specifically
the transient cooldown from a state of thermodynamic equilib-
rium (O = 1) to the steady state developed as a consequence of a
discontinuous change at (* =0 in the temperature at one bound-
ary to © (0, 1*) = 0is considered. Space and resources do not
allow an extensive presentation of the effects of varying all the
parameters of the problem. Hence results are presented which
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typify the major dependencies and which allow comparisons to
be made with special cases published elsewhere.

Studies of the effects of varying the number of conduction
nodes and the order of the Gaussian quadrature revealed that
while 7 nodes and sixth-order quadrature were adequate to pro-
duce the desired aceiracy in the steady-state results discussed
above, - these selections were clearly inadequate for accurate
computation of the unsteady cases considered here. Tt was
found that the steep temperature gradients in. the vicinity of the
walls, particularly in radiation-dominant cases and at eatrly
times, dictated a substantial increase in the number of nodes
used. Thus the remaining results presented here were obtained
employing 20 spatial inerements and eighth-order quadrature.

The effect of variation of albedo on the temperature and flux
distributions at several instants of dimensionless time including
the steady state are shown in Fig. 2 for N = 0.003, 7o = 1.0,
6 = 0.5,and ¢ = & = 1.0. In examining these results it is well
to recall that variation of albedo here implies variation of at
least two ‘quantities—in the simplest case—both the scattering
and absorption coefficient. Thus the results presented in Fig. 2
may be viewed as the compound effect of variation of absorption
coefficient and scattering coefficient such that their sum—the
extinction coefficient—is constant.
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emitfing media between parallel plates, e = e = 1.0, 79 = 1.0, §; = 0.5

Examination of Tig. 2(a) shows clearly the effect of conduction
and radiation shortly after the discontinuous temperature change
at the left wall. For wy = 0.9997, the temperature and radiation
fields are virtually independent, hence the temperature distribu-
tion approximates a pure conduction profile. For w, signifi-
cantly different from unity, a more or less uniform reduction in
temperature across the layer is evident except in the region near
the left wall where conduction predominates. This is sub-
stantiated by examination of the radiative and total flux curve
of T'ig. 2(a). It should be remembered here that the local rate of
temperature increase due to radiative interaction is proportional
to the local slope of the radiative flux curve. Thus it is apparent
that for 7/7¢ > 0.2, cooling of the layer due to radiation occurs
roughly at a uniform rate. These same effects are evident to a
lesser extent at later times in Iig. 2 prior to the attdinment of
the steady state.

Considering the several parts of Fig. 2 with respect to the
temporal evolution of the steady state, it is clear that the steady
state Is attained most quickly for small albedo due to two effects.
First, the increased global cooling effect due to radiative emission
throughout the medium together with the conductive flux pro-
duces increased overall rates of cooling. Secondly, the steady-

Journal of Heai Transfer

state temperature distribution for low albedo exceeds those for
higher albedo. Thus not only is the rate of cooling greater for
low albedo, but the temperature change needed to achieve the
new steady state is also smaller.

Recently, Doornink and Hering [4] have studied extensively
the transient cooldown of an dbsorbing, nongcattering medium
bounded by black walls. Fig. 2 and succéeding figures include
results taken from [4] for comparison with the present results.
Because of the small size of the figures in [4], it is estimated that
the reference results presented here may be in error by several
percent. Nevertheless, good agreement is evident even though
the present computation techniques differ significantly from those
of Doornink and Hering.

The effect of reducing the boundary emissivities from 1.0 to
0.1 is also shown in Fig. 2. It is seen that for wp < 1 the early
rate of cooling is lower for low emissivity. This may be attrib-
uted to the increased boundary reflectances. As the steady
state is approached, the temperatures near the cold wall remain
higher for low emissivity while they are lower in the vicinity of
the hot wall. Evidently the high reflectance at the cold boundary
causes increased radiation absorption in this region. Near the
hot wall the reduced emitted flux from the wall evidently allows
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the medium to cool down well below the values associated with
the black wall. These emissivity variations are consistent with
those discussed by Viskanta and Grosh [2] for steady-state solu-
tions. Substantially reduced radiative and total fluxes are
indicated for the reduced-emissivity cases, as expected.

The effect of a change of the conduction~radiation parameter
N from 0.005 to 0.5, keeping all the conditions of the preceding
figure fixed with ¢, = ¢ = 1.0, is shown in Fig. 3. Curves from
Fig. 2 are repeated here for ease of comparison. It is evident
that for N = 0.5 the temperature distributions closely resemble
pure-conduction temperature distributions and depend only
weakly on albedo for a given ¢*, indicating clearly that conduction
is the dominant mode of energy transfer. Because of this weak
dependence on albedo, only the wy = 0 and wy = 0.9997 curves
are shown. The reader is warned against interpreting ¢* as a
measure of absolute time in comparing results for differing values
of N. This becomes clear if one considers as an example a fixed
medium thickness and volumetric heat capacity. Because 7 =
1.0 for Fig. 3, the extinction coefficient must be fixed; thus in-
creasing N by a factor 102 implies increasing thermal conductivity
by a factor of 102, But the absolute time for a given medium
thickness is inversely proportional to the thermal conductivity;
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hence for a given ¢* the absolute time for N = 0.5 is 102 times
the absolute time for the N = 0.005 case. Thus if we wish to
compare the temperature and heat flux distributions for N =
0.005 and t* = 0.001 with corresponding distributions for N =
0.5 at the same absolute time, we should compare these distribu-
tions with the corresponding N = 0.5 distributions for ¢* = 0.1,
Fig. 3(¢). Note also that this relation is not unique for the cases
of Fig. 3—other absolute time relations may be obtained by con-
sidering examples in which other variables are held fixed.

The interaction between the radiation field and the temperature
field as displayed in this figure and the following figure may be
best explained by examining the energy equation (2), nondimen-
sionalized:

00 020 To oF g

o <1>z AN -6 1)
To To

Tt is evident that increasing the conduction-radiation param-
eter reduces the influence of the radiation term on the dimension-
less rate of cooling. Thus while Fig. 3(a) shows a slightly steeper
slope of the radiative flux for N = 0.5, the dimensionless rate of

(5)
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cooling 00 /d¢* is governed primarily by its explicit dependence
in equation (5) on N. Thus the temperature distribution for
N = 0.5 shows little influence of the radiation field, in contrast
to the N = 0.005 temperature distribution.

The effect of reducing 7o from 1 to 0.1, holding other parameters
at the same values as in Fig. 2 (with ¢, = & = 1.0), is shown in
Fig. 4. Tt is evident that the effect of varying albedo is much
less pronounced at 7o = 0.1 than it was for 7o = 1.0. This may
be attributed to the reduced interaction of the radiation field
with the temperature field as the optical thickness is reduced, as
indicated by equation (5). The same caution should be ob-
served here as with the preceding figure in comparing results in a
temporal vein for different optical thickness. The higher radia-
tive and total fluxes associated with the reduced optical thickness
are evident.

For 7y = 0.1, the medium offers little opposition to the passage
of radiation directly from boundary 2 to boundary 1. The
radiative fluxes in fact approximate those for two black plates
with no intervening medium. Little radiative cooling is evi-
dent; thus the temperature distributions resemble pure-conduc-
lion profiles. With little effect of albedo on the temperature
distributions, the dimensionless conductive fluxes and hence the

Journal of Heat Transfer

total fluxes are almost independent of albedo at a given dimen-
sionless time.

Goncluding Remarks

The effect of varying the albedo of single scattering on the
transient energy transfer in a semitransparent medium has been
explored for several values of the conduction-radiation parameter,
optical thickness, wall emissivity, and dimensionless time.
Steady-state solutions were also obtained for absorbing and
scattering materials. Comparisons with special cases in the
literature indicate good agreement for both transient and steady-
state solutions. The present work clearly demonstrates the
feasibility of computer solution for engineering purposes of
transient energy transfer problems in materials in which scatter-
ing is significant,.
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Void Fraction and Vapor and Liquid
Temperatures: Local Measurements in
Two-Phase Flow Using a Microthermocouple

A technique is described which enables the detection of the phase (liquid or vapor) in
steam-waler two-phase flow and the temperature measurement of each phase, using the
hot junction of a microthermocouple.
analyzer 1 order to obtain the amplitude histograms of the temperature.

The signals are processed with a multichannel
Stgnificant

resulls are obtained in pool botling, forced convection subcooled botling, and flashing

JSlow of waler.

Introduction

THE pEVELOPMENT of nuclear reactor technology has
produced an increase in the numnber of studies of two-phase flow
during the last two decades. Many new measurement devices
have been invented to give a further insight into the local strue-
ture of boiling two-phase flow. The purpose of these investiga-
tions has been to understand the complex mechanism of hydro-
dynamics and heat transfer in such flows, in order to know the
normal behavior of the channels in & BWR or the accidental be-
havior in a PWR. The void formation in a channel drastically
changes the pressure drop laws which have to be known accu-
rately to determine the required pumping power or the stability
regime of the channels.

A first detailed approach of the ‘“boiling’”’ phenomenon was
undertaken in our laboratory with a schlieren method associated
with high-speed cinematography [1].! This technique showed
the destruction and the entrainment of a film of superheated water
lying on the heated wall, in the subcooled liquid. It has been
thought that this process was connected with some temperature
fluctuations produced by the motion of the steam bubbles [2].

The interest in the temperature fluctuations, especially in pool
boiling, is not new. A microthermocouple, 50y in diameter, was
used in 1965 by Marcus and Dropkin [3] to evaluate the thick-
ness of the superheated liquid layer in contact with a heated wall.
Around the same time, Patten and his co-workers [4, 5] examined
the transient aspect of the superheated liquid layer with the same

I Numbers in brackets designate References at end of paper.
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method. In 1966, Bonnet, et al. [6] reported some results ob-
tained with a microthermocouple imbedded in a resin block, in
such a way that only a small part (201) of the hot junction was
in the flow. Unfortunately, the size of the probe (80u) produced
a disturbance in the flow and its thermal inertia led to extra
vaporization of the liquid on the sensor so that the significance of
the signal was not very clear. In forced convection, the results
of similar investigations were published by Treshehov [7] in 1957
and Jiji and Clark [8] in 1964. During our studies, other results
on pool boiling were published by Van Stralen and Sluyter [9],
Jacobs and Shade [10], and Subbotin and Tsiganok [11], and on
forced convection subcooled boiling by Walmet and Staub [12)
and Stefanovic, et al. [13]. Although all these works have con-
tributed to a large extent, to the understanding of the local
structure of two-phase flow with change of phase, they have not
provided any reliable statistical information on the distribution
of the temperature between the liquid and the vapor phases.
The originality of our work [14] is based on the possibility of
separating the temperature of the liquid phase from the tempera-
ture of the vapor phase, and of giving the statistical properties
of the temperature of each phase as well as the local void frac-
tion. The basic idea was to use the hot junction, 20u in diameter,
of the microthermocouple, as an electrical probe [15] which indi-
cates the nature of the phase surrounding the sensing element.
The temperature signals are then processed in a multichannel
analyzer which delivers the amplitude histograms of the liquid
and vapor temperatures. Starting from these data, we can easily
determine the local void fraction and the time average tempera-
tures of the liquid and of the vapor. This technique requires an
electrically conducting liquid, the electrical resistivity of which
can be as high as 10 k2-em. In these conditions ordinary water
can be considered as an electrically conducting liquid. Never-
theless, the same results can be obtained in a nonequilibrium
two-phase flow, without any phase indicator device, after making
some assumptions concerning the amplitude histogram of the
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Microthermocouple used in the first runs

Fig. 1

temperature signal given by the microthermocouple without its
electrical probe component.

Description of the Microthermocouple

The first runs were carried out with a probe similar to the well-
known hot-wire probe. The hot junction connected two chromel-
alumel wires, 25u in diameter, straightened between two quartz
supports, Fig. 1. However, this type of probe has two major
drawbacks:

1 The steam bubbles tend to avoid the hot junction by rolling
around the wire.

2 The quartz supports have poor mechanical resistance and
the probe is easily broken.

The microthermocouple that we are now using is made up of
the following components (Fig. 2):

1 Two chromel-alumel wires, 150 in diameter, which support
the hot junction.

2 These wires are protected by a stainless steel sheath and
insulated by alumina.
~ 3 The sensor, composed of two chromel-alumel wires, 20u in
diameter, 1 mm in length.

The ends of the stainless steel sheath are sealed with an epoxy
resin (Araldite) to prevent any infiltration of water. The hot
junction is prepared first, then tin-soldered onto the 150u wires.
This method has the advantage of making probe repairs very
easy.

Phase Indicator Device

The microthermocouple, except for its hot junction, is elec-
trically insulated from the liquid with a varnish. The insulating
resistance between the junction and the ground, which is a fune-
tion of the phase (vapor or liquid) surrounding the junction, is
measured with a Kohlrausch bridge. In order to avoid any dis-
turbances due to stray capacitances, all the sheaths are neutro-
dyned by the phase indicator signal. Both signals (phase and
temperature) are received by a differential amplifier with a high
common mode rejection ratio. Only the differential signal (tem-

' ‘l'll n | i, I HIH
B

20

Fig. 2 New microthermocouple

perature) is processed by the amplifier. The common mode
(phase signal) is rejected and directed toward a logical switch
circuitry.

‘Micrnthemmcouple and Electrical Probe Signal Processing

When the microthermocouple is used in a temperature range
close to 100 deg C, its cold junction is kept at the saturation
temperature corresponding to the atmospheric pressure in an
ebullioscope. The em.f. difference between the hot and cold
junctions is then amplified. In the case of a flashing flow at a
subatmospheric pressure, the cold junction is kept at 0 deg ¢
and a known voltage is applied to minimize the e.m.f. difference
between the hot and cold junctions.

Both signals (phase and temperature) were observed on a two-
beam oscilloscope, and at the same time, the temperature signal
was also sent to a multi~-channel analyzer, INTERTECHNIQUE
DIDAC 4000. This latter device is used as a statistical analyzer
so that it delivers the amplitude histogram of the temperature
signal. The content N of each channel of this analyzer corve-
sponds to the number of times that the signal reached a given
amplitude (Fig. 3). In order to do that, a clock delivers pulses,
at a frequency which is chosen according to the power spectrum
of the signal which is to be analyzed. At each clock-time, a
sample of the signal is picked up and an analog-frequency con-
verter is used to transform this quantity into a pulse-train pro-
portional to the amplitude of the signal. This numerized gquan-
tity gives the number of the channel where the sample will be
stored. At this time the arithmetic register adds a unit in the
selected channel. So, the amplitude histogram N(e) of the signal
e(t) is built up. The choice of the scanning rate is given by the
Shannon’s theorem [16]: the sampling frequency has to be
higher than twice the highest frequency occuring in the signal
power spectrum. During all our experiments a 1 kHz sampling
frequency was chosen. This technique has already been used by
Delhaye [17] to process the signal delivered by a hot-film aue-
mometer, in an isothermal air-water flow. The entire signal (air
and water) was analyzed, and a hypothesis was made to separate
the air histogram from the water histogram, Fig. 4.

In the present work, the phase signal has been used to switch
the liguid signal or the vapor signal into a first 1000-channel
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Nomenclature
. Subscripts
e = signal T = temperature -
. . ) L = liquid
N = probability density ¢t = time sat = saturation condition
S = area « = local void fraction V = vapor
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subgroup or into a second 1000-channel subgroup of the 4000-
channel analyzer (Fig. 5). We thus obtain separately the histo-
grams of the vapor and of the liquid temperatures.

- gignal Processing When the Phase Indication Is Not Availahle

1f it is impossible to detect the phase (tiquid or vapor) surround-
ing the hot junction, only the entire histogram (liquid and vapor)
i available. As for the hot-film anemometer signal analysis, we
have to make some assumptions to separate the liquid histogram
and the vapor histogram. But before making a statement on the
enfire histogram (liquid and vapor), we have to analyze carefully
the temperature signal delivered by the microthermocouple.

Following many runs carried out with high-speed movies, we
can visualize the temperature fluctuation, detected by a micro-
thermocouple located on the upward trajectory of a steam bubble
very close to a heating wall, in a nucleate pool boiling experiment
with subcooled water. These experiments indicated an increase
in temperature during the approach of a bubble, Fig. 6. This
fact is due to the penetration of the hot junction into a super-
heated film of water surrounding the bubble. When the micro-
thermocouple enters the bubble, the temperature decreases very
rapidly toward the saturation temperature. The high time-rate
of change of the temperature level is produced by the vaporiza-
tion of a small quantity of water remaining on the hot junction
after its penetration into the vapor. Then the temperature re-
mains constant and equal to the saturation temperature inside
the bubble. Finally, when the hot junction exits from the bub-
ble, it detects a superheated liquid wake and the temperature
decreases toward the subcooled liquid temperature.
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The histogram corresponding to this sequence is shown in Fig.
7. The main characteristic points on this histogram are:

= minimum liguid temperature

= mos}t probable liquid temperature

= minimum vapor temperature

= most probable vapor temperature

= maximum vapor temperature

= maximum superheated liquid temperature.

HEHEOO®E >

If the pressure were constant, the saturation temperature would
also be constant, and the temperature amplitude histogram
would present a straight vertical line, Fig. 8, corresponding to
this constant saturation temperature. However, the pressure is
never constant and a distribution of the saturation temperature
follows, Fig. 9. Therefore, we have to assume that, between
Togm® and T'sae™e%, there exists some liquid. From this statement
we derive our main hypothesis to process the temperature histo-
gram in an electrically nonconducting liquid: The vapor tem-
perature histogram is the cross-hatched region CDEC, Fig. 9,
and the liquid temperature histogram is the complementary
region ABCEFA, Fig. 9. The time average vapor and liquid tem-~
peratures are given by the barycenters of these areas, and the
local void fraction can be calculated by the formula:

Sy
@ = 2
Sy + 81

where Sy is the area of the vapor cross-hatched region CDEC,
Fig. 9, and Sz the area of the liquid region ABCEFA. The de-
nominator represents the total area of the histogram ABCDEFA.
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Some Experimental Results

The use of a microthermocouple has supplied enough informa-
tion under different conditions to be considered as a valuable in-
strumentation device in the study of the local structure of a two-
phase flow with change of phase. In the following section, we
will investigate the temperature histograms in three types of
flow: nucleate pool boiling, forced convection local boiling, and
flashing flow.

The study of watér nucleate boiling with a microthermocouple
was carried out in a test section which is deseribed in reference
[14]. In order to understand the physical significance of the
temperature signal given by the microthermocouple, we took
high-speed movies (20,000 frames per sec) of a bubble pierced by

the hot junction simultaneously with the temperature signal,
Reference [14] shows the main results of these experiments. The
shape of the temperature histogram changes when the hot june,.
tion moves away from the wall. In Fig. 10, four histograms g
represented with the corresponding temperature signal, as a fune.
tion of the distance from the wall. The cross-hatched areas gro
the vapor temperature histograms according to our previous hy.
pothesis. Since the electrical probe function was not yet available
in these experiments, we had to process the histogiams as in the
case of an electrically nonconducting liquid. Near the wall,
Fig. 10.1, there is no subcooled water but only vapor and super-
heated liquid. At 0.5 mm from the wall, Fig. 10.2, water anq
vapor are practically at the same temperature. At 1 mm abovg
the wall, Fig. 10.3, some superheated water remains but most of
the water is already subcooled. Finally when the hot junetion ig
2 mm above the wall, there is no longer any superheated liquid
and. the histograms of the vapor and of the subcooled liquid are
distinctly separate. A graph of the most probable liquid tem-
perature (point B in Fig. 7) is shown in Fig. 11. The constant
local void fraction curves are also represented. These experi-
ments have confirmed the qualitative results which were ob-
tained with a schlieren method by Béhar and Séméria [1]. Thig
technique visualized a destructive process of the superheated
liquid layer by the bubble growth, and an entrainment of super-
heated liquid in the wake of the bubble. The pattern of the
temperature profile, Fig. 11, can be explained by a re-supply of
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Fig. 11 Most probable liquid temperature and void fraction above a
nucleus in nucleate boiling

the wall area by some colder liquid originating from the bulk
fluid which leads to an enhancement of the heat transfer coef-
ficient in nucleate pool boiling.

All the tests in forced convection were carried out in a water
loop described in reference [14]. The temperature signals and
the histograms are identical to those observed in subcooled
nucleate boiling. ‘

A graph of the local void fraction distribution across the test sec-
tion is given in Fig. 12, for a 2.2 deg C subcooling, 1 m/s velocity
and with the following heat fluxes: 50, 70, and 8¢ W/em?2 The
void fraction was determined with the phase indicator device of
the microthermocouple. In reference [14] more detailed results
are given on the influence of the subccoling, the heat flux, and
the velocity, on the local void fraction profile, and on the tem-
perature profiles.

The more systematie study of flashing flow of water [18] justi-
fied the validity of our assumption concerning the processing of
the temperature histogram, when the indication of the phase
surrounding the hot junction is not available. All the tests were
conducted in a subatmospheric loop described in reference [19].
In this work Barois proposed a different hypothesis for the sepa-
ration of the liquid and vapor histograms. He considers that the
vapor histogram has to be symmetrical. This type of assump-
tion, Fig. 13, which was also used afterwards by Stefanovie, et al.
[13] in forced convection boiling, gives liquid temperatures which
are too high. Our hypothesis, as explained previously, was
found to be in better agreement with the direct separation of the
histograms made by the phase indicator device. TReference [18]
shows various results concerning the evolution of the steam and
liquid temperatures, as well as the void fraction along a channel
in which a flashing flow of water takes place.

Conclusions and Future Work

1 The microthermocouple has been proved to be a valuable
instrumentation deviee in obtaining information on the local
structure of boiling two-phase flow in nonequilibrium conditions.
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2 The microthermocouple, associated with a phase indicator
electronic circuit, gives the local void fraction, the time average
temperatures of both phases, and their fluctuations.

3 The same results can be obtained with a proper assumption,
either when the phase indicator electronic circuitry is not avail-
able, or when the fluid is electrically nonconducting. In this case,
we have to separate the vapor and liquid histograms according to
the hypothesis explained in the text and represented in Fig. 10.
As we can see in this figure, this technique cannot be applied
when the histogram is symmetric as in Fig. 10.2.

4 The liquid and vapor velocities are expected to be measured
by a cross-correlation method, as explained in reference [14],
where significant results have already been obtained.
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Vapor Flow in Cylindrical Heat Pipes

Solutions of the complete axisymmetric Navier—Stokes equations for steady, laminar
vapor flow in circular heal pipes with various lengths of evaporator and condenser have
been obtained by finite-difference methods. In addition, o new series solution for lhe
slow-motion case was obtained thal is valid for arbitrary distributions of evaporation and
condensation and that confirms the numerical vesult in the limit of low Reynolds num-
ber. For uniform evaporation and condensation, the motion in the evaporator is found
to be described adequately by similar solutions in both limits, and in the transition from
low to high Re, the flow is completely determined by the evaporator Reynolds nuwmber.
The evaporator is very weakly coupled to the condenser. The conditions in the con-
denser are decidedly more complex, and similar solutions are of value only for small
Reynolds numbers and long tubes. Reverse flows occur for condenser Reynolds niim-
bers greater than two and occupy a substantial fraction of the condenser length. Com-
plete flow descriptions for symmetrical and asymmetrical heal pipes were obtained,
and practical results for the calculation of pressure losses in low-speed heat-pipe vapor
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flows are given.

Introduction

THE ENGINEERING ANALYSIS of a heat pipe can often
be simplified to the solution of three fluid mechanical problems:
(1) the calculation of the capillary pumping action available in the
wick structure, (2) the pressure loss associated with the liquid
return path, and (3) the pressure loss in the vapor flow between
the evaporator and the condenser, and the solution of thermo-
dynamic relations between the phases as shown by Cotter {1].2
The first two problems can usually be solved readily, but the
dynamics of the vapor flow is surprisingly complex, even when
the geometry and boundary specifications are simple.

For steady operation within the working range of many heat
pipes, the vapor velocity in the evaporator is well below sonic,
and to a good approximation the entire process can be considered
to take place at constant density. In the regime of creeping
flow, the problem is a linear one, and in principle there is no
difficulty in obtaining a stream function that can satisfy arbi-
trary boundary conditions. However, solutions for the transi-
tion and inertial flow regimes should satisfy the full Navier—
Stokes equation of motion, since viscous effects at the boundaries
may have a strong influence on the motion, even in the limit of
vanishing viscosity.

! This work was performed under the auspices of the U. 8. Atomic
Lnergy Commission.

> Numbers in brackets designate References at end of paper.

Contributed by the Heat Transfer Division for publication (without
Dr_esentation) in the Journar or HeaT TRANSFER. Manuscript re-
ceived by the Heat Transfer Division September 22, 1972. Paper
No.73-HT-P. .
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Solutions of the Navier-Stokes equations for heat pipes of
semi-infinite length with only uniform evaporation or only uni-
form condensation have been obtained by Knight and McInteer
[2], Yuan and Finkelstein [3], Donaldson, et al. [4], and Terrill
and Thomas [5]. In each case attention was restricted to a class
of similar solutions. The results can be summarized as follows:

(a) For positive Re, (condensation)® between 2.30 and 9.11,
there are no solutions of the class considered [4, 5].

(b) All of the investigators agree that at positive Re, below
2.30, there is only one solution without reversal of the axial com-
ponent of velocity (u). The solution also features a single maxi-
mum of the axial velocity, which lies on the axis of the pipe. The
same is true for all negative Re,. As Re, tends to zero, each of
these two solutions approaches the Poiseuille form, v = u(1 —
r2/R?), which is the solution for creeping flow in these cases. As
Re, tends to negative infinity, the solution (for negative Re.)
tends to the form u = wu, cos [w/2(r/R)?, which is the solution
for the inviscid flow appropriate to the boundary conditions [6].

(¢) At all Re, less than 2.3, there is a second solution that
features flow reversal [4, 5].

(d) At Re, between 9.11 and 20.6, there may be more than

3 It is customary to discuss this class of flows in terms of the radial

Reynolds number Re, = ZE
B

lated to Re, by Rea(x) = % j;z Re,(£)dé. For uniform suction or

The axial Reynolds number is re-

injection, Res(x) = % Re,. It should be noted that the stability

limits for laminar flows of this class have not yet been established.
Flows with injection have been found to retain laminar velocity pro-
files at axial Reynolds numbers greater than 108,
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Fig. 1 The cylindrical heat pipe and coordinate system

one solution [5]. One such solution, given in [4], exhibits
maxima of the axial velocity off the axis.

(e) At Re, above 20.6, there is a multiplicity of solutions.
TFour of them, given in [4], exhibit flow reversal or maxima off
the axis.

There have been several experimental investigations of laminar
flow with uniform injection at the cylindrical wall [7-9], varied
initial conditions, and attempts to produce motions with reverse
flow. However, only those cases discussed in (b) have been
observed.

Weissberg [10] used an approximate integral analysis that
yields nonsimilar solutions and includes, as a special case, one of
the similar solutions of Yuan and Finkelstein [3]. The analysis
indicates that reverse flows should occur for 2.4094 < Re < 7.6344
and that the explanation of the nonexistence of similar solutions
is the onset of velocity reversals near the wall due to the action of
an adverse pressure gradient. Results for large Re are not
given.

Other investigators have solved equations of the boundary-
layer type in which certain gradients in the axial direction are
neglected and the pressure is taken to be uniform across the pipe
to analyze flow with only injection or only withdrawal at the wall
[11-14]. The assumptions limit this type of analysis to small
rates of suction or injection and preclude the calculation of re-
versed flow. They do not require similarity and so at low Re
are useful for describing the transitions between components.
Busse [14] has applied an approach like that of Weissberg to the
case of a slender heat pipe with an evaporator and condenser

connected by an adiabatic wall at which no mass transfer occurs,

The effects of compressibility have been studied by Levy (15)
and by Deverall, Kemme, and Florshuetz [16] for one-dimey.
sional flows, and very recently by DeMichele for two dimensiong
[17].

In his original analysis of heat-pipe performance [18], Cotte,
assumed that the flows in the evaporator and the condenser were
nearly uncoupled so that similarity solutions could be applieq
separately in each. He used solutions of Yuan and Finkelsteip
for small Re and results of Knight and MecInteer for large Re,

Because of the limitations of previous studies as to Reynoldg
number or geometry, the rational design of real heat pipes hag
awaited a solution of the full Navier-Stokes equation for a pipe of
finite length and with both evaporation and condensation. Ip
this paper such a solution is obtained by a numerical method,
A new analytical solution for creeping flow is also given ang
serves as one of several checks applied to the numerical results,

Mathematical Description

The Differential Equati and Boundary Conditions. We consider
the steady, laminar axisymmetric motion of an incompressible
vapor in a right-circular-cylindrical cavity as depicted in Fig. 1,
The uniform inflow and outflow boundary conditions are re-
ferred to here as evaporation and condensation, but no change
of phase is actually involved in the calculation. We could just
as well describe the processes that occur at the wall as blowing
and suction perpendicularly through a porous-walled pipe. Under
these conditions, the flow is governed by conservation of mass in
the form

bwu 1 o(re) 0

oz r or 1)

and by conservation of momentum in the form

O)u_I_ ait_ b_]_)_i_ 92&+lbu+bzu @
pu ox b o oz H ox? r or or? )
and
o n o op n o% n 1 ov n o% )
= P = — L = el T i
pu ox P or or K ox? r or or?

The boundary conditions are

(0, r) = v(0,7) = 0

w(L,r) = ov(l,r) =0

v(z, 0) = 0, ou(z, 0)/or = 0 (4)
u(z, B) = 0,0z, B) = vu(z)

2(0,0) =0

Finite-Difference Solution. The dependent variables are trans-
formed to the stream funetion and the vorticity, thereby elimi-

Nomenclature
A = constant of integration Re, = radial Reynolds number, pv,R/u p = dynamic viscosity
¢ = poy/U (can be =) p = vapor density
B = constant of integration Re = radial Reynolds number, pVel/u 7 = shear stress
ba = constant defined by equation (10) = lRe,|, but is pVeR/u where Y = stream function
be = constant defined by equation (10) identified as the condenser w = vorticity, dv/dx — du/or
I = Bessel function radial Reynolds number w* = modified vorticity, w/r
% = index of axial mesh spacing r = radial coordinate
J = Bessel function u = axial velocity component Subscripts
j = index of radial mesh spacing V' = radial speed at wall C = condenser
K, = coeflicients in equation (14) v = radial velocity component E = evaporator
L = length of heat pipe or component z = axial coordinate N = value of mesh indexjatr = &
p = pressure y = normal distance from pipe wall, 0 = condition at » = 0
R = pipe radius R~ w = condition at pipe wall, r = R
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nating the unknown pressure and reducing the number of de-
pendent variables to two.
The new variables ¢ and w* are defined by

2

e = or
(5)
oY
oy = — %
i ox
and
w¥ = i % _ ?lc_ = @ (6)
r \O0x or 7
Then equations (1)-(3) yield the set
1 o 1 oy 1 o¢
[ ik A Wit S ek 7
pe r2 Qu? + re or? 78 Or ™

dwr oWt (), L2
P TP e T o o r or

dw* 2 dw*
X (7 b7‘> + r br:l ®)
The boundary conditions on ¢ in (7) follow readily from (4).
Those on w* in (8) must be derived from equation (7) in con-
junection with (4), noting that the usual finite-difference repre-
sentations of (7) become inaccurate and may introduce serious
errors or instabilities. The procedure used here involves the
integration of (8) for the special conditions existing very near
the bounding wall and the subsequent integration of (7) to obtain
an algebraic relation between Y and w* at the boundaries.
In a region very near a wall, we can neglect the variation of w*
with 2 in comparison with the radial variation. Then equation
(8) after two integrations reduces to

w* = (—}3)2 {Be“”f - %RZ [(1 + aR)e™ — (1 + ar)]]
Ha

,
)

where y is the distance from the wall. FEquation (7) can now be
integrated twice between the wall and the radius ry_; of the
adjacent mesh point to provide a second equation involving the
integration constants 4 and B. An approximation, valid for
small values of ay, is

(1 + aR)be _ bl:l (10)

w — ¥ = B-b
o = ¥ C+A|: uatR? ua?

in which

be = R2 :(1 _a7‘+'(a§)2'> (_12_ In (7}) +R24_7.2>

y? (al2)? y® (e*R ya?
+2<“R— 2)+3<4 a>+16}

L ()4 B ()
ba 7’ In = + 1 + 2 1 3B

Equations (9) and (10) can be solved for A and B at ry_;, and
the value of w* at the wall can then be calculated from (10).

When ay is large, the error of (10) can be reduced by decreasing
the mesh spacing near the wall or by increasing the number of
terms retained in (10), but both measures increase the computa-
tional effort required. We note that large values of ay are associ-
ated with small viscosities and that at y > 0 the viscous forces
are small compared to the inertial forces. Then, near a wall

and
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along which the radial velocity is constant and to which the
streamlines are normal, w is independent of ». We can write
equation (7) in the form

d {1 dy
—p*r = —p = — | — %
e pe dr(r dr)

integrate, and express the boundary value of w* in terms of the
value of dy/dr at the point adjacent to the wall. Using a central
difference scheme, we obtain

W(z, R) ~ Yz, rv-2)]
2ryoR(R ~ ry_q)?

pwy,* = (11)
Equation (11) was used for large-Reynolds-number calculations
where the approximation of (10) becomes inaccurate.

Similar procedures can be used to derive expressions for the
vorticity on the plane impermeable end walls of the heat pipe.
At the axis of the pipe the vorticity must vanish, but w* remains
finite. The simple prescription of a linear variation of w* with
r was found to produce satisfactory results for heat-pipe flows.

The basic finite-difference solution procedure used in this in-
vestigation is that described by Gosman, et al. {19], with special
provisions for the calculation of the vorticity at the permeable
boundaries and a difference formula that permits the use of non-
uniform grid spacing in regions where greater resolution is de-
sired. Pressures were calculated from the integrals of equations
(2) and (3), expressed in terms of w*. The integration proceeded
along the axis of the tube from z = 0 to « — L, followed by inte-
gration from 7 = 0 to r = R. A central difference scheme was
used for dw*/dz, except at the end walls, where the appropriate
forward or backward difference formula was used. Since the
w* at the corners of the mesh are not required in the solution,
and may even be singular points, they are not calculated, and
the pressure cannot be obtained accurately near the corners.
Further details are given in [20].

Slow-Motion Approximation. Consider the axisymmetric, steady
slow motion of a vapor of homogeneous density and viscosity in
the cylindrical heat pipe of Fig. 1. In terms of dimensionless
variables based on R, Vi, and p, equation (1) can be written

o(ru) . d(m) 12y 1 oy
e — =0 or u=— "> v = —— —

(12)
ox or r or r Oz

and for very small Re, equations (2) and (3) with inertial terms
neglected yield
D% =0 (13)

in which

> [1 oy oW
ol = p — [ = X Y o
b 167‘(7‘ ar) t o e

The boundary conditions remain those given in (4).
As shown in [20], separation of variables yields

nm\? nmw
Y= ‘L;j —2(~ 1K, <f> I (f) % <n27r2

2
I + M) JU(A)

rd(Ar)

|:(~1)"(L — &) sinh Az — z sinh [A(L — .’c)]:l
X sinh AL — (—1y"AL

1 - L . nTT
+ ; §K" <n—1r> sin < 7 )

a(%)
% | v, <’%’-)~ IL-TL <”—”1) (14)
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in which A = A; are the zeros of Jo(A), n = 1,2, ..., and all re-
quirements are satisfied except the boundary condition Y(z, 1) =
Yu(x). The latter was taken as that for a symmetrical pipe
with uniform evaporation and condensation, and the roots of the
resulting characteristic equation for the coeflicients XK, were
determined by an iterative procedure. The values of Y then
given by (14) are compared below with the numerical solution
of the full Navier-Stokes equations at small Re.

Results

Stability and Accuracy of Numerical Solutions. The method ex-
hibited good numerical stability, and a fairly rapid rate of con-
vergence of the iterative procedure was found so long as the
proper relations were used for the vorticity boundary condition.
The accuracy of the numerical solution was checked in three
ways: (a) the mesh spacing was systematically varied and the
results for different mesh sizes were compared to the extrapolated
results for infinitesimal mesh spacing, (b) the results of calcula-~
tions for large /R were compared with known similar solutions
for hoth large and small Reynolds numbers, and (¢) the results
for small Reynolds numbers were compared with the slow-mo-
tion solution at all mesh points. It appears from this and other
work that the condenser results probably converged within 2
percent. A 40 X 20 mesh, which was used for most of the re-
sults reported, yielded large /R results in the evaporator, which
agrees with accepted similar solutions within several tenths of a
percent. The comparison of the numerical results with the
slow-motion solution (14) carried out to 30 terms in both n and
A; showed agreement better than 0.2 percent at all points; except
those lying in the plane separating the evaporator from the
condenser where the 30-term slow-motion solution fails to
satisfy the boundary condition by about 1.3 percent, and its
deviations from the numerical solution are of the same order.

Results for Symmetrical Heat Pipes. A symmetrical heat pipe,
in the context of this paper, is one in which the length of the
evaporator is the same as the length of the condenser. Because
the radial velocity at the wall of the pipe is assumed constant in
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Fig. 2(a) Sireamlines and contours of the modified vorticity w*, the non-
dimensional axial velocity component, and the nondimensional pressure
— p(R/LE)*/pVy? for a symmetrical heat pipe with L/R = 20, Re = 0.01.
Note that the axial distance is foreshortened to conserve space.
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each section, the stream function at the wall increases linearly
from O to L/2 and then decreases linearly from L/2 to L. The
calculations were performed in sequence, with the results of each
problem serving as initial conditions for the next, in which only g
small change of Reynolds number occurred. This proceduye
allowed the calculation of many cases at a small expense of com.
puter time.

When the Reynolds number is small, and L/R equals 20, Fig,
2(a), the axial velocity component (for r < R, 0 < z < L) is
everywhere positive. The contours of pressure and the modifieq
vorticity w* are nearly straight lines corresponding to a lineay

AXIAL
VELOCITY;
a/u(Ls2)

PRESSURE,
2 .2
D(R/LE)/p £ o
T 73 -

STREAM

FUNCTION ¢ | VORTICITY m*o

T
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Fig, 2(b) Streamlines and contours of the modified vorticity w*, the non-
dimensional axial velocity component, and the nondimensional pres-
sure —p(R/LE)?/pV5? for a symmetrical heat pipe with L/R = 20, Re =
4. Note that the axial distance is foreshortened to conserve space.
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Fig. 2(c) Streamlines and contours of the modified vorticity »*, the non-
dimensional axial velocity component, and the nondimensional pressure
—p(R/Lr)?/pV5? for a symmetrical heat pipe with L/R = 20, Re = 1000.
Note that the axial distance is foreshortened o conserve space.
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shear-stress distribution characteristic of a “fully developed”
pipe flow.

As the Reynolds number increases, deviations from Poiseuille
flow become evident first in the condenser. Reverse flow gen-
erally develops in the condenser at Reynolds numbers between
two and four, which is consistent with the known disappearance
of similar flows. No special attempt was made to narrow the
range any further. In Fig. 2(b) the Reynolds number is four and
reverse flow extends along the wall from w* = 0 to the end of the
condenser. The vorticity contours are no longer straight but are
beginning to be swept downstream. Large vorticity gradients
occur close to the end wall of the condenser.

At the highest Reynolds number, Fig. 2(c), there is still a small
region of reverse flow. The contours of w* start to resemble the
streamlines, showing that the effective viscosity due to numerical
diffusion is not sufficient to prevent the calculations from ap-
proaching the expected asymptotic limit. It is apparent even
in the distorted maps shown here that the pressure field is truly
one-dimensional only in the limit of very small Reynolds num-
bers.

The development of the axial velocity profile is shown in Fig. 3
for the same conditions. The profiles are each normalized to the
local average axial velocity, which varies linearly with 2. For
the smallest value of Re, the distribution is nearly parabolic over
most of the pipe, as expected. For Re = 4, the profiles change
very little in the evaporator, but change continuously in the
condenser. At x = 18 the shear stress is very nearly zero, and
at larger x there is flow reversal. In this respect the phenomenon
is like the separation-of a boundary layer flowing along a solid
wall. Reversal persists even when the Reynolds number is in-
creased to 1000, and the entering velocity profile is very nearly
the inviscid limit cos /2 (r/R)? of the similar solution for a semi-
infinite evaporator. The high-Reynolds-number calculations
were repeated with initial distributions of ¥ and w* appropriate
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to & uniform axial profile to determine the effect of the initial
guesses, but no significant changes in the results were noted.
Data for additional values of L/R and other results are given in
[20].

Nonsymmetrical Heat Pipes. Calculations were made for non-
symmetrical heat pipes with various lengths of evaporator, con-
denser, and adiabatic sections. For L¢ > Lz such that the
condenser Re is.in the transitional range from ohe to two, the
frictional pressuve losses along the condenser tend fo be bal-
anced by the dynamic pressure recovery, and the entire con-
denser operates at a nearly constant pressuve.

Some features of the many possible asymmetrical configura-
tions are disclosed when the characteristics of evaporators and
condensers are considered separately. Such a study was con-
ducted. The many interesting results included the extent of
the nonreversed flow as a function of Re, L¢/R, and the shape of
axial profile entering the condenser. Nonsymmetrical pipe ve-
sults are given in [20].

Total Pressure Loss in Heat Pipes. Busse’s interesting study [14]
for uniform evaporation and condensation suggests that at small
Re the overall pressure loss in the pipe is just that which would
occur if Poiseuille flow prevailed throughout, regardless of the
lengths of the evaporator and condenser.

8/LVELE

PO) = p(L) = =7

[Lr + Le) (15)

This result was derived by Cotter [18] and greatly simplified his
overall analysis of the heat-pipe performance. In Fig. 4 we have
plotted the pressure loss for the symmetrical-heat-pipe caleula~
tions. In spite of reverse flow, which begins at Reynolds num-
bers of the order of unity, Busse's result is a good approximation
for Reynolds numbers up to 10 in such pipes.

Conclusions

The results of the investigation warrant the following con-
clusions:

1 For laminar flows in heat pipes of uniform cross section, the
flow in the condenser will probably exhibit a region of reversal
of the axial velocity when the condenser radial Reynolds num-
ber exceeds two.. Condensers with entering velocity profiles
flatter than those that develop in simple cylindrical evaporators
can avoid reversal.

2 Accurate prediction of pressure loss will generally require
solution of the complete two-dimensional equations if the radial
Reynolds numbers in the condenser are greater than two or if
the pipe is short. .

3 The pressure loss in the evaporator is often the dominant
one in nonsymmetrical pipes, and it can be calculated accurately
from results in [20] for all but the shortest evaporators.

4 Estimates of the overall pressure loss may be made using
Busse’s analysis for Reynolds numbers less than about 10. More
accurate estimates can be constructed by using separate results
for evaporators and condensers [20].
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A numerical analysis is made of the steady two-dimensional heat and mass transfer in
the vapor-gas region of a gas-loaded heat pipe.  Consideration is given to a cylindrical
heat pipe with typical evaporator, condenser, and noncondensible-gas sections and with
neglzgzble axtal conduction throigh the wall and the iquid-wick matrix. The elhpmal
mass, momenium, energy, and Species conservation equations have been solved in con-
Junction with the overall energy and mass conservation constrainis and the thermo-
dynamic equilibrium condition for three heat pipe cases with different working fluids
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and diameters.

The results show that in certain gas-loaded heat pipes, such as hqmd—

metal heat pipes, vapor-gas diffusion and two- (hmenswnahly muist be considered in the

analysis.

Extension of the present numerical framework to.more general cases such as

including the axial wall conduction is mdwated

Introduction

A MODIFIED version of heat pipes in which the tem-
perature is controlled by having certain amounts of a noncon-
densible gas inside has found many applications [1-4].1 In a
gas-loaded heat pipe, the gas volume and the condenser area are
related to the overall heat transfer rate through the heat pipe.
The gas volume varies either by changes in the system pressure
[5] or by active or passive control systems [6]. A common
assumption made in the consideration of a gas-loaded heat pipe
is that the vapor and the gas inside the heat pipe do not mix
and there exists a sharp vapor-gas interface between the con-
denser and the noncondensible gas sections of the heat pipe.
The assumption, however, has been questioned recently by sev-
eral investigators and considerable axial energy conduction and
mass transfer between the two sections have beéen reported [7- 9].
Edwards and Marcus [8] made a one- dlmenSlonal analysis of the
combined energy and mass transfer processes in the vicinity of
the vapor-gas front of gas-loaded heat pipes. They consid-
ered the case with a relatively small heat pipe diameter and
vapor-gas mixtures of relatively low binary mass diffusivity,
and found that the axial energy conduction through the heat
pipe wall was the dominant factor in determining the tempéra-
ture variations along the heat pipe.

! Numbers in brackets designate References at end of paper.
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It is to be demonstrated here that in some gas-loaded heat
pipes the energy and mass diffusion between the vapor and the
noncondensible gas could have an appreciable effect on heat
transfer in the vapor-gas region and the temperature distribution
along ‘the gas-loaded heat pipe. In order to achieve a better
understanding of the vapor-gas mixing phenomena, a numerical
analysis has been made. of the two-dimensional héat and mass
transfer in the vapor-gas region of a simple’ cyhndncal gas-
loaded heat pipe. The solution is based on the ell}ptlc mass,
momentum, energy, and species conservation equations with
proper boundary conditions. A two- dimehsional numerical
analysis 6f heat and mass transfer in the vapor-gas volume of
gas-loaded heat pipes was attempted by MeDonald [9]. His
heat pipe configuration with evaporation and condensation taking
place only at the pipe flat ends, however, is not as realistic as the
configuration in the present study. A recent paper by Somogyi
and Yen [10] presents an approximate two-dimensional analysis
of the vapor-gas diffusion effects in cyhnducal gas-loaded -heat
pipes by solving the momentum and species boundary-layer
equations. In adopting the boundary-layer apprdach as well as
neglecting the nonisothermal effécts and the pressure-temperative
thermodynamic. relation, their physical model is considerably
more restrietive than the present one, but their results eoncerning
the vapor-gas diffusion effects on gas-controlled heat pipe per-
formance are in qualitative agleement with the present findings.

In order to focus on the vapor-gas’ mixing phenomena in the
present analysis, the effects of axial enelgy conduction through
the heat pipe wall and the hquld-wwk matrix are neglected, al-
though they can be easily incorporated into the numerical frame-
work (Appendix). The present results show that considerable
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mass composition and temperature variations in both the axial
and radial directions are present in some of the cases considered.
The numerical results are also compared with the cross-sectional-
area averaged results and those obtained by neglecting heat and
mass transfer between the vapor and the gas regions.

General Considerafions

The physical model of a sharp vapor-gas front for gas-loaded
heat pipes neglects the transfer of energy and mass between the
vapor and the gas and the axial energy conduction through the
heat pipe wall and the liquid-wick matrix. In this case the
energy and mass balance relations can be written as

Q = PH(Tae — To)dz = f PH(Ty — Toc)dz (1)
Lg Le
ALy
= P 2
"= por, )
where the total length of the condenser section, L, is
Lcu = Lc + La (3)

Also, a thermodynamic relation exists between the operating
temperature of the vapor and the total pressure inside the heat
pipe,

p = p(Th) (4)
and the noncondensible gas pressure is
Py = p(To) — p(Tae) (5)

These equations will be employed to obtain initial input values
for the iterative numerical solution of the general case to be
explained later.

The results of recent experimental studies [7, 11, 12], however,
indicated that the axial energy conduection through the heat pipe
wall and liquid-wick matrix, as well as the energy and mass trans-
fer between the vapor and the gas inside the heat pipe should be
taken into consideration when analyzing the performance of gas-
loaded heat pipes. In order to have a better picture of the rela-
tive importance of various heat and mass transfer modes present,
n simple order-of-magnitude comparison is made. Consider
first the relative magnitude of the axial thermal energy transfer
rate by the latent heat of the vapor that diffuses into the non-
condensible gas region, to the energy transfer rate by axial con-
duction through the heat pipe wall and liquid-wick matrix

ApDhyy (dm
Be= ok, dT> 6)
where (dm/dT) can be obtained by averaging the medium slope
of the thermodynamic equilibrium curve in the temperatrg
range from T to Ty in each case {13, 14]. In the vapor-gas re-
glon, the relative magnitude of energy transfer due to diffusion tq
that of conduction is :

__PD}"fa d‘m
ok dr

The foregoing two parameters have been calculated for six cageg
of gas-loaded heat pipe operation. The first three cases are the
ones tested by Edwards and Marcus [8] while the other three
characterize heat pipes with a typical stainless-steel wall but
different working fluids and diameters. Table 1 demonstrateg
the preliminary information and values of the nondimensiona}
parameters for the foregoing six cases. For all cases, average
values of & and D were calculated from the basic thermodynamic
relations [13]. It is shown that only the first three cases are
wall-conduction-dominated. Hessel and Jankowski [12] re-
ported the results of experiments with sodium-argon over a tem-
perature range close to Case No. 5 in Table 1, but with a stainless
steel heat pipe that had a diameter of 5 cm. In their case R,
would be close to 5 which means a totally diffusion dominated
gas-loaded heat pipe. In this and other cases where diffusion
energy transport by the vapor and the gas is appreciable as com-
pared to axial conduction through the wall and liquid-wick, a
careful analysis of heat and mass transfer in the vapor-gas region
is indeed necessary.

Rs (7

Analysis

The physical assumptions employed for the present analysis
are as follows:

1 The vapor is at its equilibrium partial pressure correspond-
ing to its temperature only at the vapor-liquid interface. Inside
the vapor space, the vapor is either superheated or subcooled
depending on its temperature and mass composition. Also,
evaporation and condensation take place only at the vapor-
liquid interface.

2 The steady vapor-gas flow is laminar and its pressure drop
is negligible.

3 The vapor and the gas as well as their mixtures are ideal
gases and have constant physical properties.

4 The evaporator and the condenser have constant ambient

Nomenclature

A = vapor-space cross-sectional area @ = overall heat transfer rate through 2z = axial distance

dy = vapor-gpace diameter the heat pipe I' = exchange coefficient

D = vapor-gas binary mass diffusivity r = radial distance © = viscosity

Dy = outside heat pipe diameter re = vapor space radius p = vapor-gas mixture density
h = enthalpy R® = universal gas constant Y = stream function
hyy = heat of vaporization R, = nondimensional parameter, equa- w = vorticity

H = overall heat transfer coefficient tion (6) .

k = thermal conductivity R: = nondimensional parameter, equa- Svbscripts .

L = length of the heat pipe tl.OI] (7) o = ambient

i Re = radial Reynolds number, prove/u ¢ = condenser
m = vapor mass composition R
. Sc¢ = Schmidt number, ul's ¢ = evaporator
n= n}lmber of moles tw; = wick thickness ¢ = noncondensible gas
ny = distance between .the nf)des on the T = temperature % = enthalpy
boundary and its adjacent node Ty = initial operating vapor temperature Mm = mass
on the normal to the boundary w = axial velocity s = value on the boundary

p = pressure v = radial velocity v = vapor :

P = perimeter, wdy vy = evaporation or condensation ve- w = values for the heat pipe wall and
Pr = Prandtl number, uI's locity liquid-wick matrix
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Table 1 Typical values of R; and R:
Vapor-gas Ty Do Toe dop Dy by A A
Case mixture K atm K ¢em em em cm? cm? R, R

1 Water-nitrogen 305 0.132 195 1.05 1.45 0.1 (.33 0.867 0.0112 2.76

2  Methanol-nitrogen 305 0.528 195 1.05 1.45 0.1 0.33 0.867 0.0207 0.64

3 Ammonia-nitrogen 305 20.00 195 1.05 1.45 0.1 0.33 0.867 0.0174 3.45

4  Water-air 450 9.530 350 1.72 2.02 0.1 0.30 2.320 0.1920 1.53

5  Sodium-argon 900 0.049 400 1.72 2.02 0.1 0.30 2.320 2.57 115.0

6  Water-air 450 9.530 350 5.16 5.46 0.1 0.84 20.90 0.6170 1.33
temperatures and constant overall heat transfer coefficients be- orT _ 0 o) 0 14
tween the liquid-vapor interface and the ambient. 0 oo~ Mlrmo (14)

Governing Differential Equations. The governing differential
equations consist of the mass, momentum, energy, and species
conservation equations. For the numerical method of analysis

The vapor mass composition at the liquid-vapor interface is
obtained from the equilibrium data for vapor-gas mixtures,

employed in the present study, the mass and momentum con- m = m(To, p) (15)
servation equations are expressed in terms of stream function dal
and vorticity as [15]: and also
om amy
o102 o1 oy om - m o 16
ofltopy afloby, g ) v I T (16)
oz |_prox or {pr or

0 [w oy 0 fw oy o) ) w
el ==} == B IS Ry (7
ox \r or or \r Oz ox ox 7

o) o) w O fur+ v\ 0p

- 7‘3 — M — — 7-2 R —

or or r ox 2 or

o fu?+ 02\ Op
Sl (AL LA [ s
+’ar< 2 >0x 0 ®

where

a 7 a Y w
N _ . ¥ _
o P % pory o or

The energy and species conservation equations are:

o (o o [ oY o [ oh
[gv <h ;) T (’Laﬂ T [“’ ax]
fe} oh
— 5—7‘ I:P}ﬂ's;] =0 (11)

[ ) < a¢> d < ) )] ) [ bm:]
— m—)—=|m=) = Twr—
Az or or oz ox ox

o] om
~— I—‘m S = 12
or l: ! or :] 0 (12

Boundary Conditions. For a gas-loaded heat pipe, in order to
determine the stream function, vorticity, temperature, and mass
composition boundary conditions, the pressure inside the heat
pipe must be known beforehand. Initially, the pressure is deter-
mined by a simultaneous solution of equations (1)-(5). This
value of pressure is corrected during the calculation process by a
suceessive approximation procedure in such a way that the system
always satisfies the laws of conservation of energy and mass.
Once a value is designated to the total pressure inside the heat
pipe, the conditions at the boundary of the vapor-gas volume are
determined as follows:

The temperature at the vapor-liquid interface is determined
by assuming a parabolic variation for temperature close to the
interface. With a uniform grid, 7 is determined from the rela-
tion

T, = 37y — 3T, + T, (13)

where 71, T, and 7', are the temperature at nodes one, two, and
three steps away from the wall. At the heat pipe flat ends and
along the axis, the conditions are

Journal of Heat Transfer

The velocity components, 1 and », at the boundary are deter-
mined from the following relations:

20, 7) = o(L, r) = v(z, 0) = 0,

ou (17)

or

r=A

w0, 7) = w(L, r) = ulz, r) = 0,

The radial component of velocity at the pipe wall is determined
by writing the energy balance relation for an axial element of

the vapor-liquid interface,
oT 5
m
o b Phsg

vy = :H[To(x) = Tal +k— (18)

The overall heat transfer coefficient H is usually a function of
Ty(z), Ts, and T, but was taken as constant in the present
analysis.

The stream function ¥ on the boundary is determined from
the integration of equation (10),

YO0, 7r) = YL, r) = Y(z, 0) = 0, Yz, r) = — fr pmwgred
0
(19)

The vorticity boundary conditions at the vapor-liquid inter-
face and on the heat pipe flat ends are calculated by a relation
based on the assumption that the vorticity is uniform close to
the boundary [15]:

= )

R

P

(20)

A more complicated relation for calculation of w,, considering
blowing and suction at the wall, has been proposed and used by
several investigators [15, 16]. For the Reynolds number range
of present analysis, the results of various relations for w,, when
applied to a simple heat pipe, do not differ more than five percent
in value. Also, a relation based on the assumption that the
vorticity variation close to the axis is parabolic was used for
determination of vorticity at the pipe center line.

Numerical Method of Solution. Basically, the finite difference,
iterative method of solution based on the upwind method of
differencing [15] is used in the present analysis. Considering the
previously specified boundary conditions and their interde-
pendency, a special solution procedure is employed as follows:

1 The vapor volume is divided into rows and columns in the
radial and axial directions and row and column numbers are
assigned to the nodes of the grid that is formed.
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Table 2 Three cases of the gas-loaded heat pipe

M L

Case Re,, Re, Kg cm
4 1 4.373 X 10 60
5 1 1.358 X 1077 60
6 1 4.021 X 1073 60

2 By solving equations (1), (2), (3), (4), and (5) the length
of the condenser and the controlling gas sections, the initial pres-
sure, the initial constant temperature of the vapor and the con~
stant vapor mass composition in noncondensible gas region are
determined. - The initial gas temperature is assumed to be equal
to the condenser ambient temperature and zero initial values of
velocity components, stream function, and vorticity are assumed
for all the nodes inside the grid.

3 The velocity and stream function boundary conditions are
determined from equations (17), (18), and (19) and the sets of
algebraic difference equations for the stream function, tempera-~
ture, and mass composition are solved. This step is repeated
25 times.

4 The new temperature, mass composition, velocity, and
stream function boundary conditions are determined and the
sets of algebraic difference equations for the stream function,
temperature, and mass composition are solved. This step is
also repeated 25 times.

5 'The vorticity boundary conditions are calculated from
equation (20) and the set of algebraic difference equations for
the vorticity are solved. Steps 4 and 5 are repeated 25 times as
before.

6 After the iteration process is repeated 75 times, the four
sets of algebraic difference equations are solved together and
the new boundary conditions are calculated each time and the
procedure is repeated until a converged solution is obtained.
In this step, the pressure inside the system is adjusted after every
5 times of iteration in such a way that the overall energy and
mass balance relations are satisfied. This is done by the vapor-
gas equilibrium relation and the ideal gas law through equations
(1) and (2). Also, the mass balance relation for the vapor is
satisfied by adjusting the stream function boundary condition
in such a way that the value of stream function, when calculated
from equation (19), becomes equal to zero at the end of the non-
condensible gas section.

Results and Discussion

The results of the two-dimensional analysis of heat and mass
transfer in the vapor-gas region of the gas-loaded heat pipes are
presented. The analysis is based on the assumption that axial
conduction through the heat pipe wall and liquid-wick can be
neglected as compared to the heat transfer due to the latent heat
of the vapor diffusing into the noncondensible gas region. There-

450 .
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Fig. 1 Axial temperature variation (a, Case 4; b, Case 5; ¢, Case 6)
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L, Ly H
cm Pr Se w/em2K
20 0.825 0.60 4.66 X 1073
20 0.800 0.15 4.45 X 103
20 0.825 0.60 1.55 X 108

fore, it was applied only to the last three cases of Table 1, the
diffusion dominated situations. Table 2 contains necessary
information on the typical cases of gas-loaded heat pipes that
were analyzed. A comparison of the Prandtl and Schmigy
numbers demonstrates the relative importance of axial heat op
mass transfer in the vapor phase in each case. Figs. 1 and 9
demonstrate the axial variations of temperature and vapor magg
composition for the three cases along the heat pipe. The radig)
variations of temperature and vapor mass composition at various
locations along the heat pipe are presented in Figs. 3, 4, 5, 6, 7,
and 8. Finally, in Figs. 9 and 10, the axial variation of tempera~
ture and vapor mass composition at the vapor-liquid interface,

06—
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35 40 45 35 . 40 45 35 40 45
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Fig. 2 Axial mass composition variation (a, Case 4; b, Case 5; ¢, Case 6)
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Fig. 3 Radial variation of temperafure, Case 4

LR =Rv]

1.0 0.5 - 0 0.5 1.0
riry

Fig. 4 Radial variation of temperature, Case 5

Transactions of the ASME

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



430
410
4
Y7390
0
(o
44 cm
370 ER VAPOR-AIR
3504 W
1.0 0.5 0 05 1.0
r/r,
Fig. 5 Radial variation of temperature, Case 6
<] P
1.0
08— X 1
g b
0.6 ) .
r—‘ o X=39m
€ O x= 40 em
A X=4]cm
0.4} O x =42 ¢m -1
WATER VAPOR- AIR
o.zr -
0 $
1.0 0.5 0 0.5 w0
r/rg

Fig. 6 Radial variation of vapor mass composition, Case 4
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Fig. 7 Radial variation of vapor mass composition, Case 5

as obtained from the two-dimensional analysis for the three
cases, are compared with the cross-sectional-area averaged re-
sults and those from the flat front theory. The flow results are
quite similar to those for a simple heat pipe [16] and are omitted
here.

In a gas-loaded heat pipe, the vapor velocity components are
very much close to zero in the vicinity of the vapor-gas front
and transport of energy and mass in that region is essentially by
thermal conduction and mass diffusion. The present results
confirm the simple dimensional comparison as characterized
by By and Rs. In Case 4, Figs. 1(a) and 2(a), the conductivity
and the diffusivity of vapor-gas mixture are relatively low (B, =
0.192 and B, = 1.530). 'Therefore, very little energy and mass
transfer take place between the vapor and the gas and there re-
sults a sharp vapor-gas front. It is expected from the sharp
front that the axial mass composition distribution can be well
approximated by the one-dimensional result (Figs. 2(a) and 10).
It should be mentioned here that in Case 4 the axial energy con-
duction through the heat pipe wall, if included, would have been
the dominant mode of energy transfer across the vapor-gas
region.

The vapor-gas mixture mass diffusivity is relatively high in
Case 5 (i.e., diffusion dominated case, Ry = 2.57). Thus as it
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Fig. 10 Comparison of the two-dimensional, cross-sectional-area

averaged and flat front results

is seen from Fig. 2, the axial mass composition profiles are flatter
for sodium-argon heat pipe than for water-air heat pipe in Case
4. Despite the sharp axial temperature profiles between the
condenser and the noncondensible gas regions (B2 = 113), Figs.
2(b), 7, and 10 show that the axial mass composition distribution
can not be approximated with the cross-sectional-area averaged
results which may be considered as the results of a one-dimen-
sional analysis.

In Case 6, both the vapor mass diffusion and the energy con-
duction through the vapor-gas mixture are effective in deter.mmfx-
tion of the temperature and mass composition distribution in
the gas-loaded heat pipe (R; = 0.62 and R, = 1.53). The two-
dimensional nature of the problem is evident in Figs. 1(c), 2(¢), 5,
and 8, and the result in Figs. 9 and 10 represents only the average
axial temperature and mass composition distribution as com-
pared to the two-dimensional result.
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In general the results of the present study demonstrate that
energy and mass transfer between the vapor and the gas in a gas-
loaded heat pipe, in a variety of cases, such as liquid metal
gas-loaded heat pipes, may play a dominant role in determining
the system performance. Furthermore, in many cases, the one-
dimensional analysis of the energy and mass transfer is not
sufficient for a critical study of the operational characteristics
of gas-loaded heat pipes. The present study also demonstrates
properly the effects and importance of various physical param-
eters on the performance of gas-loaded heat pipes.
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APPENDIX

In this Appendix a method is described to incorporate energy
conduction along the heat pipe wall and the liquid-wick matrix
into the numerical framework for two-dimensional analysis of
heat and mass transfer in the vapor-gas region of cylindrical gas-
loaded heat pipes.

The steady-state energy conservation equation is

_a_ k. _OE" _}_,13 % ,OT’” =0
o\ o ror ol o )
where k, is ‘the local conductivity of the heat pipe wall or liquid-
wick matrix and T\, is the wall or liquid-wick matrix temperature.
The boundary conditions for this equation are
OTu(r) _
or

(A-1)

at ‘¢ =0 and I, 0 (A-2)
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Fig. 11 Axial heat pipe element with grid
at 7 =1,  Thix) = To@) (A-3)
and
' T,
at 7 = Ry, H(Ty — Tow) = kw? (A-4)
7 1R

where H is the overall heat transfer coefficient between the oyt~
side heat pipe wall and the ambient.

By dividing the heat pipe wall and liquid-wick matrix into
rows and columns and forming a grid as demonstrated in Fig. 1,
temperature distribution in that region can be obtained from
solution of the set of algebraic difference equations written for
all the nodes of the grid

Tp = AnTxn + AsTs + AgTe + AwTw + Ap  (A-5)

in which A’s for each node P are found from equations (A-1),
(A-2), (A-3), or (A-4). The same iterative method of solution
can be employed for solving this set of equations along with other
sets of equations. For this purpose steps 2 and 3 in the Numeni-
cal Method of Solution section should be replaced by the follow-
ing:

. 2 By solving equations (1)~(5), L¢, L,, po, P,, and T are de-
termined. The initial gas temperature is assumed to be equal to
the condenser ambient temperature and zero initial values of
velocity components, stream function, and vorticity are assumed
for all the nodes of the vapor volume grid. The temperatures
at the nodes of the wall and liquid-wick matrix grid are assumed
equal to the vapor or the gas temperatures depending on their
axial position.

3 The set of difference equations for the wall and liquid-wick
matrix, equations (A-5), are solved first. The velocity and
stream function boundary conditions for the vapor volume are
then calculated from equation (17), the following equation

—kw % + & %[-7
9o = 7 iry 7 [r=rq (A—G)
mphyg

and equation (19). Next, the sets of difference equations for the
stream function, energy and mass in the vapor volume are
solved. This step is repeated 25 times.

By following this method, the effects of energy conduction in
the heat pipe wall and liquid-wick matrix on heat and mass trans-
fer in gas-loaded heat pipes can be determined in a two-dimen-
sional manner. At the same time, the axial temperature vari-
ations in the wall and liquid-wick matrix at the evaporator-
condenser or evaporator-adiabatic and adiabatic-condenser
sections of both simple and gas-loaded heat pipes can be deter-
mined as a result of the analysis. A subroutine must be added
to the original program in order to calculate the coefficient 4 of
equations (A-5). Also, in dividing the heat pipe wall and
liquid-wick matrix into rows and columns, a nonuniform grid
with smaller radial distances in the first and last rows as demon-
strated in Fig. 11 would increase the accuracy of the results.
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On the Minimum Size of Large
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Dry Cooling Towers With Combined
Mechanical and Natural Draft

The gasdynamic performance equation for lurge-scale dry cooling lowers is derived re-
lating size, shape, fan power, and drag and heat-transfer performance of heat exchangers.

Induced-, forced-, or natural-draft towers are special cases.

The general result consists

of « zero-order scaling formula involving @ size function having a mainimum for o par-
ticular combination of temperatures, together with a set of correction terms of first order

in lemperature rise.

compured.

Thus systems that are nearly equivalent gasdynamically can be
/ gasay

Technical requirements for small tower size or fan power are expressed in

terms of heat-exchunger parameters.

Introduction

Bv eI yiar 2000, it is expected [1]! that electric
power generation will have increased by a factor of more than
four within the U. S. alone. By then it will be clear, if it is not
so already, that our inland water resources (except the CGreat
Lakes) are inadequate to provide once-through condenser cooling
at acceptable levels of thermal pollution and that cooling towers
will be used extensively.  However, it is by no means clear what
the future cooling arrangements will be like.

In the present paper we shall assume that evaporative cooling
will not he acceptable in the future, in view of the condensing
plumes to be expected in cold weather and in view of the substan-
tial water consumption, amounting to about 30 ¢fs for a 1000-
MW power plant. Rather, some form of dry heat exchange
will, we assume, come to dominate the field, Teeren and Holly
[2] discuss the present state of large-scale dry cooling methods;
Smith and Larinoff (3] discuss in optimistic terms the prospects
for dry mechanical-draft cooling; and Christopher and Forster
[4] have described the dry natural-draft tower now in service at
Rugeley, England, designed to dissipate the 575105 Btu/hr ve-
jected from a 120-MW power plant of quite high efficiency.

Dry cooling towers are considered much more expensive than
wet 15}, because of the size or fan power required, the cost of heat
exchangers, and the poorer cooling potential that characterizes
any dry system working toward dry-bulb rather than wet-bulb

! Nuwmbers in brackets designate References at end of paper.

Contributed by the Heat Transfer Division for publication (with-
out presentation) in the Jourwarn or Hear Transrer,  Manuscript
received by the leat Transfer Division October 23, 1972. Paper
No. 73-HT-S. ’

Journal of Heat Transfer

Copyright © 1973 by ASME

temperature.  However, the technical limitations of these devices
are not well understood.  In this paper, a theoretical performance
equation is developed for a dry tower with combined mechanical
and natural draft, expressed, finally, in terms of eustomary heat-
exchanger parameters, tower dimensions, and fan power.

The purpose of this theoretical development is to provide :
technical basis for minimizing tower size, power, or cost. One
may assume that large tower size is per se objectionable, aes-
thetically and economically, and we need to know the rvelevant
limits of technical feasibility.  Fan power, in mechanical systems,
plays the same role as height in the natural ones, and one would
wish to minimize fan power because of noise as well as cost.

The study of minimization will not be completed in this paper;
subsequent papers will give an application of the present theory
to a practical case, extend the theory to questions of heat-ex-
changer size, and show the derived limits of feasibility under
various constraints. Iconomic analysis, which, tuking external
eosts into account, must finally govern cooling-system design,
is beyond the scope of this present study. .

In the analysis to follow, tedious but straightforward mathe-
matical details will be omitied; they can be found in [6, 7].

The Gasdynamic Performance Equation

Basic Assumptions and Equations. Iig. | is a sketch of the
simple flow system we assume, to which we shall apply the laws
of inviscid gasdynamics, assuming one-dimensional flow in a
vertical duct.  That is, we will consider the tower slender enough
that gradients cf flow guantities transverse to the flow direction
are unimportant. At wrbitrary locations within this duct we
place heat-exchange systems and fan systems (any devices that
add momentum to the flow). The geometrical proportions
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Fig. 1 Sketch ofv fower geomefry

shown are purely schematic; only the sequence of events is made
specific. Ambient, stagnant sir (subscript 0) is drawn from the
ground-level stratum of the atmosphere. After entering the
tower, the air is agsumed to accelerate smoothly and isentrop-
ically to the first heat-exchanger zone beginning at (). Any
tower enirance losses can usually be assigned to the heat ex-
changer itself. .

The air leaves the heat exchanger at @ after having acquired
heat at a rate ¢ and suffered a momentum loss preseribed by Cp,
a drag coefficient. These changes are considered to oceur
abruptly, across zones negligibly thin in comparison to tower
height. The heated air then proceeds isentropically to the fan
at location @ where mechanical power I is imparted to the
flow. The fan zone from @ to @ is also considered to be thin —
an actuator sheet. The flow proceeds through a second heat
exchanger (for which the parameters will be denoted by primes)
hetween (® and (. This particular sequence of tower elements
is the simplest that can include the special cases of natural draft
(one heat exchanger only) and forced- or induced-draft (omitting
the first or second heat exchanger, respectively).

The air finally proceeds isentropically to the tower exit at
(®, where its pressure is matched to that of the ambijent at-

cesses of the plume above (3. Otherwise, total pressure lossgg
are assumed limited to the heat-exchanger zones. Wall friction
in the tower is explicitly neglected. These seem reasonablg
assumptions for such a large, relatively short duct.

This duct flow will be analyzed in terms of small perturbationg
of state quantities and small Mach number. Leading terms wij
constitute a simple scaling law, and terms of the next highey
order will be retained as corrections. The leading and corrvectioy
terms together will constitute the desired performance equation,

Except in crossing the three actuator sheets, the air flow prq.
ceeds isentropically, subject to the state and Euler equations

;
p «p’ p=pRT %—}—VdV—{—gdy:O 1

which may be integrated to yield

= (constant) — v-1 Vi~ (y — Lygy (2)

P
P
Of course, at each station of Fig, 1, the mass flow

m = pVA (3)

is the same. The area at each station is denoted by 4.
Focusing atlention on the first heat exchanger, energy in the
form of heat (@) is added to the flow there;

T_|__.1_V22___’]’_,£_V2:_Q_ (4:)
ToR e, T me,
and momentum is extracted by drag, expressed in terms of Cp:

m M

1
A A S e 7]
Pe 5 b2 e g AVl (5)

We next introduce the following definitions:

b/ 2
an=D 1 By=1-2 =V

T M (y = DGT

In writing the Mach number M, we recall that for a perfect gas
sound speed « is given by

a* = YRT = yp/p = (v — 1)C,T ]

We then may write the energy and momentum equations (4)
and (5) in the forms

mosphere af the level of 3. That is, the entire dynamic head ang + rol (I A+ am)M? — MY = < ®)
at the top of the tower is assumed to be lost in the mixing pro- 2 mCpT
Nomenclature
A = area M = Mach number 0 = dimensionless height, equation
4a, Ac = heat-exchange swface and free- n = mass flow rate a7
flow areas of heat exchanger = dimensionless approach, Tig. 2 € = small quantity, equation (17)

1

P

o = sound speed, equation (7) P
Cp = drag coeflicient of heat ex- 0
T

14

i

pressure

changer, equation (5)

(', = specific heat of air at constant
pressure

B = heat-transfer-resistance coeffi-
cient, equation (31)

I = counterflow equivalence, equa-

duct

~
|

@7)

rate of heat exchange
temperature
flow velocity averaged across

= generalized height,

7 = isentropic efficiency of fan

Kk = polytropic coefficient for at-
mosphere

II = fan mechanical power

K

tion (28)
acceleration due to gravity
initial temperatuwre difference,
Fig. 2
ratio of friction factor to Stan-
ton number, equation (38)
characteristic length, equation
(24)
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y = height above tower base

dimensionless temperature rise,
with subscripts defined in
equations (6), (13), and (22)

dimensionless pressure Tise,
with subscripts defined in
equations (6) and (13)

ratio of specific heats

12

7 = dimensionless fan power, equa~
equation tl(fn (13)
p = density
¢ = dimensionless fan thrust, equa-
tion (13)

= size function, equation (39)

Subseripts 4, B, and 0 through 5 denote
positions in the tower according to Fig. 1

Prime denotes upper heat exchanger

Carat denotes division by [ )

Asterisk denotes the minimum of , Fig. 3
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an + Bu 0%
— M
Bu RELS 1 = Ba 5
Corresponding expressions apply at the second heat exchanger.
Applying equation (2) between the first heat exchanger and
the fan, and introducing equations (1) and (7), yields

M%Cp (9)

y—1

——_— _ 1 '
<Bi> T~ [1 + I = oy = )L - y2>:|
Ps 2 [¢2)

X [1 + 7——;—1 MAZ:|_1 (10)

TFrom equation (10), the corresponding relations for the other
isentropic steps (0-1, B-3, 4-5) can be inferred.

Moving to the fan location, the energy and momentum equa-
tions are

1 1
Vg2 — Ty — —— V4 = 11
TB+20p B 4 5, 4 WG, (11)
m m P
— Vg — — V4 = — 12
pB-!—AA B — P4 AL A i (12)

where II rvepresents the total rate of energy delivery to the air ,

at the fan location, in other words, the power delivered to the fan
blades, part of which does useful mechanical work and part of
which may be dissipated as heat. The useful work is that done
by the thrust force 2 exerted by the fan on the air.

We introduce definitions corresponding to equation (6):

T
ar = — — 1 Br=1— Py
Ta D4
I8! z
= = 13
meTA AAPA ( )
which yield, corresponding to equations (8) and (9),
vy —1
ar + T [(1 + 0(17')21132 — I]JAZJ = T (14)
B~y 2B (15)
1 — Bp

in place of equations (11) and (12).

Finally, we assume a quiescent, polytropic atmosphere outside
the tower, with the exponent k replacing v -and V = 0 in equa-
tion (1). The pressure difference between top and bottom is
given by an equation analogous to equation (10):

k—1
<ﬁ>k =.1—l(’<*1)i?/5
Do/ K ao®

The final draft equation will be obtained by suitably matching
this outside pressure change to the inside one derived from equa~
tions (9), (10), and (15), an equation corresponding to equation
(9) for the second heat exchanger, and equations comparable
to equation (10) for the three remaining isentropic steps. To
complete this development, the Mach numbers at the various
stations must be related, and further information about per-
formance parameters must be included. Allowing k to differ
from v permits the atmosphere to be nonadiabatic over the
vertical distance of tower height and might also allow the effects
of wind to be represented conveniently.

The Perturhation Scheme. We will assume that all changes
occurring in the tower are small compared with the corresponding

(16)

original quantities and that Mach numbers are all small. For
convenience, we will write

—- 1 (17

€= Mr 6= (y — lygy/as 17)

Journal of Heat Transfer

with subsecripts being added to denote particular locations. In
effect, we will develop a draft equation as a power series in ¢,
which is a measure of the tower mass flow:

vy —1

€ = 5 m2/(paidy)? (1R)

We next must assign comparative orders of magnitude to all
the small quantities we have introduced. It is simplest to state
at this point the relationships that will later prove to be self-
consistent, namely,

1o all 6, = o(e)"/
H, (&) (19)
all &, Br, T, 0, ar, Br = o(&)
We will derive our draft equation only to order ¢°/2 Further

development would be feasible, but not practically important.

Using equation (1) when appropriate and equations (3), (6),
and (13), the various Mach numbers and pressure ratios can be
related to the desired order of aceuracy. For example, equation
(10) becomes

y+1
@ _ (pa) v Al yH1ooy4d 5

€4 P2
Next, ar, Br, and o should be expressed in terms of =. In {7],
it is shown that
ar = 7 4+ ole?)
p o 2
Br y =1 + o(a?) 1)
— . 2
] nm + ola?)

where 7 is the isentropie efficiency of the fan, comparing ideal to
actual power needed to accomplish given changes of static and
total pressure.

The Draft Equation. Now we may chain-multiply the various
pressure ratios to carry out the matching of the external pressure
drop, equation (16), with the internal one. We omit the tiresome
algebraic details of this process; they appear in {7] for a slightly
more general case, which includes a second fan between @ and ®.

In carrying out the expansion it becomes clear [7] that con-
vergence is improved by redefining am, equation (6), to avoid
having to expand the quantity (I + am)~1. For each heat

exchanger, we define
ap=1—-T/T: or(l+ag)t=1—ar (22)

The final result, which confirms the ordering of equation (19),
is written with the leading terms on the left and corrections of
order " on the right:

agls

+ op'Oss + ﬂ>

€1 €1 €

A2 A
0D+A—320D +E~<

v — Kk O? Ay? >
YR s (0 + SR 0
+2K('y—~1)61 0<D+A32D

A2 LA Ar
_“E<A?+1> o <A52+Zﬁ>

A.* v+ 1 Ayl
+ A <550 - 1551> - AgZCD v —1

. (v = )2y — (v + 1] u®
+ o (054 — 10s0) + 62y — 1) €

y! A2
— ap (gz:_ + ZL? CD/) + o(er) (23)
3

€
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For convenience, we use double subscripts to denote height
differences: mn= 0, — On.

The meaning of equation (23) is obvious; temperature rise
ar and height above the heat exchanger 8 or 0, or, alterna-
tively, effective fan power g, provide the draft to overcome heat-
exchanger drag (e.Cp) and provide any acceleration in the tower
associated with area contraction (e1di%2/4;2). The remaining
leading-order term, depending on ¥ — «, suggests the possibility
of a natural draft augmentation if the atmospheric lapse rate
should be greater than adiabatic. However, this term will gen-
erally be quite small numerically.

Equation (23) may be simplified by introducing the idea that
the tower is of either induced or forced draft; that is, one or the
other of the heat exchangers is to be dropped. Actually, of
course, the extra heat exchanger could be used to represent heat
dissipation and drag of the fan motor. Next, we may introduce
a length scale [, recalling that @ = mCpTrlay + olane)] =~
77'7.0,,To(1 - 611)0[}1.‘

)=
1=

l

A=

A
n (24)

= <_,L
\/%POCpTO

we will denote by subscript H the parameters of the heat ex-
changer, whether at () or ®. With these changes, equation (23)
becomes

/I}[z 1 - 26}{ 3 aHZ(l + O[H) 7’]H:| -
B S G TN Ay
Cp + s L an (431 [2?53' + vy — gl @ H
Y- Ot +1 o (AR
-+ Wy — 1) & <5so I 5110) Cp — ag (/Tf,z -+ 1)

2 A T
— =G5 + — [(1 — )04 — Nz
Y — 1 ASZ 0 + €@ [( 77) 54 naﬂlower]

(v — 02y — (v + k] 6x®
+ By — 1)2 o + ola) (25)

We leave the correction factor (1 — 20x)/(1 + ax) unexpanded
on the left side of the equation for reasons of convergence ex-
plained in [7].

Interpretation and Examples. We now choose a numerical ex-
ample to gain a feeling for the importance of the various quanti-
ties introduced, and then we discuss further the meaning of
equation (25). We first consider one of three natural-draft
(I = 0) towers, each 500 ft in height, above a heat exchanger at
ground level, serving a 1000-MW plant of 33 percent thermal
efficiency. Thus, @ = 0.64-10% Btu/sec. We suppose further
that the air-temperature rise is from 60 to 85 deg F, and thus
with Cp, = 0.24 Btu/lb-deg F, the mass flow 7 must be about
107,000 Ib/sec.  The value of Cp is taken to be 15, and As/Ay =
0.5. With py = 0.076 1b/ft? and v = 1.4, the following derived
quantities may be caleulated:

ag = 0.048 =371t 00 = 0.0052
fs0 = 13.5 An = 1.55-10° ft2 e = 1.30-10-%

The last term on the left of equation (25) is then 2.5[(y/k) — 1],
which is to be compared with Cp» = 15. From the atmospheric
lapse rate, k can be inferred; typical values would range between
1.2 and 1.4. The correction term would then range be-
tween 0.42 and 0, tending to diminish draft at most by about 2
percent. The error terms on the right of equation (25) depend on
the small quantities oy and 8;, nominally of the same order:

A 2
Cps = 008  ~ax (=L +1) = —023
A
Agt 2
—Os0 A v — 1 = —0.10

These quantities, which are to be compared with Cp in equation
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(21), contribute very small corrections totaling —0.25. Of
course, the lower the tower drag Cp, the more important thege
corrections would be. The last term on the right is neglected,
The separate correction factor remaining on the left of equation
(25), approximately 1 -+ ar + 20, gives a correction (ay 4
201)Cp = 0.86.

Now we consider a mechanical-draft tower of negligible height,
Clearly, equation (25) says that the equivalent draft height of 4
mechanical-draft tower is simply proportional to the ratio of fan
power delivered to the air to the heat rejected. Typically,
choosing v = 1.4, the proportionality factor is about an?/[(y —
1)g] = 97,100 ft. Thus if the draft height is 500 ft, the power/
heat ratio is only 0.51 percent. The corrections in this case
would include the quantity — nmroag/e = —(0.87)3, but only
if the heat exchanger is below the fan (induced draft).

In the zero-order equation, the fan location is immaterial, and
no distinction appears between forced and induced draft. Fur
thermore, the duct area at the fan location (that is, the fan
diameter) is not a parameter, either to zero order or to first
order of corrections. So long as the required power is provided,
there seems to be no need to have a fan of heroic diameter; cost
considerations would presumably favor a compact design, and
the present analysis would justify such an approach.

The first appearance of fan location as a parameter is in the
correction term (1 — 7)(w/e)ds4. This expression describes
the portion of fan power dissipated as heat, multiplied by height
from the fan to the top of the tower. They may be interpreted
as tepresenting an additional buoyaney of the heated air column
above the fan. However, this effect is very small and is ordinar-
ily negligible.

The only distinction between forced and induced draft appears
in the correction term — (W/el)naElower, which includes the tem-
perature rise of only the lower heat exchanger; ar for induced
draft; and 0 for forced draft. This correction, which is a penalty
for induced draft equivalent to an increase of about 6 percent in
Cp, may be understood by considering that the air entering the
fan is warmer in the induced-draft case; hence the fan is some-
what less effective. For the same mass flow and pressure differ-
ence, the velocity is a bit larger, and hence a greater power is
needed to provide the necessary flow work. Thus one would
conclude that for low towers, the forced-draft arrangement
would be slightly favored gasdynamically, neglecting natural-
draft contributions.

Of course, one might also consider the fact that the air is
slightly warmed passing through the fan, equation (21).
Thus for the same air temperature leaving the heat exchanger,
the value of ar would be smaller by an amount of order
a, which in turn is of order ¢, equation (19). Accordingly, for
the same total heat transfer, the mass flow 7 would need to be
larger by an amount also of order e, These corrections would
favor the induced-draft arrangement; however, they are much
smaller than the term of order « cited in the previous paragraph,
and in fact are too small to be included in our draft equation,
which we have terminated at order «.

If the natural-draft contribution is substantial, additional
differences between induced and forced draft require considera-
ation. Suppose, for ease of comparison, that the heat-exchanger
areas and drags and the fan areas are the same in the two cases.
Then the right side of equation (25) for forced draft is less than
that for induced draft by the amount [(y + 1)/(y ~ 1)](0 —
010)Cp. The parentheses signify the difference of elevation of the
heat exchanger in the two cases. Obviously, this difference he-
tween corrections corresponds to a loss of natural draft in the
forced case if the heat exchanger is at an elevated height. For
this effect, favoring induced draft, to exceed the propulsive-
efficiency effect favoring forced draft, the quantity [(y -+ 1)/
(v — D](6ss — 61) would have to exceed about 5 percent. In
that case, difference of exchanger heights would have to exceed
about 810 ft, which is not a reasonable possibility. Our con-
clusion, then, still stands: that the forced-draft arrangement
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has a propulsive efficiency slightly superior to that of the in-
duced-draft tower by about 5 peicent, which is a typical value
of eep.

Other, perhaps more compelling, advantages of the induced-~
draft arrangements may exist; our consideration is limited to
gasdynamics.

sealing Relationships. Keeping in mind the various correction
terms discussed previously we write equation (25) in zero-order
form:

PN Ayt
PA2 = 28 O, 1 (26)
Ar*ag®  agt
where Y is a generalized draft height:
A ao® I
Y = ¢ — — 2
bt =~ a @

We may consider the expression Y/L—,Z to be a measure of tower
gize,? while the factor ap®/Cp expresses the influence of heat-
exchanger performance. Clearly, if « is large, the tower need
not be so large for a given total heat-exchange rate. If Cp is
large, the tower must be large to produce adequate draft. Of
course, Cp depends on the heat-transfer rate of the exchanger,
and hence upon &. Thus o and Cp are interrelated performance
factors that will be studied in subsequent paragraphs.

Clearly, for given drag coefficient and temperature rise, a sub-
stantial flow contraction between the heat exchanger and the
exit would be desired. In effect, for large C'p, size based on heat-
exchanger flow area Ay is fixed. However, visual impact should
depend more on 4;, at the top of the tower, and it is that quantity
that presumably should be minimized.

It is interesting that gasdynamic size is much less sensitive
to height than to lateral dimension. If one is especially anxious
to reduce height, it is a happy ecircumstance that if height is re-
duced by a factor of two, the lateral dimensions need be increased
only by the factor 2'/4 or 19 percent, to keep gasdynamic equiva-
lence. Of cowrse, this idea must not be applied too enthusias-
tically, because a tower that is too low and wide will fail to meet
our present assumption of one-dimensional flow, and the pressure
condition at the exit will not be met, that is, draft will be lost.
Study of these practical limitations of tower shape is beyond our
present scope.

Minimum Tower Size

Heat-Exchanger Analysis. We must now relate Cp/a® more di-
rectly to the characteristics of heat exchangers. In doing this,
we follow the usual engineering analysis described in the book of
Kays and London [9] or that of Kreith [10]. The total heat-
transfer rate may be written as

Q = UAFATg (28)
where U is an overall heat-transfer coefficient, 4 is now the heat-
exchanger surface area, and AT Is a suitable average tempera-
ture difference between air and water, assuming that the ex-
changer is of the counterflow type. F is a factor to correct for
the exchanger being of a different type, say crossflow.

Fig. 2 sketches our temperature notation in a manner ap-
propriate for counterflow. 'The initial temperature difference I
is that between the hot water entering the cooler (7T%,) and the
cooling air entering the exchanger (7%, very nearly equal to 7).
The water is then cooled through a range RI to a temperature
T, which is still above T by the amount of approach PI. The
air, meanwhile, is warmed by an amount a7, or, a being rede-
fined, oI, and it leaves the exchanger at 7% The usual loga-
rithmie mean temperature difference then may be written

2 In his basic paper on natural-draft evaporative tower design,
Chilton [8] finds the relationship height- (area)? = constant for a
family of towers.
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water in,
air out

“range’
W P =RIL
1.T.D,
=1
T
oI i
“approach”
=PI
N
water out,
air in -

Fig. 2 Temperature diagram of hypothetical counterflow heat exchanger
defining terms and notation

]."—‘(XI—'P T1
o= g —-

ATg =7 —— A5
s =1 In|(1 — as)/P| I

(29)

Turning now to the overall conductance UA, we neglect the
wall resistance and write

1 1
UA = ———— = — Aha 0
1 1 7 Ach, (30)
nOAaha Awhw
where we have defined
1 nOAaha
E=—1\1+4 — 31)
m(‘*mm> (

and hq and h, are heat-exchange coefficients for the air and water
sides of the device. The corresponding exchanger surface areas
are Aq and A,. The area (especially on the air side) may in-
clude fins, and a fin efficiency factor no is needed. For air-water
heat exchangers, the water-side resistance is usually small.
Thus the quantity £ might be nearly one, in which case, simply,
UA >~ oA ha.

We now must plunge into a thicket of definitions having to do
with heat-exchanger performance in quest of the quantities & and
Cp. First, we shall need to distinguish between four different
areas associated with the air side: A, is the total heat-transfer
swrface in contact with the air, Ay is the area of the streamtube
entering the exchanger. A; is the frontal area of the exchanger,
across its first row, for example. A, and A, are not necessarily
the same. If the exchanger is at an oblique angle to the on-
coming flow, A; would be larger than A; by the factor of the
secant of the angle. Finally, 4. is the free-flow area, which is
some fraction of A; and represents the minimum flow passage
for the particular combination of tube and fin sizes and spacings
in question. We will assume that if the heat exchanger is
obliquely oriented, its performance is the same as in normal orien-
tation, but with the velocity of approach being that normal to the
exchanger face. That is, the air is assumed to turn so as to flow
normally through the cooler body. This assumption is appro-
priate for any high-drag device, and especially for one having
high resistance to flow parallel to its face, as would many fin-tube
exchangers.

The following equations define a hydraulic radius and the
Nusselt, Stanton, Reynolds, and Prandtl numbers:

AL k1 Nu
= — = St= -
K Aa L 47y, Nu Re Pr
04: " v O
Re= PV p Tt (o
238 o
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Table 1 Size function Y and its minimum

Approach, P

ar
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1 214.9 183.1 162.2 146.9 135.2 125.7 117.8 111.1 105.4
0.2 57.76 49.04 43.32 39.17 35.96 33.38 31.25 29.45 27 .89
0.3 27.84 23.54 20.73 18.69 17.13 15.87 14.84 13.96 13.21
0.4 17.17 14 .44 12.67 11.40 10.42 9.63 8.99 8.45 7.98
0.5 12.22 10.22 8.93 8.00 7.29 6.73 6.27 5.88 5.54
0.6 9.63 7.99 6.94 6.20 5.63 5.18 4.81 4.50 4.24
0.7 8.28 6.80 5.87 5.21 4.72 4.32 4.00 3.74 3.51
0.8 7.81 6.34 5.42 4.77 4.29 3.92 3.61 3.56 3.14
0.84 7.91 6.36 5.41 4.75 4.26 3.87 3.56 3.31 3.09
0.9 8.56 6.78 5.70 4.97 4.42 4.00 3.67 3.99 3.16
0.95 10.24 7.94 6.58 5.67 5.01 4.50 4.10 3.77 3.49
ar¥ 0.800 0.813 0.822 0.829 0.835 0.840 0.844 0.848 0.851
v* 7.73 6.33 5.40 4.75 4.26 3.88 3.57 3.31 3.07
The exchanger length L is measured normal to 4.. If the ex- It is interesting that as a function of ay, ¥ has a minimum;

changer were a single tube, the hydraulic radius 7, would be
one-fourth the diameter of the tube. Hence, 47 appears in the
role of a diameter in subsequent definitions. By V. we mean the
normal velocity associated with 4., that is,

pVede = m = pVid, (33)
Coeflicients of viscosity and heat conduction for air are denoted
by u and k.

Expressions for ay and Cp. We may anticipate finding he via
St, given as a function of Re and Prin the charts of [9] for various
configuwrations and types of heat exchangers. However, our
purpose is not to design a heat exchanger. We have a less ambi-
tious goal: to find an expression for ay to introduce into equa-

tion (26). We may write, approximately,
Q = pVe4Cp, Tham (34)
Combining equations (28), (30), (33), and (34), we obtain
L F ATg
=8t = 5
o m B T (85)

Our gasdynamic definition of Cp is given in equation (5).
Conventionally, the pressure drop across a heat exchanger is

described by a friction factor f defined on page 33 of [9]. For
small Mach numbers,
1 A.
A 7 Y
=y pVE e f (36)
and equations (5) and (36) give
L [A\?
Cp=—1{—
D " <Ac> f 37)

The friction factor f is available on the same charts as St, and
inspection of these shows that usunally f may be taken as propor-
tional to St over an extended range of Re. We adopt such a
Reynolds analogy between friction and heat transfer:

f=KS5t (38)

Generally, K ranges between two and six.

A Size Function. We are now in a position to express the quan-
ity Cn/oeg® as a function of the cooling-tewer parameters. First,
we eliminate St between equations (35) and (38). Then we
introduce equation (29), first defining a size function Y(as, P)

_ In|(t = an/P|

= 39
ar(l — P — arn) ( )
and equaticn (26) becomes
I\® . . KEY [A45\? 1
— ) YAz = —— | — — 40
(7) ras =5 () v s w0
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this is clear from the fact that i is infinite at both a; = 0 and 1,
The function ¥ is displayed in Table 1 and in Fig. 3.

In general terms, we may understand Fig. 3 as follows: Gen-
erally, the closer the approach (the smaller P), the larger the
tower, because of the greater heat-transfer area or stronger draft
required. Similarly, if or — 1, the air can only approach the
entering hot-water temperature in a very large-area tower. On
the other hand, if a7 — 0, the air is only slightly warmed and its
buoyancy vanishes, and, more importantly, the mass flow must
become infinite to carry away heat at the required rate; both
these tendencies imply an infinite flow area. Usually, one would
specify a cooling range, and I would be given; thus P would be
known. The air warming, oy, would depend on design, how-
ever. From Fig. 3 we see that with P fixed, there is a minimum

16 T
u- -
n -
w -
S
s 4
b}
=
2
2
a b
i
0 ¢'(047) =4.9; a} = 0.83
7 - .
) ! i | | ,
0 0.2 04 0.6 0.8 1.0

Air temperature rise, o

Fig. 3 Size function y as a function of air-temperature rise for various
values of the approach; dashed line denotes locus of minima
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of Y occurring at an oy of about 0.8 for all P. Particular mini-
mum values (denoted by an asterisk) are given in Table 1. A
Jog-log plot of these minimum values of Y versus P shows clearly

that

Y* = 3.2P0 (1)

is an excellent approximation to the exact function.

The Ideal Minimum-Size Tower. Equation (40) will be applied
to various practical situations in a subsequent paper.® Here we
ask what the ideal goal might be. The more nearly counter-
flow performance is obtained, the smaller the tower; ideally, I7 =
1. Also ideally, fin ineffectiveness and water-side resistance
would both vanish, so that I = 1. Since as* ranges between
0.80 and 0.85, (as*)~3 ranges between 1.95 and 1.63, depending
on P. Choosing an average value, the approximate ideal would

be:
IT\? &+ As\?
— ) YAz2 = 32KP0% | — 1.8
<T1> <Ac> +

The two remaining quantities, K and As/A4. have no best
values, but rather should be as small as possible. Of course, a
small value of K favors draft, and K might conceivably be as
low as three. As an example, if 7 = 35 deg, Ty = 520 deg, ap-
proach = 16.5 deg, then P = 0.47 and Y* = 4.9. For a tower
dissipating 0.64-10% Btu/sec, we found I = 37 ft. With these
choices and K = 3, equation (40) would show that three ideal
dry towers for a 1000-MW plant would have to be about 330 ft
in scale, if As/4, = 1.
than one, and it is difficult to place a practical lower limit on
that quantity. The ratio A;/A. can be made small both by
choosing a substantial flow contraction and by oblique heat-
exchanger airangements. It is easy to imagine 4s/4. to be in
the vicinity of 0.3, in which case the size scale would be reduced
from 330 {t to 235 ft.

(42)

Goncluding Remarks

In a subsequent paper, the practical implications of equation
(40) will be pursued further, especially in regard to heat-exchanger
size. Tor the moment, we may emphasize that the present
analysis is intended to provide a technical basis for reducing the
overall size (or power) of dry towers, and the result makes clear
that heat-exchanger design is crucial in terms of both drag and

3 See [6] for application to the Forgo-Heller type of dry tower at
Rugeley, England [4].

Journal of Heat Transfer

Now, (ds/A4.)* can be considerably less .

temperature rise. Accordingly, the scaling law has been ex-
pressed in terms of heat-exchanger parameters, and various re-
quirements for minimum tower size are immediately revealed.

However, it is not obvious how such requirements could
economically be met in a realistic situation, or what technical
compromises would typically be necessary. We will find that
the combination of parameters describing the best heat exchanger
will vary greatly, according to the particular way in which the
system size is to be defined and then minimized. For example,
water-side heat transfer and pumping power requirements may
be considered important.

In closing, we should recall that this study emphasizes the in-
ternal gasdynamics of dry cooling towers; external factors need
further study. Specifically, entrance losses and wind effects
at the exit should be more closely specified in practical applica~

. tions.
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Heat and Momentum Transfers:
Multiple-Disc Rotor Units

An investigation has been carried out to determine the performance characteristics of g
multiple-disc rotor device used as a combined fan/heat exchanger. The advantages of
such @ system, when applied for example to an air-conditioning system, stem primarily
from the simplicity of design and compact nature of the equipment. The assessment of
the particular test unit as a fan was done under normal atmospheric conditions using air
as the working fluid. A speed range from 550 to 1290 rpm was used in these tests.
The maximum efficiency of the momentum transfer from the rotor to the fluid was about
14 percent. The unit capability as a heat exchanger using atr flow under normal
atmospheric conditions may be judged by the maximum heat transfer effectiveness of
about 40 percent. Rotor speeds were varied in the range 700 to 1600 rpm, and at each
rotational speed the ratto of the mass flow in the cool stream to that in the hot stream was
varied from 0.48 to 1.30. Two different techniques were used in an endeavor to predict
the performance of the experimental uwit. Of these, the more successful was that based
on the assumption that a turbulent boundary layer covered the rotating disc. However,
the simpler approach, using colculated friction factors, may well prove acceptable for
some engineering applications. The results from each of the prediction techniques are
given for comparison with the test results.
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Introduction

THE FIRST USE of a multiple-dise rotor is credited to

N. Telsa, who took out a U. 8. patent [1]1 on a disc turbine abcut
1913. No published engineering investigation of the turbine
was made, although the semi-technical publications of the time,
i.e., Scientific American [2] and Engineering (London) [3] did
report the invention. But it was not until about 1930 that the
fundamental research on fluid flow around discs was carried out
by Von Karman [4], Cochran [5], and Goldstein [6]. Between
the Tesla turbine and the present generation of multi-disc devices
came a family of so~called friction disc pumps. These pumps had
a single-disc rotor, which was vaned on the periphery. These
pumps were widely used in lubrication, control, filtering, and
booster systems, as the occurrence of peak efficiencies at low
specific speed made them especially suitable for these applications.
There is at present a revival of interest in the use of dise rotors
for the conversion of motive shaft power to kinetic energy of the
bulk fluid, perhaps because of the inherent simplicity of design
and fabrication when compared with the more conventional rotors
in standard turbomachinery. In the past, the overriding reasons

1 Numbers in brackets designate References at end of paper.

Contributed by the Heat Transfer Division for publication (with-
out presentation) in the Jour~Nar or Hear TrRANsSFER. Manuseript
received by the Heat Transfer Division, August 8, 1972. Paper No.
73-HT-Q.
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for not using the multi-disc rotor has been the low efficiency of
momentum exchange; but in applications where stability of
operation and high reliability are paramount, this class of rotors
provides tangible advantages, e.g., development of a disc pump
for space-exploration operation is reported by Hasinger and
Kehrt [7].

Review of Werk Related to Disc Rotors

Analytical solutions of the equation of change are successful
only under conditions of laminar low and with simple boundary
assumptions. As, in practice, the bulk of fluid machinery operates
in the turbulent range and under geometrical constraints leading
to complicated boundary conditions, it is necessary to find other
methods of predicting unit performance. One method that has
been used successfully involves the formulation and solution of
the integral momentum and energy equations written for specific
control volumes. An example of this method arises in the
theoretical analysis of an “‘enclosed disc.”

Work on the enclosed-disc aspect of the general rotating-disc
problem has been concentrated on a smooth dise rotating in a
cylindrical housing, Prominent contributors to this body of
knowledge are Schultz-Grunow [8], Okaya and Hasegawa [9],
Dorfman [10], Soo [11], and Daily and Nece [12]. In particular,
Daily and Nece made a lucid review of the available theoretical
and experimental information available.

In the field of practical dise votor machinery research, several
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workers have proposed models for the single-vaned rotor dise
pumip that have met with varying degrees of success in the pre-
diction of system performances. Among these, the earliest
models of direct interest were proposed by Iversen [13], Senoo
[14], Wilson, et al. [15], and Balje [16].

The works of Rice [17] and Hasinger and Kehrt are directly
concerned with smooth dise rotors. The former reported on the
use of this shear-force machinery as a water pump and as an air
compressor, and the latter workers reported on more sophisticated
ghear-force pumps to handle fluids in rocket propellant pumps and
poiler feed pumps. In both cases the induced flow is through the
hub of the rotor, as the pumps are of the radial-flow variety.
The method of analysis adopted by Rice involved a solution of the
differential equations of motion. No correlation was given be-
tween the theoretical and the experimental data in the published
paper, although it was stated that numerical and experimental
results were obtained. The radial-flow shear-force analysis of
Hasinger and Kehrt is restricted to the laminar-flow regime, al-
though the suggestion is made that in the turbulent range the re-
sults may be approximately true if adjustment is made to the
viscosity term.

Description of Fan Heat Exchanger under Consideration

Details of the fan/heat exchanger rotor and housing are shown
in the photographs in Fig. 1. The heart of the unit, the rotor, is
made up of 16 smooth aluminum discs fabricated by spinning.
The average thickness of the discs is 1.59 mm (0.0625 in.), and
the dises 'sit loosely on a mild-steel shaft. Aluminum ring spacers
with a boss diameter of 305 mm (13.75 in.) are placed between
every two discs to position the dises on the shaft. The housing
itself is made from 20 SWG 0.914-mm (0.036-in.) sheet metal.
A geometric constraint on the housing design is that there should
be provision for rectangular ducting to be attached to carry both
the heated and cooled fluid streams. The ducts leading to and
from the test unit are of the same size as the inlet and outlet cross
sections on the fan/heat exchanger. The throat sections, how-
ever, are of arbitrary design, and it is certain that for any future
designs, more attention should be paid to the influence of throat
shape on the overall fluid-flow pattern. A geometrical ad-
vantage of the unit is that the inlet and outlet cross sections are

naturally rectangular. As air-conditioning ducts are usually
rectangular in cross section, the need for complex-geometry
transition pieces is obviated.

Semi-Theoretical Models

Simple Friction-Factor Model. For air flow through a control
volume ¥ under temperatures and pressures close to atmospheric
conditions, the energy equation may be written (ignoring poten-
tial energy changes) as

2

. . Vv
Qov—ch=f (P‘f“
A \P 2
VZ 2
=f <B+—>deA-f <£—|—K>deA
4, \P 2% 4\ 20

For the operation of the unit as a fan, it is reasonable to assume
adiabatic conditions, i.e., Qe = 0.

Also, the static pressures in the inlet and the outlet ducts may
be assumed to be uniform across the cross section and equal to the
pressure measured at a static wall tapping in the duct wall.

These simplifications enable us to write:

[, G)eras= [ Ghorea == ()

) pV cos adA

The pressure gain across the unit, Ap,; = p, — p;, may be found
by considering the entrance loss Api, and the exit loss Apous as
well as the pressure gain achieved by the smooth dise rotor,
Apgain.  The pressure-loss terms may be written in terms of a loss
coefficient ' as

Ve
HL = (Apin + Apout) = 0 <_>
29

where V is the velocity in the inlet duct.

The simple friction-factor model proposed initially by the
fan/heat exchanger designer Dunkle [18] relies on the following
assumptions: (@) uniform pressures and tangential velocity dis-
tributions exist at stations 3 and 4, Fig. 2; (b) movement of the
disc in the fluid stream is at an overall effective velocity based on

- Nomenclature
A = area (when used in integral R, = ratio of mass flow in cool fluid ¢ = ratiow/y
expressions, €., f X dA, stream to thatin hot stream p = depsity
" T = absolute temperature 7w = momentum transfer efficiency
A represents surface area of T, = torque of rotor
the CV.) Ts = static temperat}u'e nr. = temperature effectiveness for
C = coefficient (defined as appro- Te = tottaI‘ (stagnation) tempera- cold fluid in heat exchanger
priate) UV = velcl)léiiy Ny = temperat-urfz effectiveness for
Cyy O = capafﬂty rate of hot an.d cold _Hij — rate of work done by' fuid in hot fluid in heat e?(changel
fluid streams, respectively " control volume nar = heat transfer effectiveness of
C.V. = control volume 7, 0,z = coordinates of cylindrical- heat exchanger
Dy = hydraulic diameter curvi linear system used 7 = shear stress )
f = friction factor s, vg, ¥; = cemponents of a general ve- . = dynamic viscosity
g = gravitational-field constant locity vector » in the cylin- v = kinematic viscosity
H = pressure head drical curvilinear coordi- A = final — initial
H; = pressure-head losses nate system AT = difference between disc-sur-
Mz = torque on disc a = angle be.tween V.elocity vector face and bulk-air tempera-
p = presswe of fluid leaving C.V. and tures
: . the normal to surface of the
Qcv = net rate of thermal energy in- V. Subscripts
put to C.V. « = proportionality sign 7 = inlet
Q = flow rate B = proportionality constant m = mean radius
r = radius v, w = angular velocities o = outlet
Re = Reynolds number (r’o/v) 8 = boundary-layer thicknesses r = radial
Rpr = heat transfer fraction ¢ = proportionality factor 0 = tangential
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Fig. 1 (a) rotor and finger

Photographs of smooth-disc rotor system:
seals; (b) rotor housing

the rotational speed of the dise at the radial mid-point of the
annular section (outer radius »,, inner radius ;); (¢) secondary
flows are unimportant. The use of these simplifying assump-
tions is to allow ease of calculation of the overall unit performance
without requiring knowledge of the internal flow structure.

A force balance in the axial direction required to find the pres-
sure increase then gives

392 / aucust 1973

Blankins P|a+e removes
to s'we four - duct

conFigur&rion.

'N__Disc

Shaft

L]

Spacer -

Metal/Felt Finger Seals

Fig. 2 (a) Two-duct fan configuration and four-duct fan/heat exchanger
configuration; (b) schematic side view of rotor and finger seals

p4A4 - 2731‘13 = Tpdn — Todo

where the subscripts 3 and 4 refer to inlet and outlet conditions at
the sections defined in Fig. 2.

To estimate the shear forces 7,, and 7,, it has been further as-
sumed for ease of analysis that cireumferential flow between two
rotating discs is equivalent to flow through a high-aspect-ratio
rectangular duct, from Dunkle [18]. For a rectangular duct, the
shear stresses and the friction factor are related by

V2
f=41/p <§;>

Using an equivalent-diameter concept, the friction factor in the
rectangular duet may be found from equations such as that pro-
posed by von Karman to relate friction factor f to the flow
Reynolds number Re

1 _
—= = 2.0 logye (Re\/f) — 08

Vi

Using these steps, the pressure-gain term Apga, may be caleu-
lated.

Boundary-Layer Model. Work on axisymmetric flow around a
disc rotating in a cylindrical housing points to an alternative
way of evaluating shear foreces on the rotating-disc surfaces. This
method actually involves the solution of the integral momentum
equations written here:
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v 3 1 % g ov,
r T f Vo2dz — - f oF de — f *V, dz
p 0 - pJy O 0 or
3 8 >V,
re LC f V. Vedz + f 72V, e
p 0 0 or

T'or solution of the equations, assumptions regarding the spatial
distribution of fluid velocities and wall shear stresses need to be
made. Dorfman’s assumptions regarding these distributions
are used here because of the success of their application to the
enclosed-disc problem.

Ve = erlw — v)(/8)/"(1 ~ 2/8)
Vo = r(w — I — /8)"/7 + ry

y \'+
To = 0.0225pV?2 <%)

By substitution of these expressions and their derivatives into
. the momentum equations, solutions may be found in the form

o U5+ 8)

1799¢ + 1582

0.0225%5 p*/o(ww — y\/5(1 + £2)*/mp/s
- i

where

Y )
=~ (119§ + 469
A = g (1198 )

The torque applied on the fluid by the rotating disc may be writ-

ten
T = f f rro-rdOdr
A

Once 79 has been evaluated, from the above ecalculations the
torque 7’ may be given quantitative form.
The work done on the fluid by one side of the disc is given by

W = Tw— %)

Substitution of this expression into the energy equation then
allows the overall pressure rise across the system to be evaluated.

For the present system, while geometric axisymmetry occurs,
flow quantities do show circumferential variations. For example,
the static pressure rise across the unit points to a circumferential
pressure gradient. There would consequently be a boundary-
layer-thickness increase in the circumferential direction, which
has not been taken into account in the formulation of the solution.
In the present model, the boundary-layer thickness is assumed to
e substantially constant for any one-flow condition tested in the
prediction of fan performance.

Introduction to the Experimental Program

It should be noted that the rotor and the housing of the test
system are of the fixed-geometry variety. As Daily and Nece
have shown, geometry does influence the flow around enclosed
dises, so that the results of the experiments can only be directly
extrapolated to systems that are geometrically similar. How-
ever, these same results can indicate whether the momentum and
heat exchanges between the rotor and the fluid for a smooth dise
device are, for example, comparable with the conventional bladed-
rotor turbofans and the commonly used shell-and-tube heat ex-
changers. .

To obtain a complete understanding of the momentum and
heat transfer around the rotating discs, it would be necessary to
nmap experimentally the temperature, pressure, and velocity fields

Journal of Heat Transter

in the dises, fluid, and housing. As the actual measurement of
local velocity, pressure, and temperature distributions would be
highly complex, attention has been focused on the bulk momen-
tum and heat exchanges afforded by the unit. The net momen-
tum and thermal energy transfers are obtained by measuring
dynamie and thermal quantities at the sections where the fluid
enters and leaves the system.

Some understanding of the internal-low structure has been
made possible by carrying out a qualitative study using a flow-
visualization technique. This has assisted in gauging the
validity of the hypothetical model of internal flow. F¥or reasons
of availability and convenience, the fluid medium studied was air
under normal atmospheric conditions. As it was possible to test
the multi-dise rotor system as a pure fan, or as a fan/heat ex-
changer, the main experimental program was for convenience
subdivided into four sections: (1) measurement of velocity and
temperature distributions in the fluid streams at entrance and
exit; (2) flow visualization to obtain a qualitative picture of the
internal-flow structure; (3) analysis of the system under operation
as a fan—flow and pressure measurements taken to obtain fan
characteristics; (4) analysis of the system under operation as a
fan/heat exchanger —measurements of bulk heat exchange across
the fluid streams to obtain heat exchange effectiveness.

Experimental Program

Fan-Mode Operation. T'o realize the full blowing capacity of the
fan, one set of inlet and outlet sections was blanked off, Fig. 2(a).
In this two-duct configuration the induced air travels almost one
complete revolution before being expelled from the rotor. A
schematic arrangement of the disc rotor and finger seals is also
shown in Fig, 2(b). Duect velocity profiles were obtained using a
traversing pitot tube connected to a Prandtl micromanometer.
It should be noted that the duet equivalent diameter was ap-
proximately 25 em (10 in.) and that consequently fully developed
flow conditions would not be expected at the measuring station,
which was approximately six diameters from the outlet. A ven-
turi air meter designed and manufactured to standard specifica-
tion was installed to measure the volume flow rate of the air, and
the pressure rise across the unit was monitored by a total pitot
tube at the entrance and by a static wall tapping at the exit from
the unit. Control of the flow was achieved by a sliding vee
baffie plate in the exit duct. Fan characteristics were taken for
several rotational speeds. .

Heat Exchanger Mode Operation. The full four-duct arrangement
was used for these tests by removing the blanking plates and in-
serting the finger seals and the separation pieces. In addition, a
heater-duct section was attached to the top ducting. This heater
section was capable of providing up to 12 kw to one air stream.
Temperature profiles were obtained using half-shielded copper-
constantan thermocouples mounted on a micrometer traversing
attachment.

Flow Visualization. Some early flow-visualization tests were
made to chart the air-flow pattern between the discs on the rotor.
One of the spun aluminum dises was removed and replaced by a
clear acrylic disc of the same dimensions. The end cover plate
was also replaced by a sheet of clear acrylic. Flow patterns were
obtained photographically using a high-speed Polaroid film and a
flash-bulb arrangement to illuminate the area between the discs
through a slot cut in the housing. Smoke was generated in a
conventional way and injected through a small probe at various
points around the rotor housing.

Measurement Techniques

Pressure Measurements. All static-pressure measurements were
taken using square-edged wall tappings installed normal to the
wall, and all dynamic pressures were taken using pitot tubes, as
the response time of the instrumentaticn was relatively unim-
portant for the steady-state testing carried out.
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T T ) Temperature Measurements. Talf-shielded thermocoupleg made
—f - top of EjUCt — o= —| from copper—constantan wire 0.127 mm (0.005 in.) in diametey
~ N were individually calibrated and used to measure the tota] fluig
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\,\ N temperature at the required stations.
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Discussion of Experimental and Theoretical Findings

} The velocity profiles at the inlet to and the outlet from the
+ fan/heat exchanger are shown in Fig. 3. These velocities werp
. measured along the vertical medians of the inlet and outlet duetg,
/ The inlet velocity profile exhibits characteristics similar to those
+ 0 —— in normal duct turbulent air flow. As the measurement statiog
/ 490 rpm 01290 rpm is only approximately three diameters downstream from the gy
. /T | 52 intake point, a fully developed profile would not be expecteg,
o o8 17 16 The outlet velocity profile contrasts quite radically with the unj.
FLUID VELOCITY - m /sec form distribution of the inlet one: in the region away from the
’ walls the bulk fluid travels with a velocity that varies linearly
20 : , , : with the distance from the horizontal surfaces of the duct. It ig
1— top of duct T PSS :F— known that the dropoff in velocities close to the duct walls is in~
) N \ duced by the decelerating effect of the duct boundary on the
o]
/

—
N

l

~0-0~0-0 —0——0~

i

DISTANCE FROM BASE - ctn
®

[«

s
[ep]

flow. However, the linear velocity variation in the outlet profile
would be a direct result of the rotor. This implicitly ratifies an
/ assumption made in the modeling procedure that the fluid he-
K O/O tween the discs travels with a tangential velocity component tha

v/ increases linearly with radial distance from the disc center. The
difference in these bulk-velocity profiles also indicates that the
rotor unit transfers energy to the fluid by reorientation of the
. kinetic-energy distribution in the inlet and outlet flows as well as

o J
rpm J 1290rpm by increasing the pressure of the outgoing fluid.

d

5 5 4*/‘ 56 | - 1'2 T Flow-Visualization Results
FLUID VELOCIT‘Y -m /seé From our point observations of the flow using the smoke probe,
a general qualitative picture may be drawn of the flow structure.
Fig. 3 Velacity profiles: (g} fan inlet; (b) fan outlet When operating ab low load conditions on the fan characteristics,
it may be said that the air at each point between the discs travels
in the same direction as the discs. Here a radial distribution of
the tangential air velocity in the form Vg = Bwr would be an
i , appropriate assumption. At the other extreme, under high loads,
BOUNDARY LAYER MODEL—'=~  considerable backflow occurs near the hub of the rotor. For
BASIC .MODEL cremede these loads the distribution of Vg previously assumed would be
erroneous, A further point worth noting is that the turbulent
ERTL. POINTS| e nature of the flow was clearly illustrated, as at a short distance

-

s
~+C
(8]
s
o

DISTANCE FROM BASE - cm
@
K

S
|

S16
g from the probe turbulent diffusion so diluted the injected smoke
g that the definition of its path became impossible.
12
v}
1 . 't
o N Fan Characteristics
gﬁz 81 RPM = 910 DN The basic fan characteristics obtained at various rotor speeds
> ATM. PRESS. = 765mmH‘g, \}' are presented in Fig. 4. The drop in pressure rise across the unit
< o with increasing volume flow rates is evident. With increase in
w At = 0
SIATM. TEMP =16.1°C ° rvotor speed it is possible to extend the operating range of pressure
' ain and flow rate. e chain dotted line represents the predicte
) 1 ’ gain and fl The chain dotted line rep he predicted
0 performance based on the turbulent-boundary-layer model, and
0 pA 4 6 ) 8 10 12 Y% it is interesting to note the increased divergence of theory and
VOLUME FLOW RATE - m3/sec practice in the low-flow-rate range. Because of the radial flow
and backflow shown in the flow-visualization tests, the assump-
A . tion of solid-body flow between the discs would not be valid
N I BOUNDARY LAYER — »"—‘ under the low-flow (high-load) condition. Furthermore, the in-
2 . BASIC MODEL- creased pressure gradients would allow an increasing boundary-
g 3 N EXPTL. POINTS e-ﬁ layer thickness, which would depend on both the tangential and ra-
£ . AN l dial coordinates of the point in question. Under the high-flow
vo2f =1290 — N — (low-load ) conditions, on the other hand, the tangential velocity of
9[ RPM= o'\ the fluid with little or no vadial component of velocity and the
L_f—_" , ATM. TEMP.=13.9 Ce'\'\ linear outlet velf)city profiles lend gredibility tf’ .the assumption of
- -GS = — o solid-body rotation of the bulk fluid. In addition, the low pres-
Z ATM. PRESS. =765 mm. sure rise closely satisfies the assumption of negligible tangential
I R :
! pressure.
OO 4 8 12 16 20 In the same figure, the solid line indicates the performance of
. 3 ! the unit as predicted by the basic friction-factor model. It can
VOLUME FLOW RATE - M¥/SEC be seen that the correlation of the experimental results is reason-
p
Fig. 4 Theoretical and experimental fan characteristics able, especially at the higher volume flow rates.
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Trom the flow-rate efficiency curves, Fig. 5, it is clear that as
expected, the efficiency of momentum transfer is low, with th.e
maximum efficiency being of the order of 14 percent (at the maxi-
mum speed tested). The torque available at the disc to drive the
aiv through the unit has been calculated from the hypothetical
flow model.

Heat Exchanger Characteristics

The results of the experimental work aimed at assessing the
heal exchange capability of the unit are tabulated in Fig. 6. The
effectiveness is shown in two forms: the standard temperature
effectiveness 7y and the heat exchanger effectiveness nur.

For a perfectly insulated heat exchanger, one may write

ColToz — Tar) = C(The — T'm)

o that the overall heat transfer effectiveness can be simultane-
ously evaluated from the equations

Co (Tea — Ta)
Cmin (Thl - Tcl)

Nur

or

Cc . (Thl - ThZ)
Cmin (Thl - Tcl)

NHT

Because of the heat losses from the present system, the equiva-~
lence of the two defining equations is not justified. As the main
interest in this series of tests has rested on the thermal energy
transfer to the cold stream, the first equation will be used to
evaluate nur.

Although it is realized that leakage of the working fluid through
the flexible seals would affect the test results, it is felt that this
leakage flow would be negligible because of the small available
pressure differential. :

It can be seen from the tabulation given in Fig. 6 that the heat
exchange effectiveness ngr varies from a minimum of 26 percent
for the test run at 1030 rpm (R, = 120) to a maximum value of
40 percent for the test run at 1030 rpm (R, = 0.50). The varia-
tion of nur with rotational speed for any fixed value of R, is
slight, over the range of speeds tested, but there is a marked de-
crease of ngr with increasing R, for all the speeds tested.

As can be seen from the curves plotted in Fig. 6, however, there
appears to be a minimum point for each of these curves in the
region where R, varies from 1.0 to 1.2, after which there is a re-
covery of ggr with increasing R2,,.

] | f
(o]

/.\. /’\

]2 (] 1

/7 K
i \ °

52 e ./\ Py
> - +
2 / / Vi
S L/ /540 rpm S910rpm °1290rpm
L + © o
N
= 4
&

0 : ,

0 4 8 12 16

VOLUME FLOW RATE - M3/SEC

Fig. 5 Flow rate versus efficiency curves
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TESTS RESULTS - HEAT EXCHANGE EFFECTIVENESS

Rotor Speed R N .
(xpm) m 1? Te TI Th ‘q HT
700 i .33 .33 .33
700 .9 .28 N .36 .28
100 1.27 .24 .38 .31
Av. 700
1020 .50 : .40 .32 .40
1020 . 80 .29 .36 .29
1050 1.20 .21 .39 .26
1030 1.32 .21 .37 .28
Av. 1030
1320 .48 .37 .32 .37
1310 .97 .29 .36 .29
1300 1.13 .26 .36 .30
1310 1.28 .25 .33 .32
Av, 1305
1570 . b4 .39 .31 1 .39
1570 .85 .32 .34 .32
1680 1.13 .27 .33 .81
Av, 1570
1]HTZ
40 ‘\ dpend700-+PR
\ 8- 1030
N e 1305
¥% 1570

' i N\
Eétwc:lope: * \\\\ \ N
32 \ \\\ LS. 7
2 NG A
N

4 +6 *8 0 12

24

14
Rm

Fig. 6 Heat exchanger test characteristics -

Gonclusion

The test unit functioned successfully in the dual role of a fan
and a heat exchanger. Under the test conditions imposed, the
maximum efficiency as a fan was of the order of 14 percent, and
the maximum effectiveness as a heat exchanger was of the order
of 40 percent. It is clear that in either individual capacity the
efficiency figures are relatively low. It should be stressed that
the main advantages of the unit lie in the design simplicity and
the compact nature of the plant, which is capable of assuming the
combined duties of a heat exchanger and two fans (or pumps).

The unit under test was built purely to assess the feasibility of
operation and ease of construction of the composite shear fan /heat
exchanger. No particular attention was paid to obtaining a
high-performance unit. Some possible improvements would in-
clude the following: (1) inereased hub-to-disc diameter for the
rotor to take advantage of the high shear conditions toward the
periphery; (2) increased number of discs per unit length of shaft
to provide a greater shear area; (3) improved finger seals; (4)
consideration of the advantages to be gained by multi-staging
near the hub under high-load conditions. This flow phenomenon
may well account for some of the discrepancy between the experi-
mental and the predicted results. The best correlation was ob-
tained using a model based on turbulent-boundary-layer theory,
although the simpler model developed may well be adequate for
most engineering purposes.
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Experimental Measurement of Heat Transfer
to a Cylinder Immersed in a Large
Aviation-Fuel Fire

Presented are the results of an experimental effort to quantify some of the heat transfer
parameters pertaining Lo the luminous flame that results from the uncontrolled combis-
tion of an 8-ft X 16-ft pool of JP-5 aviation fuel. The temperature and effective total
radiant heat flux, both as temporal mean quantities, were measured as functions of
position within the quasi-steady burning flame as it existed in @ quiescent atmosphere.
A grid of infrared rodiometers and radiation-shielded thermocouples served as the
primary sensing equipment. A determination was made of the perimeter-mean con-
vection coefficient applicable to @ horizontally oriented, smooth, 8.530-in-dia circular
cylinder tmmersed at a particular location within the JP-5 flame. The value of this
coefficient was the result of a solution fo o nonlinear, inverse conduction problem in
which the convective heat flux af the cylinder surface was estimated by utilizing a measured
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temperature history inside the cylinder.

An expression relating this coefficient to more

general flame/cylinder systems was developed.

introdu‘ction

THE IMMEDIATE GOAL of the research effort was to
gain practical information about the heat flow boundary condi-
tions applicable to an object enveloped by a large, luminous
aviation-fuel fire. The present investigation dealt specifically
with the luminous flame resulting from the uncontrolled combus-
tion of an 8-ft X 16-ft pool of JP-5 jet fuel. This fuel has a
kerosene base, and its composition is defined in the military
specifications labeled MIL-T-5624Q, 25 September 1962, and
MIL-T-5624G amendment 1, 21 November 1966. Some of the
properties of JP-5 are compiled in [1].2 All the experimental re-
sults of the testing program have application to flames in quiescent
atmospheres. The first phase of experimentation included the
measurement, on a temporal mean basis, of the temperature and
the effective total radiant heat flux, both as funetions of position
in the flame. The second phase concerned the determination of

! Portions of this paper were based on an MS thesis submitted by
the first author to the University of Pittsburgh, Pittsburgh, Pa.

? Numbers in brackets designate References at end of paper.
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the perimeter-mean convection coeflicient relevant to a smooth
8.530-in-dia circular cylinder immersed at one particular location
and orientation within the flame.

The choice of instruments and the configuration of the test
vehicles were based upon the premise that for flames in a quiescent
environment, quasi-steady burning exists during the relatively
long time interval between the end of flame buildup and the be-
ginning of flame exhaustion. As used previously, the term quasi-
steady burning implies that from a practical standpoint the tem-
poral means of certain flame properties can be considered essen-
tially invariant with time.

Because of the work of others [2-4], it was also assumed that
with an 8-ft X 16-ft fuel pan the regression rate of the fuel surface
during the quasi-steady burning interval would approximate the
burning rate applicable to a larger fuel pan. Thus the purpose
of the testing was to determine some thermal energy transport
characteristics that would apply to one particular size of uncon-
fined JP-5 flame. However, it is believed that the results might
also be useful in describing larger JP-5 flames.

Mathematical Model

Consider an infinitely long, spatially fixed, circular cylindrical
tube that is oriented within a moving fluid medium such that the
flow direction is normal to the axis of the cylinder. Both the
fluid approach velocity and the fluid free-stream temperature are
constant. Diffuse thermal radiation of constant intensity is in-

auGust 1973 / 381

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



cident on the entire outer tube boundary. During the limited
time interval in which the cylinder is immersed, assume that one
perimeter-mean surface heat transfer coefficient can be used in
quantifying the convective mechanism of heat transfer between
the fluid and the outer cylindrical surface. Regard the inner
tube surface as being insulated such that no heat flows across this
boundary. At some particular time shortly after the initial
immersion of the cylinder, the wall temperature distribution of
the tube is known. Finally, consider only radial heat conduction
as having significance to the problem.

Since the radii of curvature of the inner and outer tube bounda-
ries are relatively large, the partial differential equations describ-
ing the foregoing problem can be satisfactorily constructed on the
basis of a cartesian coordinate system. Thus a flat-plate analog
can represent a section of the cylindrical tube, and the governing
equation can be written as

10k OT

1 oT _ 1okor
a ot koxdx

oy
ox?

(1)

The boundary conditions, with heat flow into the plate defined as
positive, are as follows:

AT
at © =0, —k Fonliad L el + h(To — Ts)  (2)
:c
oT
at z =10 — =20 3)
ox
The initial condition is
at ¢t =0,7T = T(z); 0<ax <l 4)

To facilitate a determination of the transient temperature dis-
tribution within the flat-plate analog, equations (1)-(4) can be re-
cast into a simple finite difference system which allows an explicit
method of solution. The equations comprising the difference
formulation can be found in [5]. In the difference scheme, the
width of all interior sub-volumes is Az, and the time inerement is
A¢. The initial temperature distribution becomes a set of dis-
crete temperatures, T';,0, which represent the temperature of each
plate node point at time ¢ = 0.

1If for a certain situation the parameters k(T), a(1"), € @, ¢,
Tw, and T'; 0 are all known, and if Az and At are chosen such thata
proper stability criterion is maintained, a finite-difference solution

for some particular Lime £* can be determined once a value foy the
conveclion coefficient is established.  Of course, such caleulataq
nodal temperature distribution would be erroneous unless, by the
remotest chance, the value chosen for the convection coefficient
happened to be that particular one having application to the
situation under analysis. However, if at time ¢* the tempery.
tures of several node points within the flat-plate analog are ex-
actly known, the degree of disparity between the knéwn and cop.
puted temperatures at the specified nodes can be used as the g-
terion for evaluating the applicability of the estimated value of p,

The degree of disparity, at any specific time ¢*, between the
mathematically predicted and the known temperatures at fou,
monitor node points can be quantitatively expressed as

4
N = Z (Te; — T ni)? (5)
=1
At any time ¢*, the plate temperature distribution calculated by
the finite-difference technique is entirely dependent upon the
guessed value of & only after all other system parameters have
been specified. For this special case, the degree of disparity 7
can be thought of as a function of % alone; that is, 7 = 5(h).
Thus, to identify the convection coefficient having application to
a specific situation, it is necessary only to determine the value of
h that minimizes n(h).

In the solution to this optimization problem, the true minimum
will not be determined; rather, it will be established that the true
minimum lies within an uncertainty interval either to the right
or left of the calculated minimum. By using the Fibonacci search
technique devised by Kiefer [6], the interval of uncertainty is
reduced to less than 1 percent of the original search interval after
the placement of only 11 search points.

Experimental Apparatus and Procedures

The construction of the fuel pan that was used in both phases
of the testing program is indicated in Fig. 1. Also, the defining
coordinate system to which all the experimental results will be
related is shown in this figure.

A carriage was constructed to transport the test-instrument
packages into and out of the flames. Instrument packages
mounted on this carriage included equipment to sense the flame
temperature and the radiant heat flux. Flame temperatures
were measured by thermocouples constructed from standard-

Nomenclature

¢ = total hemispherical absorptivity qe approximate convective heat flux {* = g particular time

b = a constant whose value depends ¢ir incident total radiant heat flux Ve = free-stream fluid velocity
on cyl nder profile and Reyn- ¢- = approximate net total radiant X = acoordinate defined in Fig. 1
olds number heat flux 2z = depth within the flat-plate analog

h = convection or surface heat trans- Re = Reynolds number, LV.ps/u, Y = acoordinate defined in I'ig. 1 -
f('il' coeflicient, . T temperature Z = acoordinate defined in Fig. 1

fin =P eg;:;“?;gﬁ??ﬂgg l‘t,(fiflzgtlii?ef; Te; any one of the 001nput"er~calcu~ Aa :‘ t.hern'qal .diHUSiVitY

biect to the transverse flow Iate('l .valges representing, at a t = tune]r}mement

zlfla,Jﬂui d specific time, the tel.nperature Az = gpace increment

k = thermal conductivity of a solid of a monitor nofle point within = total hemispherical emissivity

k; = thermal conductivity of a fluid at the centl'a.lvsectlon wall n = degree f’f disparity, defined in
the film temperature T a set of d.lscrete tfen'll‘)emtures equation (5)

L = diameter or width of a cylinder representing  an [initial tem- p; = density of a fluid at the film tem-
taken perpendicular to the flow perature dlSLl‘lbLl.thll perature
direction Tons any one of the monitor node tem~ 1y = absolute viscosity of a fluid at the

! = thickness of the flat-plate analog peratures measured within the film temperature

n = an exponent whose value depends central-section wall at a specific o = Stefan-Boltzmann constant
‘on cylinder profile and Reyn- time ¢ = aratiogivenby L/Lo
olds number 7. = suwrface temperature of a solid

Pr; = Prandtl number of a fluid at the T free-stream fluid temperature Subscripts

film temperature t =
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Fig. 1 Coordinate-system definition and fuel-pan construction

grade, 28-gage chromel-alumel wires mounted in !/gin-dia stain-
less-steel sheaths and insulated with magnesium oxide. They
were shielded against radiation losses by three concentric, open-
ended, circular cylindrical tubes fabricated from 0.003-in-thick
stainless-steel foil. The radiant heat flux within the flame was
measured by Gardon-type radiometers [7). The sensing element,
a circular constantan foil, was coated with colloidal graphite and
was recessed into the copper body so0 as to give a 20-deg viewing
angle. A l-mm-thick sodium chloride crystal was located
directly in front of the foil. This crystal effectively eliminated
the response of the sensor to convective heat flux while allowing
infrared radiant energy in the 1- to 15-y wavelength region to
pass readily through to the sensor. When a radiometer was used
in the flame environment, soot-particle precipitation onto the salt
window was prevented by purging the viewing portal with a very
low velocity nitrogen gas stream. Each radiometer was cali-
brated both before and after a field test in order to determine
whether or not its sensitivity had been altered by the flame en-
vironment. This procedure revealed that no important changes
in radiometer sensitivities were caused by immersion in the
flame.

The configuration of the radiometers and thermocouples
mounted in instrument packages that were used in the first
experimental phase is described in [5). The experimental ap-
paratus used in the second testing phase consisted of an ex-
tensively instrumented three-component cylinder.

The specific funetion of the central section of this cylinder was
to respond to the JP-5 flame in a manner analogous to the hypo-
thetical response of the infinite cylindrical tube when that tube is
subjected to the moving fluid medium described in the mathe-
matical model. The wall thickness, outside diameter, and length
of the type-304 stainless-steel central section were 0.840, 8.530,
and 12.0 in. respectively. To provide the central section with a
surface having an emissivity and absorptivity each equal to 0.99,
it was coated with a layer of JP-5 soot having a thickness of 0.001
t0 0.002 in. At each end of the central section there was an in-
sulation plug that thermally isolated the central section from
the instrument sections.

To determine temperature~time histories, four sets of monitor
thermocouples were embedded within the central-section wall.

Journal of Heat Transfer

The thermocouple junctions of each set were located at the outer
cylindrical surface and at 0.08, 0.42, and 0.60 in. from the outer
boundary. The four thermocouple sets were angularly removed
from each other by 90 deg. Premium-grade 30-gage chromel—
alumel wires were utilized in the construction of the monitor
thermocouples (see [5] for fabrication details).

The instrument sections were designed to perform two specific
functions. First, they were to yield the radiant heat flux that
could be considered incident on the surface of the central section.
Second, they were to indicate the termaperature that could be
considered to apply to the local flame region about the central-
section periphery. Each instrument section contained four
radiometers and four lame thermocouples.

When the completely assembled test cylinder was in its cor-
rectly deployed position, the cylinder was parallel to the long axis
of the 8-ft X 16-ft fuel pan, and its centerline was 4 ft above the
initial fuel surface. Also, the axial midpoint of the cylinder was
directly above the geometric center of the fuel pan. As were the
instrument packages used in the first phase of the experimental
program, the test cylinder was introduced into a fire 90 sec after
fuel ignition.

Results and Analysis

Some results obtained from the field tests performed in the first
phase of the experimental program are presented in Figs. 2 and 3.
Flame characteristics in the X~Z plane for ¥ equal to 8 ft are
shown in Fig. 2. In Fig. 3, flame characteristics in the Y-Z plane
at X equal to 4 ft are presented. To construct the isotherms in
these figures, it was first assumed that the flame temperature
varied linearly between those points where the temperature had
actually been measured. Then the assumption of symmetry was
invoked, In each figure, the temperature and total incident
radiant heat flux, both as temporal mean quantities that were
determined by a radiometer—thermocouple pair, are indicated for
particular spatial locations.

Although it would have been highly desirable to have computed
each temporal mean value on the basis of experimental replication,
the information associated with any particular spatial location was
determined within the quasi-steady burning interval of a single
pan burn. The time periods over which the instrument outputs
were averaged ranged from a minimum of 20 sec to a maximum of
120 sec. If the flame temperature and incident radiant heat flux
relevant to a given point and determined from a 2-min time span
were designated £ and RE, respectively, then the temperature and
flux for the same point but averaged over any 20-sec interval
within the 120-sec time period would be within B =+ 0.02R and
RR £ 0.05RR, respectively.

Flame characteristics in the X—Z plane for Y equal to 3, 4, 6,
and 12 ft are presented in [5]. The weather conditions during the
tests were as follows: wind was nonexistent; relative humidity
was 100 percent; ambient temperature ranged from 54 to 73 deg
F; barometric pressure varied between 29.77 and 30.12 in. of
mereury.

Within the 1500 deg F envelope of the test flames, the magni-
tude of the radiant flux incident on the face of a radiometer was
nearly equal to the flux that would be given by a blackbody
radiator at the local flame temperature as measured by the
thermocouple in the neighborhood of the radiometer. For each
of the investigated points that had a temperature 1500 deg F or
higher, the ratio of the measured flux to the calculated flux was
computed. If perfect correlation between these two quantities
had existed, all the ratios would have been unity. However,
good correlation did exist and 21 of 24 points had ratios that fell
within 1.00 =+ 0.27.

Observation of the oscillograph records indicated that within
the flame volume bounded by the Z = 3-ft plane and the Z = 9-ft
plane the deviations from the means of the measured flame proper-
ties were noticeably periodie. The oscillatory aspect of the test
flames was also visibly apparent in this region. Here, intensely
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face of the central section. However, because an unavoidable

slight surface wind caused an unsymmetric flame/cylinder system,
4 this expectation was not realized. A single wall temperature
distribution could not satisfactorily characterize the thermal

IAPPROXIMATE LUMINOUS|
| FLAME BOUNDARY

-
E 101 ] response of the central section at a particular time after flame
- o J envelopment. Hence, separate convection coefficients applicable
- o two different time intervals were determined for each of the
E 8r 7 locations A, B, C, and D that were identified in Fig. 4. These
€ .l _ | time intervals were from ¢ = 0to¢ = 20 sec and from ¢ = Oto{ =
@ 150 sec.
§ 5 wino DIRECTION 7 The computer-optimized temperature distributions that best
vl — - CYLINDER | fit, the monitor node temperatures at { = 20 sec are shown in Fig,
‘(;; B / 6. Adjacent to and responsible for the curves in this figure are the
2 4F c A . values of the convection coeflicients that minimized y(h) for each

Nk b 1 particular central-section location. To determine the two
e perimeter-mean convection coefficients applicable to the central
5 2 1
¥

Tabfe T Incident radiant heat fluxes and flame temperatures pertinent
to specific test-cylinder surface areas

0 / L L i L 1 t L I
- o] i 2 3 4 5 6 7 8 S |0
PISTANCE X IN FEET Location Measured Incident Measured Flame
Reference | Radiant Flux ~(q, ). | Temperature ~ (T_)
Fig. 4 Position of test cylinder in wind-transiated flame L:tizr IBTU/ffzsec] (qlr p o]

Results for the 0 to 20 second time interval

burning balls of fire regularly appeared. A frame-by-frame A 12.71 1658
analysis of the motion-picture records indicated that the gross B 4.20 1281
upward velocity of the fire balls could be estimated as being
between 12 and 18 fps. - ‘ ¢ 1.56 1087

It is believed that the primary results obtained from the second D 9.08 1474
phase of the experimental program have relevance to flames in a
quiescent environment, even though the field test was conducted Results for the 0 to 150 second time interval
in a very slight surface wind. In Fig, 4 the position of the test A 11.67 1623

cylinder in the wind-translated flame is schematically shown.
The weather conditions at test time were as follows: wind was 1 B 4.00 1266
mph; relative humidity was 100 percent; ambient temperature
was 38 deg I'; barometric pressure was 30.21 in. of mercury.
During flame envelopment, a soot deposit of about 0.001 in. D 8.71 1472
developed on the entire outer surface of the test eylinder. Hence
the JP-5 soot layer on the central section had an average final

C 1.48 1114

thickness of slightly more than 0.002 in. 240 —

The point in time that was considered ¢ = 0 actually oceurred LOCQT'ON CuRVvE SYM.B o
20 sec after the test cylinder reached its correct position about the 320 - B —eeme—emm .
fuel pan. Data from the radiometers and flame thermocouples 300 c —_———— *
were analyzed for two specific time intervals, 1 = 0 to ¢ = 20 sec D mmommmeee- A
and i = 0to¢ = 150 sec. By taking the appropriate averages of 280 ~
the results yielded by the individual flame thermocouples and
radiometers, it was possible to determine the flame temperature p 260 - T
and incident radiant heat flux that could be considered applicable ¥ 240 - 4
to each of the four areas on the central section where the wall E
temperature was being monitored. These four specific areas are T 220 -
indicated in Fig. 4 by the letter symbols A, B, C, and D. For w i
both time perieds of interest, Table I shows the incident radiant i 200 -
heat flux and flame temperature relevant to each of the four Z 180 - =
central-section surface areas. B

Shown in Fig. 5 is the wall temperature distribution at ¢ = 0 z 60 7
for each of the four important central-section locations. The W a0 | _
symbols in the figure represent, the temperatures given by the g
central-section monitor thermocouples; the curves represent E 120 |- b
extrapolations through the symbols. In order to establish the W
four sets of points through which these curves could be drawn = 100 |- i
with reasonable ease and confidence, the surface temperature at " ek .
location B and the four temperatures at the inner cylindrical
swface were determined by careful physical-mathematical 60 - 7
estimation. A detailed description of this procedure can be 40 T R S R SR N
found in [5]. -4 o0 41 2 3.4 5 6 T B8 9

It had been anticipated that in a quiescent environment and at ¢ DEPTH WITHIN CYLINDER WALL IN INCHES
any given time the test deployment scheme would have yielded an Fig. 5 Initial temperature distribution
essentially uniform total heat flux passing through the outer sur-
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section, the values of h relevant to each of the timie intervals were
averaged together. This operation yielded 9.88 and 8.07 Btu/hr-
ft>-deg I fot the 20-sec and 150-sec time periods respectively.
However, during the small time interval, the actual test circum-
stance was definitely more like the hypothetical situation de-
geribed in the mathematical model. Hence the value of 9.88
Btu/hr-ft>-deg F is considered more reliable.

To put the ealeulated values of the average convection coeffi-
cients in proper perspective, an investigation was made of the
relationship between these coefficients and other average coeffi-
cients deterthined for an 8.530-in-dia circular cylinder having
certain individual gases flowing normal to its axis. Each gas was
considered to be undergoing no chemical reactions. The ap-
proach veloeity of the flowing gases was considered 15 fps. This
was the average of the visibly determined gross upward velocity
of the previously desecribed fire balls. The general correlation
equation (from [8]) that was used to determine the comparative
perimeter-mean convection coefficients was

bl L Vop,\®
%1120 <—~l’—’) (Pr,)/s 6)
ky iy

For circular cylinders, b and n are, respectively, 0.174 and 0.618,
when Re is between 4000 and 40,000; for Re between 40,000 and
250,000, b and n ave 0.0239 and 0.805, respectively.

The gases used for comparative purposes were chosen because
they were felt to be representative of the kinds of gases that
could have been detected in the local flame volume surrounding
the central section of the test cylinder. Iach of these gases
considered in the comparison had its properties evaluated at a
pressure of 1 atm and & temperature of 812 deg F. This tem-
perature was the time-averaged film temperature pertinent to the
entire central-section surface during the 20-sec time interval.
The computed values of the perimeter-mean convection coeffi-
cients associated with the various gases are presented in Table 2.

In order to prediet accurately the thermal response of an object
immersed in a luminous uncontrolled JP-5 flame, it is advisable to
consider that both radiation and convection have significance in
the overall mechanism of heat transfer. To emphasize this
statement, a comparison was made utilizing the approximate
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Fig. 6 Temperature distribution at# = 20 sec
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Table 2

Chemical Substance by Chemical Substance by
Formula [BTU/hr £12°F]| Formula m
_ dry air 2.80 CoH1g 2-methylhexane 14,65
N2 nitrogen 2,75 CBHle octane ' 15,18
co carbon monoxide 2.69 CSHIB iscoctane 16.21
HZO water vapor 3,48 C8H18 2-methylheptane 16.05
CHA mech‘ane 5,59 (32}{2 acetylene 4,39
CZHG ethane 6.80 CZHA ethylene 5.91
C3Hg propane 8.29 CSHB propylene 7.1%
C4H10 butane 10.18 C()H& benzene 9.96
C4H10 isobutane 10.59 CH40 methanol 4.88
CgHy, pentane 12.24 CoHg0 ethanol 6.62
"-5“12 isopentane 12,07 C3HBO propanel 8.30
CeH1y hexane 13.08 C4H100 butanol 9.58
C6H14 ischexane 13.14 ’33”60 acetone 7.14
CHie heptane 14.15 c Qo sthylene oxide 5.28

convective and net radiant heat fluxes, ¢. and ¢, that passed
through the central-section surface at locations A, B, C, and D
and acted during the 20-sec time interval. To calculate each ¢,
and ¢, the following equations were used:

o= [Tm B (Ts (t=0) +2Ts (t= tem)} o

100 [y - (LT O ) ]

The term 7’5 (¢ = 0) represents the initial surface temperature at
one of the central-section locations; the term 7's ({ = fena) repre-
sents the computer-optimized surface temperature for a given lo-
cation at ¢ = 20 sec. The ratios ¢./(¢. + ¢r) applicable to
locations A, B, C, and 1D were found to be 0.173, 0.483, 0.628, and
0.275, respectively. Results similar to these but relevant to
cylindrical ordnance enveloped by large JP-5 fires have also been
determined by the authors and are availablein [9].

Discussion of Errors

For each field test performed in the two-phase experimental
program, assume that temperature sensors and total incident
radiant heat flux indicators, both optimally accurate instruments,
had been used in place of the radiation-shielded thermocouples
and the Gardon radiometers. It is believed that the ‘‘true”
temporal mean temperatures and fluxes indicated by such optimal
instruments would have been within 45 percent and +10 percent
respectively of the time-averaged local flame temperatures and
total incident radiant heat fluxes indicated by the instruments
actually employed. The statement of error about the temporal
mean heat-flux measurements is made with the realization that
the calibration technique allowed a radiometer to respond
accurately only to those test situations where diffuse radiation of
constant intensity was uniformly incident on a radiometer face.
For all the points within the lwhinous flame envelope that were
investigated during the first testing phase, the average percentage
standard deviations associated with the temporal mean tempera-
tures and fluxes were 6 and 30 percent, respectively. In the
experiment to determine convection coefficients, the average
percentage standard deviations associated with the temporal
means yielded by individual flamhe thermocouples and radiometers
were respectively 2 and 37 percent for the 20-sec time interval and
6 and 38 percent for the 150-sec time period.

The finite-difference formulation used in determining the con-
vection coefficients applicable to the four central-section locations
did not consider the angular heat conduction within the cylinder
wall. Hence some error in the local values of the convection
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coefficients was introduced by forcing the computer-optimized
temperature distributions to be functions of only one space
dimension. The net quantity of heat leaving or coming to a
given location via angular conduction governed the sign and
magnitude of the error associated with the calculated value of %
app'icable to that locality. However, the errors in the two
caleculated values of the perimeter-mean convection coefficients
were much less dependent upon the neglect of angular heat
conduction in the central-section wall. This was because the
artificially high and low values of the computer-determined local
coefficients tended to compensate one another when they were
averaged together to get each perimeter-mean convection coeffi-
cient.

In order to establish some type of confidence limit for the best
value of the perimeter-mean convection coefficient, a perturbation
analysis was conducted. The objective of this analysis was to
determine logical high and low values of & applicable, during the
20-sec time interval, to each of the four central-section locations.
Pursuant to this goal, the independent variables relevant to a,
given locality and the 20-sec time period were perturbed from
their best experimental or literature values by amounts equal to
plus or minus their uncertainty intervals. To be consistent in the
analysis, the odds were considered 5 to 1 that the true value of
each independent variable would have been within m =+ w, where
m represents the best value of any particular independent variable
and w represents its uncertainty interval. '

To determine the limiting values of & for a given location, the
appropriate set of perturbed independent-variable values was
read into the computer program as data. The computer program
then minimized the degree of disparity between the perturbed
monitor node temperatures and the geometrically similar mathe-~
matically predicted nodal temperatures. The magnitude of A
that accomplished this optimization process became a limiting
value for the convection coefficient applicable to the given loca~
tion. Averaging the four low and the four high local coefficients
vielded 5.17 Btu/hr-ft-deg F and 15.80 Btu/hr-ft>-deg F, respec-
tively. Thus the limiting values of the perimeter-mean convec-
tion coefficient relevant to the 20-sec time period can be con-~

veniently expressed as 9.88 392 Btu/hr-ft2-deg F.

Possible Generalizations

It would be beneficial to be able to relate the best experimental
value of the perimeter-mean convection coefficient to flame/cylin-
der systems more general than the one investigated. In particu-
lar it would be of considerable advantage to relate this coefficient
to various sizes of circular and noncircular cylinders that might
be immersed within JP-5 flames somewhat larger than the test
flame. It will be shown that such extrapolations are indeed
possible, but only after certain very restrictive assumptions have
heen made.

There is some evidence [10-13] that equation (6), with the
appropriate sets of n and b values, should adequately correlate
the data for the convective heat transfer between an immersed
cylinder and a flame region having no substantial dissociation—
recombination reactions. Hence, assume that simple convection
theory, as represented by equation (6) with b equal to 0.0239 and
n equal to 0.805, is applicable to the system composed of the
circular test cylinder and the luminous JP-5 test flame. This
assumption implies that the Reynolds number for this particular
situation is between 40,000 and 250,000. To coneclude whether or
not it is reasonable to expect that the Reynolds number falls
within such a range, this distinctive form of equation (6) was
solved for the Reynolds number after b, L, Pry, and k; had been
numerically designated. The value representing h, was the
experimentally determined perimeter-mean convection coeflicient
for the 20-sec time interval. The value taken for L was the
outside diameter of the circular test cylinder. On the basis of
considering the flame gases about the test cylinder as a nonreact-
ing mixture of combustion products, ks and Pr; were estimated as

Journal of Heat Transfer

Table 3

Flow Direction Range Of Re hn\ Range Of ¢
b n 2
And Profile From L To [BTU/hr £t°°F} | From To

-0.412

— <::> 5,000 | 100,000 | 0.222 | 0.588 | 8.06 ¢ 0.068 | 1.356
-0.388

—e O 2,500 | 15,000 { 0,224 | 0,612 |10.65 ¢ 0.034 | 0.203
-0.382

— 4,000 | 40,000 | 0.174 | 0.618 | 8.84 ¢ 0.054 | 0.543
-0.376

— <:> 2,500 7,500 | 0.261 | 0.624 |14.19 ¢ 0,034 | 0.102
~0,362

—& (2 | 5,000 | 100,000 | 0.138 | 0.638 | 8.78 ¢ 0.068 | 1.356
) ~0.362

= () | 5000 19,500 0.144 | 0,638 | 9.16 ¢ 0,068 | 0.264
0325

= [] | 5,000 { 100,000 | 0.092.| 0.675 | 8.86 ¢ 0.068 | 1.356
-0.301

—& [-] | 2,500 { 8,000] 0.160 | 0.699 |20.16 ¢ 0.034 | 0.109
] -0.269

—e | 4,000 | 15,000 | 0.205 | 0.731 [ 36.98 ¢ 0.054 | 0.203
-0.218

—& () |19,500 | 100,000 | 0.0347| 0.782 | 11.08 ¢ 0.264° | 1.356
-0.196

—e () 3,000 | 15,000{ 0.085 | 0.804 | 34.75 $ 0.041 [ 0.203
0,195

—+& (O |40,000 | 250,000 0.0239| 0.805 | 9.88 ¢ 0.543 | 3.391

having the values 0.0350 Btu/hr-ft-deg F and 0.740, respectively.
For these particular system parameters, the Reynolds number
was found to be 73,725. Hence, providing that the estimates
made for Pry; and k; are satisfactory, it seems reasonable to
expect that the form of equation (6) applicable to the actual test
situation is the correlation pertinent to circular cylinders and a
Reynolds number range of 40,000 to 250,000.

In order to extend the use of the perimeter-mean convection
coefficient found for the 20-sec time interval, assume further that
appropriate forms of equation (6) also apply to noncircular cylin-
ders when they are immersed in a JP-5 flame. The values of b
and 7 for a variety of cylinder profiles and ranges of Reynolds
numbers are shown in Table 3 (from [8, 14]). Now take the
ratio of two forms of equation (6). Let one form be the correla~
tion that has been shown to be pertinent to the actual test situa~
tion. Thus for the actual test situation, the following parameters
are specifically defined: Ao = 9.88 Btu/hr-ft>-deg F, Lo = 8.530
in. bg = 0.0239, and n, = 0.805. Let the other form of equation
(6) be a considerably more general one that can be constructed by
the use of any set of » and b values found in Table 3. This
general form of equation (6) is t0 apply to the situation where a
cylinder of a somewhat arbitrary shape and size is enveloped by a
large JP-5 flame. Attach no additional identifying subseripts to
the parameters in the general equation. In order to achieve a
high degree of similarity between the actual test situation and the
general situation, assume that the cylinder of a somewhat arbi-
trary shape and size is immersed within any region of a large
JP-5 flame where Vo, = Vo, by = kso, pr = pro, by = Hyo, and
Pry; = Pry. This assumption allows A, the perimeter-mean
convection coefficient relevant to the arbitrary cylinder, to be

written as
b I, \n1
m = T . e Reg)t — ™0 9
e e o

Because of the restrictive assumption about equal free-stream
velocities and identical film-~temperature-dependent fluid proper-
ties, the Reynolds number for the general system, Re, is given by
(L/Lo) Rey. Since the values of b and # in equation (9) are valid
only for a single cylinder configuration and a specific range of
Reynolds numbers, it should be appavent that L for a given
cylinder shape can take on only those values that keep Re within
the limits for which & and n apply. Hence equation (9) must be
subjected to the constraint
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If equation (9) and inequality (10) are to be useful in providing
quantitative estimates, it is necessary to specify a value for Reo.
Hence on the basis of previous estimates, assume that the
Reynolds number for the actual test situation was 73,725, For
convenience, let, ./1s be known as ¢. By utilizing the assump-
tion about Rey, equation (9) and inequality (10) can be evaluated
for each cylinder configuration and Reynolds-number range
indicated in Table 3. Expressions for A, as a function of ¢ are
shown in the sixth column of Table 3, while the allowable range of
¢ is given in columns seven and eight.

References

1 Barnett, 1. C., and Hibbard, R.
Fuels,” NACA-TN-3276, 1956.

2 Blinov, V. 1., and Khudiakov, G. N., “Certain Laws Govern-
ing the Diffusive Burning of Liquids,”” Dokl, Akad. Nauk, SSSR, Vol.
113, 1957, pp. 1094 1098.

3 ottel, H. C., a review of reference [l], in:
Abstracts and Reviews, Vol. 1, 1959, pp. 41-44.

4 Burgess, I). 8., Grumer, J., and Wolfhard, II. (i., “Burning
Rates of Liquid Fuels in Large and Small Open Trays,” in: Inter-
national Symposium on the Use of Models in Iire Research, NAS-NRC
Publication 786, Washington, D. C., 1961, pp. 68 75.

R., “Properties of Aircraft

Fire Research

404 / aucust 1973

5 Russell, L. 1., Quantification of the Heat Transfer Parameterg
Relevant to a Cylinder Immersed in a Large Aviation Fuel Ire, MS
thesis, University of Pittsburgh, Pittsburgh, Pa., 1970.

6 Kiefer, J., “Sequential Minimax Search for a Maximym »
Proceedings of the American Muathematical Society, Vol. 4, 1953, D;)
502 506. '

7 Gardon, R., "“An Instrument for the Direct Measurement of
Intense Thermal Radiation,” Review of Scientific Instruments, Vol. 24
No. 5, 1953, pp. 366 370. '

8 Gebhart, B., Heat Transfer, McGraw-1ill, New York, 1961
pp. 209-213. !

9 Russell, L. 1., and Canfield, J. A., "Simulation of the Thermg)
Response of Ordnance Immersed in Large Aviation Fuel Fires
NWI, Technical Report TR-2661, Naval Weapons Lal)omtory,
Duahlgren, Va., 1972, pp. 24-25.

10 Kilham, J. K., “Fnergy T'ransfer From Flame (GGases to Solids,"
Third Sympostum on Combustion, Flame, and Explosion Phenomeng
Williams and Wilkins, Baltimore, Md., 1949, pp. 733--740. '

11 Davies, R. M., “Heat Transfer Measurements on Electrically
Boosted Flames,” Tenth Symposium (International) on Combustion,
The Combustion Iustitute, 1964, pp. 755 766.

12 Cookson, R. A., and Kilham, J. K., “Energy Transfer From
Hydrogen-Air Flames,” Ninth Symposium (International) on Com-
bustion, Academic Press, New York, 1963, pp. 257 263.

13 Kilham, J. K., and Dunham, P. G., "“Energy Transfer ¥rom
Carbon Monoxide Flames,” Eleventh Symposiuwm (International) on
Combustion, The Combustion Institute, 1967, pp. 899 905.

14 Jakob, M., Heat Transfer, Vol. 1, Wiley, New York, 1957, p.
562.

Transactions of the ASME

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



journal of
heat

technical briefs

transfer

This section ists of contributi
ures).

cation.

Wave Instability of Natural Convection on Inclined
Surfaces Accounting for Nonparallelism of the
Basic Flow

S. EE. HAALAND! and E. M, SPARROW?

Neutral stability results for Prandil wumbers of 6.7 wnd 0.733
were obtwined by solving disturbance equations thut take account
of the nonparallelism of the busic flow.  Compared wilh the re-
sults for the conventional parallel-flow model, the neutral curves
are shifted to higher Grashof numbers and higher wave numbers
but maintein thetr chavacteristic shapes.  The effect of varying
the plate inclination from downward-facing to upward fucing s
lo increase the susceptibility of the flow to instability. The
critical Grashof nianbers are substantially lower than the Grashof
numbers of experiments where instability was due {o natural
disturbances.

Introduction

NATURAL cONVECTION on vertical and inclined swifaces belongs
to a class of flows where (¢) the streamwise velocity component,
ranishes in the free stream and (b) the transverse velocity com-
ponent is directed toward the suiface and has a finite value in the
free stream.  The linear stability of this class of flows was ex-
amined in general by Haaland [1],% and the governing equations
for plane-wave instability of buoyant boundary layers were
formulated.  This formulation is reproduced in [2], where it was
applied to the stability of a bunyant plume.

It has been demonstrated that for the stability problem the
conveetion of disturbance ¢uantities by the transverse velocity
of the basic flow cannot be neglected; that is, the conventional
parallel-flow model is not uniformly valid in the entire domain
in which the stability problem is defined.  The transverse ve-
locity terms cause the distwrbance vorticity and temperature to
be contained within the boundary layer of the basic flow. This
containment has been termed the bottling effect.  The formula-
tion given in 1] for buoyant boundary layers includes the just-
mentioned fransverse conveetion terms as well as all other terms
arising from the a-dependence of the basie flow.

! Fluid Mechanies Program, University of Minnesota, Minneapolis,
Minn,

* Iluid Mechanies Program, University of Minnesota, Minneapolis,
Minn.  Mem, ASMI.
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brief.
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The ebjective of the present note is to report on neutral sta-
bility results obtained by applying the formulation of [1] to nat-
wral conveetion on isothermal vertical and inclined swiaces.
Owing to space limitations, only a very brief outline of the analy-
sis will be given here.

In [1], the formulation of the stability problem was carrvied
out for plane-wave disturbances that were represented as an
amplitude function times exp [i(ax -- Bt)], where the wave
number « is complex and the frequency £ is real. The distur-
bance amplitudes (stream function ¢, vorticity w, temperature
7) are governed by equations (15)-(17) of [2], which are special-
ized to the present problem by taking

@ =0 wy — —1 g:/9 = —cos 0 gu/g = —sind (1)

where 8 = 0 corresponds to the vertical plate, and > 0and <0,
respectively, denote upward-facing and downward-facing in-
clined plates. The boundary conditions are that ¢ = ¢’ =
7 = Oat g = 0 (plate surface) and n = o.

The basic flow solution that was used as input to the
disturbance equations is described in detail in [1]).  There it was
shown that the buoyancy force normal to the plate swface in-
duces a streamwise pressure gradient, that is of order (tan 8)/R
relative to the streamwise buoyaney force (R is a characteristic
Reynolds number).  Therefore, for |0| < 45 deg and for the
range of R values encountered in the solutions (R > 22), the in-
duced streamwise pressure gradient was neglected.

The solution of the disturbance equations made use of analyti-
cal solutions at large 5 in conjunction with numerical integration
for intermediate and small . Numerical values from the large
7 solutions served as starting values for the numerical integra-
tion, which proceeded toward the wall.

Numerical results were obtained for 8 between —45 and 49 deg
for Pr — 6.7 and for 8 = 0 and 30 deg for Pr = 0.733. Some re-
sulls were also obtained for the conventional parallel-flow model
whereby the transverse velogity and the other terms connected
with the z-dependence of the basic flow are omitted.

Results and Discussion

Figs. 1 and 2 contain a comparison of neutral stability re-
sults from the present, more complete formulation (solid lines)
and from the conventional parallel-low model (dashed lines).
The Prandtl numbers for the figures are 6.7 (Fig. 1) and 0.733
(Fig. 2).  The ordinate variable @, is dimensionless and represents
the real part of the wave number. The abscissa variable is a
characteristic Reynolds number R that is related to the Grashof
number Gr as follows

Gr = RY/64 = Bg cos 0(Tw — To)r?/v? (2)

The relation between the dimensionless quantity a, and its di-
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mensional counterpart .’ also involves the Grashof number,
that is,

ar = (\/23/Cro’ (3)

The uniformly dashed curves of Figs. 1 and 2 were computed by
the present authors, whereas the short-long dashed curves are
from Nachtsheim [3].

Examination of the figures shows that acecounting for the non-
pavallelism of the basic flow causes a shifting of the neutral
curves to higher Grashof numbers and higher wave numbers.
At a fixed wave number, the largest changes in Grashof number
are encountered on the lower branch of the neutral curve. The
critical Grashof numbers increase by about a factor of five owing
to the nonparallelism of the basic flow. It is interesting to note
that in spite of the shifting, the neutral curves retain their char-
acteristic shapes. Thus the multi-lobe nature of the curves
for Pr = 0.733 is preserved as is the simple form of the curves for
Pr=26.7.

The authors have also examined neutral curves in which a
dimensionless counterpart of the frequency § is plotted against
. These neutral curves are substantially less affected by the
accounting of the nonparallelism of the basic flow than are those
of Figs. 1 and 2. At a given wave number, the maximum change
in the dimensionless frequency was found to be on the order of 10
percent.

A presentation of neutral stability results for Pr = 6.7 en-
compassing the range of plate inelinations from —45 to 45 deg
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8 (DEGREES)

Fig. 4 Critical Grashof numbers for Pr = 6.7 and instability Grashof
numbers from experiments with water

is made in Fig. 3. The curves are displaced toward lower Grashof
numbers as one proceeds from downward-facing inclined plates
(f < 0) to upward-facing inclined plates (6 > 0). TFurthermore,
for the upward-facing plates, the range of unstable wave numbers
is substantially greater than for downward-facing plates. Taken
together, these findings indicate that the flow adjacent to up-
ward-facing plates is more susceptible to instability owing to
small disturbances.

In Fig. 4, the critical Grashof numbers for Pr = 6.7 (solid line
for nonparallel-flow model; square symbols for parallel-flow
model) are compared with instability Grashof numbers of experi-
ment [4] (blackened points). The experiments were performed
using a heated plate situated in water, and instability was
identified by visual observations made feasible by an electro-
chemical reaction. Instability was due to natural disturbances.

Tt is seen from the figure that the critical Grashof numbers lie
well below the experimental results, This is in accord with all
known results for natural distwbances in boundary-layer flows,
where appreciable amplification is necessary before any distur-
bance can be detected.

For inclination angles of 17 deg and greater, longitudinal vor-
tices were observed in [4]. The existence of these vortices does
not preclude the possibility that the initial instability was due
to plane-wave disturbances, Also, one cannot rule out the possi-
bility that both forms of instability coexisted.
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Finite Amplitude Longitudal Convection Rolls in
an Inclined Layer

R. M. CLEVER!

For the case of a large Prandtl number, buoyancy driven flow in an
snclined fAluid layer, it is shown that all longitudinal-coordinate-
independent solutions of the governing equations are obtainable from
a knowledge of the existing resulls for lwo-dimensional convection in
a horizontal layer, heated from below. The rescaling here yields
resulls which compare favorably with those of existing experimental
heat transport values. )

Introduction

The instability of the basic state in an inclined layer of a large
Prandtl number fluid flow is known to manifest itself in the form
of longitudinal rolls (see De Graff and van der Held [1],2 Kurzweg
[2] and Hart [3]). Also, the linear stability equations governing
such a tilted flow are essentially the same as those for the Benard
problem, and linear stability results for the general problem can
therefore be obtained by a mere rescaling (see reference [2]).
While such a rescaling of the three-dimensional stability equa~
tions is not possible for a finite amplitude flow, it is demonstrated
here that any two-dimensional solution of the stability or base
flow equations governing a horizontal fluid layer, heated from
below, also governs the corresponding longitudinal-independent
solutions for an inclined layer.

TFor a horizontal layer Busse [4, 5] has shown that stationary,
finite amplitude, two-dimensional solutions of the equations of
motion are stable in a small part of the wavenumber range up
to a Rayleigh number R of 22,600. Above this Rayleigh number
all two-dimensional solutions become unstable. It will be
shown that these, and any other two-dimensional solutions of
the equations of motion for the horizontal case, correspond to
an az-independent solution (see Fig. 1) of the equations of motion
for an inclined fluid layer.

Analysis

The Basic Equations. The Navier-Stokes equations in the
Boussinesq approximation are used for a description of the con-
vective motion in an inclined layer. Using the layer thickness,
d, as length scale, d?/k as time scale, and R/AT as temperature
scale, the equations governing the velocity vector v and the
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deviation of temperature, 8, from the conductive state become
(see Fig. 1):

Viv=0 (1)
Viv + M0 + Re) = VI = 5 27 @
and
V6~ GenR =2 ®)
where R = %’?Zj is the Rayleigh number and P = v/x is the

Prandtl number.
as gradients.

A general description of a velocity field satisfying (1) can be
written as:

VI' includes all terms that can be expressed

v=20p 1 &) (4)
where the vector differential operators & and & are defined by
8¢ = V X (V X ko) (6)
and ’
g = V X (k) (6)

For large Prandt] number fluid the stationary z-independent
equations of motion become:

auu(vdqb - g) =0 (7)
2{0,V2y + 0} = 0 ®)
V2(§ — ﬁby,,(,b = ayzqsal/g - aﬂylba‘é (9)

where § = 0 cosy, R = R cosy, and U = Y/tan y.

In these equations the nonlinearity associated with x,Z in equa-
tion (9) is absent. The temperature deviation, 8, from conduc-
tion is governed by equations (7) and (9) only, which are inde-
pendent of v and equivalent to the Benard equations. The
boundary conditions are also equivalent for the infinite layer.

Discussion

For a large Prandtl number, buoyancy driven system it has
been demonstrated that all stationary z-independent solutions of

A=1{5in 3,0, Cos ¥) IS IN THE- X, Z PLANE

Fig. 1 Geometry and coordinate system
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the equations governing finite amplitude convection in a hori-
zontal layer, heated from below, correspond to an equivalent set
of solutions (in terms of the transverse convective mechanism)
when the layer is inclined. The additional velocity component
present in the inclined case, due to nonvanishing solutions to
equation (8) for ¥, does not alter the basic transverse heat trans-
port mechanism as expressed by solutions to equations (7) and
(9) for ¢ and §.  Although differences in the equations governing
stability of such finite amplitude flows in inclined layers-do not
allow this rescaling, there is experimental evidence that such
a-independent flows are physically realizable solutions of the
equations of motion,

De Graff and Van der Held [1] and Hart [3] have experimen-
tally observed longitudinal convection rolls for Rayleigh numbers
of the order 104, Transition to other forms of convection occurs,
depending on the angle of inclination, at Rayleigh numbers of
this order. For angles of inclination near vertical, the transition
to longitudinal rolls is inhibited by the appearance of a steady
y-independent circulation. Although Hart [3] has observed a
transverse instability for angles of inclination near vertical, the
theoretical investigation of Gershuni and Zhukhovitskii [7] has
shown that instability in the form of longitudinal rolls will pre-
dominate even for angles of inclination near vertical in the case
of a large Prandtl number fluid. Sinee aforementioned experi-
ments were carried out with air and water as the contained fluid,
the observation of hydrodynamic instabilities for angles of in-
clination near vertical do not allow any definite conclusions as
to the preferred mode for a large Prandtl number fluid,

In Fig. 2 the heat transport measurements of De Graff and
Van der Held [1] and Dropkin and Somerscales [6], for a variety
of tilt angles, are shown in the rescaled variables. Here the
Nusselt number should appear as a function of R only, when the
flow is in the form of longitudinal rolls. The rvesults indicate
that, within experimental error, the heat transport results do lie
on a single line, in agreement with the assumption that the trans-
port mechanism is a-independent. Although the results of the
former authors ave for air with a Prandtl number of 0.74, the heat
trausport measurements of others have not revealed a large
Prandtl number effect at these rather low Rayleigh numbers.
Additionally, the vescaling seems to be valid beyond Rayleigh
numbers at which transition to other forms of convection has
been observed. Although Busse [5] has shown, in the horizontal
case, that for R > 22,600 transition to bimodal convection must
take place, the dominant heat transport mechanisms seem to be
due fo the primary az-independent convection as discussed by
Busse and Whitehead [8] and Malkus [9]. This dominance
would lead to the universality shown in Fig. 2, if it continued in
the inclined layenr.
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A Technique For Visualization of the Very Slow
Motion of Water in Enclosed Spaces
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DuriNGg THE coURsE of a study of buoyancy driven flow due to
natural convection between a body and its finite enclosure, it
became desirable to visualize the flow patterns which were
occurring. This presented no great difficulties for air as the gap
working fluid since cigar smoke has been used successfully on a
number of previous occasions [1, 2].5> However, no suitable
visualization techniques were found to be available when water
was utilized as the test fluid. In order to be useable, tracer
particles must possess at least the following minimum charac-
teristics:

1 they must be neutrally buoyant over a wide temperature
range, and this characteristic must not be highly time dependent;

2 they must have a high apparent reflectivity in order to be
visible and photographable;

3 they must not adhere to solid surfaces; and

4 they must follow and indicate the actual physical flow
phenomena.

Several types of tracer particles which are commonly used in
the forced flow of water were evaluated for the current study, but
none of these proved suitable for the low velocities, and the par-
ticular problems, encountered in natural convective flows. These
tracers included hydrogen bubbles, aluminum powders, poly-
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the equations governing finite amplitude convection in a hori-
zontal layer, heated from below, correspond to an equivalent set
of solutions (in terms of the transverse convective mechanism)
when the layer is inclined. The additional velocity component
present in the inclined case, due to nonvanishing solutions to
equation (8) for ¥, does not alter the basic transverse heat trans-
port mechanism as expressed by solutions to equations (7) and
(9) for ¢ and §.  Although differences in the equations governing
stability of such finite amplitude flows in inclined layers-do not
allow this rescaling, there is experimental evidence that such
a-independent flows are physically realizable solutions of the
equations of motion,

De Graff and Van der Held [1] and Hart [3] have experimen-
tally observed longitudinal convection rolls for Rayleigh numbers
of the order 104, Transition to other forms of convection occurs,
depending on the angle of inclination, at Rayleigh numbers of
this order. For angles of inclination near vertical, the transition
to longitudinal rolls is inhibited by the appearance of a steady
y-independent circulation. Although Hart [3] has observed a
transverse instability for angles of inclination near vertical, the
theoretical investigation of Gershuni and Zhukhovitskii [7] has
shown that instability in the form of longitudinal rolls will pre-
dominate even for angles of inclination near vertical in the case
of a large Prandtl number fluid. Sinee aforementioned experi-
ments were carried out with air and water as the contained fluid,
the observation of hydrodynamic instabilities for angles of in-
clination near vertical do not allow any definite conclusions as
to the preferred mode for a large Prandtl number fluid,

In Fig. 2 the heat transport measurements of De Graff and
Van der Held [1] and Dropkin and Somerscales [6], for a variety
of tilt angles, are shown in the rescaled variables. Here the
Nusselt number should appear as a function of R only, when the
flow is in the form of longitudinal rolls. The rvesults indicate
that, within experimental error, the heat transport results do lie
on a single line, in agreement with the assumption that the trans-
port mechanism is a-independent. Although the results of the
former authors ave for air with a Prandtl number of 0.74, the heat
trausport measurements of others have not revealed a large
Prandtl number effect at these rather low Rayleigh numbers.
Additionally, the vescaling seems to be valid beyond Rayleigh
numbers at which transition to other forms of convection has
been observed. Although Busse [5] has shown, in the horizontal
case, that for R > 22,600 transition to bimodal convection must
take place, the dominant heat transport mechanisms seem to be
due fo the primary az-independent convection as discussed by
Busse and Whitehead [8] and Malkus [9]. This dominance
would lead to the universality shown in Fig. 2, if it continued in
the inclined layenr.
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visualization techniques were found to be available when water
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Fig. 1 Particles in spherical annulus with Rayleigh number of 4 > 10°
" and prandil number of 10

ethylene particles, polystyrene particles, small hollow glass
spheres (commercially called Hecospheres, which have previously
been used by Brooks [3]), and a dye formed by passing an electric
current through a thymol blue pH indicator solution as suggested
by Baker [4].

In view of the foregoing, it became necessary to develop a
visualization technique which would be specificially applicable to
the very slow motion of water in confined spaces. This was
accomplished in the following manner. First, the desired quan-~
tity of distilled water was boiled for deaeration purposes in order
to minimize undesirable bubble collection on the solid boundaries
of the flow system, as such bubbles would partially obstruct the
view of the flow pattern. Next, the boiled water was cooled to
approximately 80 deg F, and about five drops of “Ajax” liquid
detergent were added per gallon of water. Gentle stirring of the
container was then necessary to form a homogeneous mixture,
hut eare had to be taken to avoid introducing air bubbles into the
system during this process. Finally, after the mixture had re-
mained stationary for several hours, numerous small, neutrally
buoyant particles could be observed in a lighted plane through
the mixture. The ability of these particles to follow the flow in a
spherical annulus, operating under steady-state conditions, is in-
dicated in Fig. 1 wheve the two spheres are held at different tem-
peratures. The exposure time used in obtaining the photograph
in this figure was approximately 10 sec.

In using the foregoing method it was found that several prob-
lems could be encountered if care were not taken. The concen-
tration of particles was affected by the quantity of detergent
added. Too little detergent resulted in so few particles that the
complete flow pattern could not be determined; too much deter-
gent caused the water to appear milky gray in color, and this re-
duced the contrast significantly, thereby yielding poor photo-
graphic results. Also, it was discovered that when the tempera-
ture- of the mixture which was finally used exceeded approxi-
mately 120 deg F, the number of particles was considerably re-
dueed, thereby greatly reducing the usefulness of this technique
for flow visualization at elevated temperatures. Although several
additional brands of detergents were tested, only one, in addition
to Ajax, was found which yielded any particles, and it was of a
much poorer quality for flow visualization purposes.

In an attempt to learn more of the exact nature of the tracer
particles, samples of the mixture were passed through filters of
various sizes, and the particles remaining on these filters were
studied mieroscopically. It was determined that those particles
had primary dimensions on the order of 5 to 15 microns and were
highly angular in nature, which accounts for their excellent optical
reflectivity. It is hypothesized that these particles result from
one of two sources: they may be an abrasive material which is
purposely added to the detergent fo aid in cleaning, or they may

Journal of Heat Transfer

be impurities encountered in the manufacturing process. In
either case they are excellent tracers for the current application.
In summary, this paper has described a technique developed
for the visualization of relatively slow motion of water in confined
spaces. The specific example given was the buoyancy-driven
convection of water in spherical annuli, but the technique should
be applicable to any situation where the velocities are relatively
low, and the temperatures do not exceed approximately 120 deg T
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Free Convective Heat Transfer From Hnrlzontal Gones
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Introdyction

WHiLE extensive analytical and experimental studies of free
convective heat transfer rates from bodies of other shape are
available, relatively little attention has been given to such heat
transfer from cones. Several analytical studies of free con-
vective flow from vertical cones are available, e.g., see references
[1 and 2],2 and some experimental measurements of mean heat
transfer rates from vertical cones are presented in reference [3].
However, no analytical or experimental studies of mean heat
transfer rates from horizontal cones appear to be available. The
present study was, therefore, undertaken since practical situa-
tions involving heat transfer by free convection from bodies
that are essentially horizontal cones do arise. The apparatus
and method of measuring the heat transfer rate are similar to
those used in reference [3].

Apparatus and Method

Mean heat transfer rates have been measured from a series of
eight cones, the dimensions of these cones being given in Table
1. D is the diameter of the base of the cone, L is its vertical
height and ¢ is its ineluded angle. The diameters of the tips
of the cones were small compared to their other dimensions and
the effect of this finite tip size was, therefore, assumed to be
negligible.

The cones were made of solid aluminum with caps made of
fiberboard insulating material fitted to their bases. Small
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spheres (commercially called Hecospheres, which have previously
been used by Brooks [3]), and a dye formed by passing an electric
current through a thymol blue pH indicator solution as suggested
by Baker [4].

In view of the foregoing, it became necessary to develop a
visualization technique which would be specificially applicable to
the very slow motion of water in confined spaces. This was
accomplished in the following manner. First, the desired quan-~
tity of distilled water was boiled for deaeration purposes in order
to minimize undesirable bubble collection on the solid boundaries
of the flow system, as such bubbles would partially obstruct the
view of the flow pattern. Next, the boiled water was cooled to
approximately 80 deg F, and about five drops of “Ajax” liquid
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system during this process. Finally, after the mixture had re-
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the mixture. The ability of these particles to follow the flow in a
spherical annulus, operating under steady-state conditions, is in-
dicated in Fig. 1 wheve the two spheres are held at different tem-
peratures. The exposure time used in obtaining the photograph
in this figure was approximately 10 sec.

In using the foregoing method it was found that several prob-
lems could be encountered if care were not taken. The concen-
tration of particles was affected by the quantity of detergent
added. Too little detergent resulted in so few particles that the
complete flow pattern could not be determined; too much deter-
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duced the contrast significantly, thereby yielding poor photo-
graphic results. Also, it was discovered that when the tempera-
ture- of the mixture which was finally used exceeded approxi-
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for flow visualization at elevated temperatures. Although several
additional brands of detergents were tested, only one, in addition
to Ajax, was found which yielded any particles, and it was of a
much poorer quality for flow visualization purposes.

In an attempt to learn more of the exact nature of the tracer
particles, samples of the mixture were passed through filters of
various sizes, and the particles remaining on these filters were
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be impurities encountered in the manufacturing process. In
either case they are excellent tracers for the current application.
In summary, this paper has described a technique developed
for the visualization of relatively slow motion of water in confined
spaces. The specific example given was the buoyancy-driven
convection of water in spherical annuli, but the technique should
be applicable to any situation where the velocities are relatively
low, and the temperatures do not exceed approximately 120 deg T
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and method of measuring the heat transfer rate are similar to
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Table 1

Cone D L [
number in, in. deg
1 0.58 8.0 3.8
2 1.92 8.0 8.9
3 1.67 8.0 11.5-
4 1.87 12.0 8.9
5 2.50 16.0 8.9
6 0.90 7.9 6.6
7 0.50 8.0 3.5
8 0.70 4.7 8.6

holes were drilled longitudinally into the cones at various locations
and thermocouples inserted into these holes were used to measure
the temperature during the tests. These tests were carried out
with the cones mounted horizontally, one at a time, in an en-
closure which was open at the top and bottom and was large
compared to the dimensions of the cones.

The mean heat transfer rates from the cones were determined
by heating them to a temperature of just over 300 deg I* and
then measuring the rate at which they cooled, these measure-
ments being continued until the temperature had dropped to
about 130 deg ¥. The thermocouples indicated that, for all
the cones, the temperature remained effectively uniform during
the cooling, the temperature variation between the points at
which it was measured being less than 1 deg F. Therefore, the
total mean heat transfer coefficient at any time could be caleu-
lated in the usual way from the measured variation of temperature
with time. The mean convective heat transfer rate could then
be found by making an allowance for radiant heat transfer.
This allowance was found to be small in all cases. In this way,
then, the variation of the convective heat transfer coefficient
over a range of temperatures was derived for each cone. Since
the cooling took at least 15 min, the maximum cooling rate
varying from about 20 deg F per min at the higher temperatures
to about 5 deg F per min at the lower temperatures, it seems
unlikely that unsteady effects had any influence on this variation.

Results

The convective heat transfer rates from horizontal cones can,
of course, be correlated in the following way.

Np = function (Gp, P,, ¢) (1)
where
Np = Nusselt number, hD/k
h = mean heat transfer coefficient
D = base diameter of cone
Gp = Grashof number, Bg(T,, — T1)D3/y?
(Ty — T1) = temperature difference between cone and sur-
rounding air
P, = Prandtl number
¢ = included angle of cone.

The remaining symbols k, 3, g, and » have their conventional
meaning.

Now, for the range of temperatures covered by the present
tests, the Prandtl number of air remains almost constant. For
the present tests, therefore, equation (1) reduces, effectively, to

Np = function (Gp, ¢) (2)

The variation of Np with Gp for all the cones tested is shown
in Fig. 1. It will be seen from these results that, at least for the
range of values'of ¢ covered by the tests, the variation of Np with
Gy is independent of ¢. This result suggests that the flow over
every cross section of the cone is effectively two-dimensional, i.e.,
there is effectively no flow in the axial direction along the cone
surface. If this is so, then the flow over each cross section of the
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Fig. 1 Variation of Nusselt number with Grashof number

cone is the same as the flow over a cylinder of the same diameter
and, therefore, a correlation equation for the heat transfer rate
from a cone can be deduced from known correlations equations
for free-convective heat transfer from cylinders in the following
way. If % is the average value of the heat transfer coefficient
for a section of the cone of diameter d, this section being a dis-
tance z from the vertex of the cone, then the average heat trans-
fer coefficient, h, for the whole cone is, of course, given by
L

2 -
h = DL J, wdhdx (3)

If it is assumed, therefore, that % is given by the correlation
equation for a cylinder e.g., if the correlation proposed in refer-
ence [4] is used, % will be given by

Ng = 0.35 4 0.25(GP,)-1% 4 0.45(GqP, )02 (4)

where Ny and Gg are the Nusselt and Grashof numbers respec-
tively based on the local diameter d, then equation (3) gives the
following equation for the mean heat transfer rate

Na = 0.7 + 0.35(GpP,)01% 4 0.51(GpP, )02 (5)

The variation of Np with Gp for air given by this equation is
shown in Fig. 1. It will be seen that it agrees with the experi-
mental results for the cones to a similar degree of accuracy to
that with which equation (4) agrees with the range of experi-
mental results available for cylinders.
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The Effect of Thermal Contact Resistance on Heat
Transfer Between Periodically Contacting Surfaces

P

J. R. HOWARD' and A. E. SUTTON?

An analog-computer study is made of one-dimensional heat
conduction through two bars whose axes are in line and whose
adjacent ends make and break contact periodically. The work
exlends a previous study to take account of imperfect thermal con-
fact ol the contact interface.  The effect of frequency and duration
of contact are also discussed.

Nomenclature
f = frequency
g( ) = function of ()
! = length of bar
length of bar material representing thermal resistance
due to periodic interruptions of heat flow
heat transfer rate (energy per unit time) under periodic
contact conditions
(). = heat transfer rate (energy per unit time) under perma-
nent contact conditions
= time
T = temperature
x = distance

il

il

li

i

Q

!

« = thermal diffusivity
A = length of bar representing thermal contact resistance
7. = time surfaces are in contact per cycle
7o = time surfaces are separated per cycle
Introduction

Hisar TrANSFER across the interface between two solids held
permanently in contact has been the subject of much study.
Various surveys of literature have been made [1-4],* and the
subject continues to be studied.

The work in [5] described a one-dimensional heat transfer
study along two identical bars whose axes are inline. The remote
ends of the bars were at different, but fixed, temperatures and the
adjacent ends were brought into contact and separated according
to a continuous regular cycle. When the adjacent ends of the
bars made contact, it was assumed that the thermal contact
resistance was zero, and when they were separated there was no
heat flow across the gap between the ends of the bars.

The foregoing work has been extended to examine the effect of
finite thermal contact resistance at the interface when the bars
make contact.

Formulation
An exact solution to. the three-dimensional heat diffusion
equation

. T
ver a Of )

is not practical, due to the physical shape of the boundary at the
contact interface and the numerous boundary conditions to be
satisfied. Iven when the surfaces are permanently in contact
and the right-hand side of equation (1) is zero, e.g., see [6, 7],
approximations had to be made.
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An approximate representation is possible using the one-
dimensional heat diffusion equation

e @)

by assuming that during the period of contact the thermal con-
tact resistance between the contact surfaces is due to a thin film
whose thermal resistance is equal to the steady-state thermal
contact resistance of the real surfaces. For simplicity, the heat
capacity of the film is assumed to be negligible. A solution in the
quasi-steady state is to be obtained.

Boundary and Initial Conditions. Since the bars are identical,
events in only one bar, the hotter one, need be considered. The
origin is taken at the hottest end of the bar, where the tempera-
ture is fixed at T4. The temperature at the midpoint of the film
is taken as zero, the length of bar as [, and half the thermal con-
tact resistance equivalent to length A of the bar material. The
boundary conditions are then
1 atz =20

T = Ta, at all times

2(a) atz = ! during the contact period 0 < ¢{ < 7

o7 _ T
R
2(b) at 2 = [ when the swfaces are separated 7. <i < (1o + 7.)
T
o _
ox

Dimensional Analysis. The existence of an additional variable,
namely thermal ccntact resistance characterised by a length A
of bar material, gives rise to a dimensionless group additional to
the two quoted in [5]. If [; is the length of bar material equiva-
lent to the thermal resistance due to the periodic interruption of
the heat flow, the groups become

©)-rfoal]
[0 03

for sufficiently large values of bar length / such that

<ﬁ> > 2.56m (4)

a

see [5].

The inset at the top of Fig. 1 shows the time-average tempera-
ture distribution in the hotter bar when the swfaces are per-
manently in contact and when in the quasi steady state.

Simulation. Finite-difference approximations to the heat dif-
fusion equation (2) and the boundary conditions were made,
the mesh being identical to that used in [5]. The diagram of
the circuit used will not be shown here as it differed from that
described in [5] only at the section used to simulate the boundary
condition at the contact interface.

Results and Discussion
The relationship between the dimensionless groups is shown
plotted in Fig. 1, demonstrating the validity of equation (3).
Heat flow through the system may conveniently be expressed
by the ratio @/Q., where @ is the heat transfer rate under periodic
contact conditions and Q. is the heat transfer rate under perma-
nent contact conditions with zero thermal contact resistance.

Q {

Q@ I+ N+ 2

Fig. 2, which is derived from equation (5) and Fig. 1 at a
fixed frequency f and given diffusivity ¢, illustrates by example
the importance of thermal contact resistance under periodic con-
tact conditions. .
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A numerical method of solution shows extremely good agree-
ment with these analog-computer results, showing that any
errors due to the use of a nonuniform mesh for the finite-differ-
ence equations are small.

Conclusion

Thermal contact resistance between two periodically contact-
ing surfaces can be the most significant factor in controlling the
heat flow, particularly when the ratio of contact time/periodic
time, fr., is high.
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Fig. 2 Effect of contact time/periodic time on heat flow with various
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Transient Heat Flow in Half-Space Due to an
Isothermal Disk on the Surface’
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Nomenclature

« = interfocal distance in oblate sphe-
roidal coordinates

radius of disk

{ = time

t* = dimensionless time, ot/R?

7" = temperature

Ty = disk temperature

thermal diffusivity

8 = penetration depth

=
I

)
il

n = angle coordinate in oblate spheroidal
coordinates

£ = radial coordinate in oblate sphe-
roidal coordinates

¢ = polar coordinate in oblate spheroidal

coordinates

SoLuTioNs of the transient heat diffusion equation for the case
of a uniform step temperature change over a disk on the surface
of a half-space are obtained by applying the heat balance iutegral
technique {1, 2]® in oblate spheroidal coordinates. These solu-
tions are compared to an existing late time, asymptotic solution
[3] and to a finite difference solution [4].

Oblate spheroidal coordinates are used to eliminate the mixed
boundary conditions which occur on the surface if the problem is
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get up in cylindrical coordinates. The range of coordinates
pertinent to a half-spaceis 0 < £ < «©,0 <9 <1,and0 < ¢ <
or. The surface, £ = 0, is a disk on the surface of the half-space
of radius /2, where a is the interfocal distance of the ellipsoids
and hyperboloids.  The surface, 7 = 0, is the remainder of the
half-space surface.

If the axial symmetry of the temperature field is assumed, the
diffusion equation in oblate spheroidal coordinates is {4, 5]

¢ |af, _ E] 3[1‘ %’]}
Wzn{bn[“ Mol Tor T P

To obtain the heat balance integral solution, it was further
assumed that 7’ was a function of £ and {* only; i.e., the isotherms
are oblate spheroids. Under the assumption that T = T'(§, t¥),
equation (1) becomes

Lo W) _ o
o + &) [a_e [(1 +£)3Jl ootk @)

To remove the # dependence, equation (2) is integrated with
respect to 7 over 0 < 5 < 1. This gives!

d oT _ (1 +3g)or
o [(1 +8) g] = 3)

The heat balance integral equation is obtained from equation
(3) by integrating once with respect to & over (0, §). When the
limits are applied to the left side of the integrated equation, and
the integral on the right-hand side is rearranged by Leibniz’
rule for the differentiation of an integral, the equation becomes

[oreg ][l

d ® 1+ 382\ 1.4 3¢, ds
= - [fo (——3 >’1d£:| - [——3 r]g=5dt*. (4)

From the definition of the penetration layer and the initial con-
dition, both 7' and 07/3f evaluated at £ = & are zero; thus
equation (4) becomes

d 871 + 382
im0 ﬁ\:ﬁ < 3 >Td$:" ®)

Next, a suitable form for the temperature distribution must be
assumed. To obtain a suitable approximation in nonplanar
geometries, references [1, 2] suggest that a product of a poly-
nomial and some form of the steady-state temperature distribu-
tion be used. The steady-state solution is [6]

'a—qj
of

27
T(E m) = =" eot™ & ®
This form is used with second and third-degree polynomials to
obtain expressions for the step responses.
Second-Degree Approximation
The assumed temperature distribution in this case is
T = (@ + bf + c&2)cot 1 & )

The coefficients in equation (7) are evaluated from the following
conditions:

T(0) = Toy T(8) = 0, (2T /0E)=s = 0. (8a), (8b), (8¢)

By using these conditions with equation (7),

4 This equation can also be developed by performing a heat balance
on an oblate spheroidal shell and then letting the thickness go to zero.
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2T 2 2
T t%) = ?0 (1 — gf + %) cot1E, 9)

By using equation (9), equation (5) becomes

T d ? 2 % £ -1
3<3+ 1> = %U; (1+3£)<1 -5 +5—2>cot £dé]-
(10)

After carrying out the integration and then performing the
differentiation, all the terms containing 6 are collected on the
right-hand side; this gives the separated differential equation
relating & and ¢*;

3dt* = [(363 + é) cot™1 8 + fan1 9 + 1

1073 26 1+ 6
X(_z_a:_g) §§_2_410g(1+52)] a8
30 3 10 10 15 6? 6+ )
an

The solution of equation (11) to obtain 6 as a function of ¢* will
be discussed later.

Third-Degree Modified Polynomiui Approximations

If the temperature distribution is assumed to have the form

T = (a + bE + c&* + dE%) cot ™ &, (12)

two third-degree approximations can be developed on the basis
of the conditions employed to-evaluate the coefficients. The
third-degree approximation requires the use of four boundary
conditions to evaluate the coefficients in equation (12). The first
three conditions used are the same as for the second-degree
approximations (equations [8]). For the fourth condition,
either of the following equations, which are obtained from
equation (3), can be used:

(02T /08%)t=5 = 0 or (2T /0E%)g=0 = 0. (13a), (13D)

The third-degree approximation developed here will use equa-
tion (13b) for the fourth condition. Equation (13a) was used in
reference [4] to develop another third-degree solution; however,
it provides a poorer approximate solution to the problem than
the two solutions presented here.

If equations (8) and (13b) are used in equation (12) to evaluate
the coefficients, the expression for 7'(§, t*) takes the form

oo |2 88 68

T ) =Ty ['n o(r 4+ 8) wé(w + 8)
(r + 48)& O
wm63(7r n 5):' cot—1£.  (14)

Following the procedure used in the second-degree solution,
the separated differential equation is
21md? 644

am? 32
L - - - 2 i
3di —[[4 +27r5+(1+ 4>5+ 0 5

Atr -+ 28) B 31
+ 55 log(1+52)+[453+ 52 +(3+ 4)5

+%T]tan—16+(_l_i_,3_1_r_?’_zr._8_62

w68 22“) o
4 5/ 1+ 62

i] dcot™1d

7wt 37woe? 240
—_— 4 .
0 T e 7O )} X+ OBt + 43 + o)l

(15)
Equations (11) and (15), which relate 6 to ¥, were integrated
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Table 1 Values of T/T; from equation (9) (No. 1), equation (14) (No. 2),

the late time, asymptotic solution of reference [3] (No. 3), and the finite
difference solution of reference [4] (No. 4)

3

r* No. 0.05 0.15 0.25 0.50 1.0 2.0 5.0
0.01 1 0.822 0.528 0.310 0.032
2 0.836 0.527 0.272
3 0.805 (a) (@) (a)
4 0.824 0.505 0.264 0.027 ...
0.10 1 0.917 0.764 0.631 0.375 0.106
2 0.931 0.794 0.664 0.386 0.064
3 0.933 0.809 0.695 (@) (a)
4 0.929 0.789 0.655 0.373 0.057
1.00 1 0.948 0.850 0.759 0.567 0.315 0.102
2 0.958 0.875 0.795 0.613 0.349 0.094
3 0.957 0.872 0.789 0.602 0.332 0.098
4 0.956 0.870 0.786 0.598 0.304 0.083 ...
10.0 1 0.961 0.884 0.812 0.652 0.426 0.211 0.048
2 0.966 0.8909 0.834 0.686 0.467 0.244 0.049
3 0.965 0.8904 0.826 0.671 0.444 0.217 (a)
4 0.965 0.894 0.826 0.670 0.443 0.218 0.041

(@) Solution unreliable for ¢*/£2 > 1[3].

numerically by using an adaptive Simpson’s rule algorithm [7].
The integration was performed over successive small ranges of
the & variable; for both equations, power series expansions of
certain terms were required to evaluate the integrands in the
region near § = 0 and to show that they behave properly [4].

Results and Discussion

The values of § versus {* were used in equations (9) and (14) to
evaluate T'(£) at several values of t* and also to evaluate
(0T /2&)e=0 which is related to the heat flux across the disk.
For comparison, T and (07'/0§)g =0 were also evaluated by using
the asymptotic solution of reference [3] and a one-dimensional,
finite-difference model developed in reference [4].

The results in Table 1 show that both heat balance integral
solutions provide good agreement with the temperatures pre-
dicted by the other methods. The results in Fig. 1 show that the
value of (37'/0&)s—p obtained from equation (14) provides the
best agreement with the values predicted by other methods,
particularly for t* > 0.1. At earlier times, the asymptotic
solution falls well below the third degree, and finite difference
results; however, this probably results from the asymptotic
solution being a “late-time” solution [3].
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Transient Heat Conduction in an Infinite Plate
With a Transverse Gircular Cylindrical Hole

C. D. MICHALOPOULOS! and J. J. SECO?

The flow of heat n an infinite plate with a transverse circular cylin-
drical hole is considered. The boundary conditions are zero tem-
perature on the cylindrical surface and arbitrary but axisymmelric
temperature distributions on the plane surfaces. The solution is ob-
tained by means of Laplace and an unconventional Hankel trans-
forms. Numerical results are gwen in graphical form for a plate
with a step temperaiure distribution on one face and zero temperature
on the other.

Introduction

ProBLEMs of heat conduction in regions bounded internally by
a circular cylinder have been considered by several investigators
through the years. Nicholson [1]? applied the Weber expansion
[2] to the solution of a heat conduction problem for an infinite
medium with a circular cylindrical hole. Goldstein [3] and
Carslaw and Jaeger [4] considered two-dimensional problems in
diffusion and heat conduction with circular symmetry. Black-
well [5] analyzed the radial-axial heat flow in an infinite solid
bounded internally by a cireular cylinder and in an infinite plate
with a transverse circular cylindrical hole.

In the studies of [1, 3, 4, and 5] the results are given in integral
form or as series. No numerical results are presented. The
purpose of this study is to obtain transient and steady-state
axisymmetric solutions (with numerical results) of the heat con-
duction equation for an infinite plate with a transverse cylindrical
hole.

The solution herein utilizes an unconventional Hankel trans-
form which is based on an expansion formula discovered by
Weber [2] in 1873. Orr [6] rediscovered Weber’s formula in 1909
by a method of contour integration. The formal proof of the
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Transient Heat Conduction in an Infinite Plate
With a Transverse Gircular Cylindrical Hole

C. D. MICHALOPOULOS! and J. J. SECO?

The flow of heat n an infinite plate with a transverse circular cylin-
drical hole is considered. The boundary conditions are zero tem-
perature on the cylindrical surface and arbitrary but axisymmelric
temperature distributions on the plane surfaces. The solution is ob-
tained by means of Laplace and an unconventional Hankel trans-
forms. Numerical results are gwen in graphical form for a plate
with a step temperaiure distribution on one face and zero temperature
on the other.

Introduction

ProBLEMs of heat conduction in regions bounded internally by
a circular cylinder have been considered by several investigators
through the years. Nicholson [1]? applied the Weber expansion
[2] to the solution of a heat conduction problem for an infinite
medium with a circular cylindrical hole. Goldstein [3] and
Carslaw and Jaeger [4] considered two-dimensional problems in
diffusion and heat conduction with circular symmetry. Black-
well [5] analyzed the radial-axial heat flow in an infinite solid
bounded internally by a cireular cylinder and in an infinite plate
with a transverse circular cylindrical hole.

In the studies of [1, 3, 4, and 5] the results are given in integral
form or as series. No numerical results are presented. The
purpose of this study is to obtain transient and steady-state
axisymmetric solutions (with numerical results) of the heat con-
duction equation for an infinite plate with a transverse cylindrical
hole.

The solution herein utilizes an unconventional Hankel trans-
form which is based on an expansion formula discovered by
Weber [2] in 1873. Orr [6] rediscovered Weber’s formula in 1909
by a method of contour integration. The formal proof of the

1 Associate Professor, Department of Mechanical IEngineering,
University of Houston, Houston, Texas.

2 Assistant Professor of Mechanical Engineering, University of
Costa Rica, Costa Rica, Central America.

s Numbers in brackets designate References at end of technical
brief.

Contributed by the Heat Transfer Division of THE AMERICAN
SocIETY oF MECHANICAL ENGINEERS. Manuscript received by the
Heat Transfer Division, December 11, 1972,

Transactions of the ASME

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Weber-Orr expansion was established in 1922 by Titchmarch [7]  from equation (7) by taking the limit as time tends to infinity
who, in his book [8], broadened its use. The transform of an  and using the following relation (see, for example, reference {10, p.
arbitrary function f(r) and its inverse employed here are defined 40, number 1.445-4]):

by . mwz
. w : inh o (=1)*~n sin I
wifo)} =) = f Wi, &, (O, M sinhsz _ 27 ¢ )
o sinh sL L2 “~ , , nm?
. s
- LZ
. © SHSYWo(s, 7, a)ds
walfo) =s) - 7SRO, g o
0 o¥(sa) + Yoi(sa) Thus, the steady-state temperature distribution T'(r, 2) is given by

where Wao(s, 7, @) = Jo(sr)Yo(sa) — Jo(sa)Yo(sr), Jo and Y5 being T(r, 2) = f _ﬂl"‘(s’/“_@_
sero-order Bessel functions of the first and the second kind, re- o Jo¥sa) + Ye¥(sa)
spectively. The conditions that the function f(r) must satisfy ~ inh s(l — ~ inh
f%n' the existence of the transform are stated by Titchmarsh {7]. - [Fl(s) S 1.8(}1 7 2) + £(s) S.m} sz:' ds.  (9)
The properties of the transform are given in [9, pp. 3-9]. s s sind s

A Numerical Example

i f the Heat Conduction Equation . . P
Solution o 9 Numerical results are given here for an infinite plate with the

Consider an infinite plate of thickness I with a transverse  following boundary conditions on z:
circular cylindrical hole of radius a and define a cylindrical coor-
dinate system (r, 0, z) such that zis coincident with the axis of the T(r, 0, 1) = Fu(r) — {To, a<r<b (10)
hole, as shown in Fig. 1 and 2. r 0,b<7r

Tor axial symmetry, the flow of heat is governed by the differen-
tial equation T(r, Ly t) = Fa(r) = 0. (11)

T The W transform of boundary condition (10)is
= (3)

b
Fis) = f rWols, 7, a)Tydr.

where T = T(r, 2, t) is the temperature, « is the diffusivity, and

tis the time. The boundary conditions considered herein arve: Introduce now the function Wi(s, 7, a) = Ji(sr)Yo(sa) —
, . >
T, 0,t) = Fi(r); T, L 1) = Fa(r); (4)  Jo(sa)Yy(sr). Noting that 5 [Wi(s, 7, a)] = srWols, r, a) and
”
Tla,2t) = 0. : (5)  Wi(s, a, @) = 2/7 as one obtains for F,(s)
It should be noted that _ bWi(s, b, a 2
Fi(s) = Ty [ ! ) - j:l (12)
lim 7(r,2,t) = 0 (6) $ s
r— o

o . L Numerical result were obtained by numerical evaluation of the
As shown in reference [9, pp. 9-17], the solution of equation (3) ;. fnite integrals of equations (7) and (9) with Fy(s) = 0 and

subject to conditions (4), (5), and (6) is Fi(s)as given by (12). In all computations, the following values
_ (82 _I_nw)at for the parameters were used: ¢ = lin, b = 8¢, L = g, @ =
1—e L2 0.01 in.2/sec.

© op o
T, 2, 1) = I > (=1~ In The approximate evaluation of the inversion integrals was ef-
0

nir?
n=1 s? I fected by the trapezoidal rule together with Romberg’s extrapola-
tion scheme. Due to the nature of the integrands, it was ob-
served that no significant improvement in the answer was found
_ . (L — z) _ . nme Wos, r, a)sds for an upper limit greater than about 20. ‘
| F(s) sin L + £3(s) sin R Jok(sa) + Yer(say The results of this section are presented in graphical form in

Figs. 1 and 2. In Fig. 1, graphs of T'/Ty versus r/a¢ are shown
) with time as a parameter for z/L equal to 0.8. Fig. 2 gives the
. steady-state dimensionless temperature 7'/T as a function of »/a
The steady-state temperature distribution can be obtained

1.0 IL!IIII|,1|_I.Ib'.I
M i =0 % Pad
: | Time =w sec. .
018 —
L 2
012
L
=
0.08 i~
10
0.04
§
R R | L1 - 0 E - L=
B)_u 20 0 4 1.0 2.0 30 40
i ria r/a
Fig. 1 Transient temperature distribution Fig. 2 Steady-state femperatures at z/L = 0.8
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with z/L as a parameter. Transient temperatures at other
ratios of z/L as well as the steady-state isotherms are given in [9].

Discussion

The solution derived here could have also been obtained by
changing the nonhomogeneous boundary conditions, equations
(4), to homogeneous through the introduction of a new variable
Ulr, 2, t) defined by

Ulr,2,0) = T(r, 2, 1) + (E —1 )Fm-) = }.Fm

However, the differential equation satisfied by U is nonho-
mogeneous. This equation can be solved by taking a Laplace
transform in ¢ and then a Fourier finite transform in 2. The re-
sulting ordinary differential equation in 7 is a nonhomogeneous
Bessel equation of order zero. The solution of such an equation
is considerably more involved than that of the present study
which is a simple ordinary homogeneous differential equation in z
resulting after the application of the unconventional Hankel
transform employed herein.

Apparently, no solutions (transient or steady state) have ap-
peaved in the literature for heat conduction problems involving
an infinite plate with a transverse eylindrical hole subject to
nonhomogeneous boundary conditions on the plane surfaces.
The present study illustrates a convenient analytical approach to
heat conduetion problems for regions bounded internally by eircu-

Correlations for Laminar Forced Convection in Flow
Over an Isothermal Flat Plate and in Developing and
Fully Developed Flow in an Isothermal Tube

STUART W. CHURCHILL! and HIROYUKI OZOE?

Nomenclature

D = tube diameter, ft
f(Pr) = a computed function, see equation (9)
Gz = wD%n/4aw = local Graetz number
7 = local heat flux density at wall, Btu/hr ft?
k = thermal conductivity, Btu/hr ft deg F
n = arbitrary exponent
Nup = jD/k(Tw — T,) = local Nusselt number of tube
Nu, = je/k(Tw — Ty) = local Nusselt number for flat plate
Pe = Dun/a = Peclet number
Pr = v/ = Prandtl number
Rep = Dun/v = Reynolds number for tube
Re, = zuy/v = Reynolds number for flat plate
T = temperature, deg F~
u = velocity component in z-direction, ft/hr
@ = independent variable or distance along flat plate or tube,
ft
y = dependent variable or distance normal to flat plate or
wall of tube, ft
y(z) = dependent variable
yolz) = asymptotic solution for z — 0
ye(x) = asymptotic solution for ¢ — o
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lar gylinders. Other Hankel transforms similar to the one useq
here (given-in [9]) can be employed to obtain solutions of the
heat conduction equation for boundary conditions othey than
that of zero temperature on the cylindrical surface considered i
this article.
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o = thermal diffusivity, ft2/hr
7 = y(uo/xv)?/2
v = kinematic viscosity, ft2/hr
é(n) = 2u/uy = velocity distribution function in Blasius
solution.

I

Il

Subscripts
m = mixed mean value

0 = free stream or inlet value
w = value at wall

i

CuurcHILL AND Ozor [1]% used the procedure proposed by
Churchill and Usagi [2] to derive an empirical expression for the
effect of Pr on laminar forced convection in flow over a uni-
formly heated flat plate. Simple, empirical expressions were
similarly derived for plug, fully developed and developing flow in
a uniformly heated tube. The process of correlation indicated
that the various computed values for a flat plate were very pre-
cise and consistent but revealed inconsistencies in the asymptotic
solutions and computed values for a tube. Accordingly the
various solutions for laminar forced convection in flow over an
isothermal flat plate and in developing and fully developed flow
in an isothermal tube are herein subjected to the same process of
analysis and correlation.

Limitations of space have forced deletion of details of the de-
velopment and evaluation of the correlating equations presented
herein. An expanded version of the manuscript is available from

S. W. Churehill.

Correlations for Fully Developed and Plug Flow in a Tube

The Graetz [3] solution for a step change in wall temperature in
fully developed, laminar (parabolic) flow in a tube is in the form
of a ratio of infinite series. The series converges very slowly for
large Gz creating a role for a convenient and accurate approxima-
tion. The expression proposed for such purposes by Churchil
and Usagi [2] has the form

y(x) = yo'(®) + ya(®) M

3 Numbers in brackets designate References at end of technical
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This expression requires asymptotic solutions for large and small
values of the independent variable and one or more intermedi-
ate values of y(z) from which the aribtrary coeflicient n can be
evaluated.

The Lévéque [4] solution is not a lower bound for Gz — o
owing to the neglect of curvature. The empirical expression

Nup = 1.167 Gz'/* — 1.7

@)

proposed by Lipkis [5] was therefore combined with the asymp-
totic value of 3.657 for Nup for Gz — 0 yield the trial expression

[(Nup + 1.7)/5.357]% = 1 + (Gz/97)* 3)

Equation (3) with » 8/3 agrees within 6 percent for all Gz
with the Graetz solution as computed by Munakata [6].

A solution for plug flow in a tube is of interest for fluids pri-
marily because it constitutes an upper bound for developing flow.
The asymptotic solution for plug flow for Gz — « corresponding
to the Lévéque solution for parabolic flow is

Nup = 0.6366 Gz'/>

(4)

The neglect of curvature is less serious in this case [7]. Com-
bining equation (4) with the asymptotic value of 5.784 for Gz — 0
yields the trial expression

(Nup/5.784)r = 1 4 (Gz/82.5)/ ()

The five coeflicients computed by Drew [8] for the Graetz [3]
series solution for this case are sufficient only for Gz <130.
Equation (5) with n = 9/4 agrees within 6 percent. The values
obtained by Rosenberg [9] for higher Gz by numerical integration
of the differential energy balance fall as much as 10 percent above
equation (5) with # = 9/4 but may be in error by this much or
more.

Solutions and Correlation for the Flat Plate

Pohlhausen {10] derived a solution for laminar forced convec-
tion from an isothermal flat plate using the velocity field of
Blasius [11] and making the usual assumptions of boundary layer
theory. He evaluated the integral in his solution numerically for
Pr from 0.6 to 15. TFisher and Knudsen [12] used the more
precise values obtained by Howarth [13] for the Blasius solution
and evaluated the integral for Pr 10—#(10)10%, Additional
results for low Pr have been obtained by Grosh and Cess [14] and
by Gregg and Sparrow [15]. The asymptotic solutions given by
Schlichting and Kestin [16] can be expressed as

Nu, = 0.5642 Re, /> Pr'/2 for Pr — 0

(6)
and

Nu, = 0.3387 Re,/: Pr'/* for Pr — = )

Journal of Heat Transfer

A preliminary examination indicated that none of the computed
values were for effectively small Pr. Hence a set of consis-
tent values was calculated for the entire range of Pr using the
boundary layer model which has the solution: .

Nu, = 0.3387 Re,'/? Pr'/* f(Pr) (8)
where
f(Pr) = 1.476/Pr'/* f ¢S dngy 9)
0

Values of f(Pr) obtained by numerical integration are given in the
expanded version.

Nu, has a decreasing dependence on Pr as Pr inecreases.
Therefore to avoid a negative value of n in equation (1) 1/Nu, is
taken as the dependent variable. The trial expression resulting
from the combination of equations (6) and (7) is then

0.5642 Re,"/* Pr'/¢/Nu, = [1 4+ (Pr/0.0468)%/°)"/* (10)

The various numerical solutions for the flat plate are compared in
Fig. 1 in the form suggested by Churchill and Usagi [2]. Some
of the values of Pohlhausen [10] and of Fisher and Knudsen [12]
for high Pr fall slightly below unity which is the lower bound
provided by equation (6) but otherwise the computed values
reveal only trivial discrepancies. Some dissymmetry is apparent
about the central value of Pr = 0.0468 but all of the values are
represented within about 1 percent by n = 4.

Acrivos [17] proposed the equivalent of equation (10) with
n = 3 for the representation of all wedge flows including the flat
plate. Analysis of the computed values which he graciously
supplied indicates that n 3 provides an excellent fit for flow
normal to a plate but confirms that the best value of 7 increases
to 4 with decreasing wedge angles.

Re-expression of equation (10) with n = 4 in terms of Nup
and Gz, and neglecting the difference between 7', and T', yields

(11)

as an asymptotic solution for the inlet of a tube. For Pr — 0
equation (11) reduces to equation (4) which was previously
utilized for Gz — o in plug flow.

Nup = 0.6366 Gz'/2/[1 + (Pr/0.0468)%/%]'/t

Correlations for Developing Flow in a Tube

Prior Work. Kays [18] obtained results for developing flow by
numerical integration. He used the theoretical solution of
Langhaar [19] for the longitudinal velocity field and neglected
radial convection.

Ulrichson and Schmitz [20] carried out numerical calculations
for developing flow for Pr = 0.7 using the Langhaar solution for
the longitudinal velocity but also the radial component obtained

aucust 1973 / 417
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from the continuity equation. They plotted but did not tabulate
values for 4 < Gz < 786. Additional results for Pr = 0.4 and
0.08 are given graphically by Ulrichson [21]. (Note: the
abscissa of the plots in Ulrichson and Schmitz should be labeled
X /4Re,Pr which is equivalent to 2/DRepPr in the Nomeneclature
of this paper rather than 4X /Re,Pr.)

Rosenberg and Hellums [22] solved the momentum and con-
tinuity equations as well as the energy equation numerically for
developing flow in the inlet of an isothermal tube. The test
caleulations of Rosenberg [9] for plug and fully developed flow
were found to be in reasonable agreement with other solutions
except at high Gz. The computed values for developing flow for
Pr = 0.001, 0.70, 2.0, and 1000 and Gz as high as 7 X 10® were
tabulated by Rosenberg. They note that Kays’ values for Pr =
0.7 erroneously approach the limiting solution for plug flow as
Gz increases and hence conclude that his results are in serious
error due to the neglect of radial convection. However they
concede that their results for Pr = 1000 are as much as 20 percent
below the Graetz solution for parabolic flow which should be a
lower bound.

Manohar [23] also solved this same set of equations by a finite-
difference method for Pr = 0.7. He asserts that his results are an
improvement over those of Ulrichson and Schmitz in the inlet
region. In response to an inquiry he confirms that his Curve 2,
representing the values of Ulrichson and Schmitz in Fig. 1 of his
article, is misplotted and should be only slightly above Curve 3.
His Curve 1 representing the computed values of Kays is simi-
larly plotted too high. He graciously supplied a print-out of his
computed values for use in this investigation.

All of the solutions above neglect the effect of longitudinal
conduction. Based on the computations of Munakata [6] this
assumption is probably reasonable for Pr Re >10. Rosenberg
and Hellums {22] included in their study the effect of physical
property variations and conclude that these variations may have
a significant effect.

Development. The following correlating equation for all Gz
and Pr was constructed by combining equation (3) with n = 8/3
as an asymptotic solution for Gz — 0 and equation (11) with 1.7
arbitrarily added to the left side as an asymptotic solution for
Gz —

Nu + 1.7
5.357[1 + (Gz/97)*/%)"/s

_ [1 n ( Ga/T1 >"/2]1/”
= [1 -4 (Pr/0.0468)/%'/2[1 4 (Gz/97)"/5"/*
(12)
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The various computed values are plotted in the suggested form in
Fig. 2. A curve representing the Graetz solution for plug flow is
included by setting Pr = 0 in the coordinates. This curve is
presumably an upper bound for all Pr and Gz in developing flow,
It appears to be a useful bound for large Gz but not for small Gz
since Nup approaches 5.784 rather than 3.657 leading to the high
values in Fig. 2.

At first glance the various computed values appear to scatter
bewilderingly. However it should be noted that the very small
range of this plot as opposed to the conventional plot of log Nup
versus log Gz tends to exaggerate the deviations. Actually, the
computed values of Rosenberg for Pr = 0.7, 1.0, and 2.0 and
Manohar for Pr = 0.7 and the curve representing values read
from the plot of Ulrichson for Pr = 0.7 are in reasonable agree-
ment over the central range of Gz. The values of Kays ave
obviously in inereasing error as Gz increases as nated by all of the
other investigators. This error must be primarily due to failure
to achieve convergence in the numerical calculations. Either the
effect. of Pr as introduced by equation (11) or the values of
Rosenberg for Pr = 0.001 and 1000 and of Ulrichson for Pr =
0.08 and 0.40 are in serious error. Comparison of these values
with the curve representing plug flow suggests that the numerical
integrations for small Pr may not take the velocity distribution
into account properly. The values of Rosenberg for Pr = 1000
generally fall below unity in Fig. 2 and for large Gz even below
the scale of the figure. Since these computed values do not show
a consistent pattern and do not appear to converge to the limiting
solutions they are tentatively presumed to be in error. The
values of Rosenberg for Pr = 0.7, 1.0 and 2.0 are self-consistent
but fall below unity for large Gz. Unfortunately the calculated
values of Ulrichson do not extend into this region and the calcu-
lated values of Manohar become erratic for Gz >15000.

Equation (12) with n = 8/3 appears to provide a reasonable
representation for all Gz for those computed values in which the
most confidence can be placed. This expression appears to be
somewhat ungainly but is probably the simplest possible expres-
sion which converges to the chosen limiting conditions for both
large and small Pr and Gaz.
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Unsteady Stagnation Point Heat Transfer due to
Unsteady Free Stream Temperature

D. R. JENG! and R. S. REDDY GORLA?

THE UNSTEADY heat transfer processes in steady flow caused by
time dependent surface temperature and surface heat flux have
been studied extensively (see [1]® for literature citation). A
more realistic but more complicated problem is to investigate the
transient heat transfer when a solid body initially at an uniform
temperature is placed in a stream having a time-varying tempera-
ture or heat flux, In 1963, Lyman [2] reported a Kerman-
Pohlhausen type analysis for unsteady heat transfer in the
ncighborhood of a two-dimensional stagnation point of an air
stream impinging at right angles to the solid wall, when the free-
steam temperature of the air has a step change. His results
show a physically unlikely behavior that the time required for the
heat to penetrate thermal boundary layer goes to infinity as the
thermal boundary layer thickness tends to zero. This difficulty
was attributed to the integral method of solution and the asswunp-
tion that heat is added to the boundary layer by convection
alone. The main objective of the present paper is to re-investi-
gate the problem considered in [2] but for wide range of Prandt!
number Pr.

Assuming steady, incompressible flow with constant properties
and negligible dissipation, the velocity at the edge of the boundary
layer near a two-dimensional stagnation is Kz where K is a con-
stant and z is measured along the surface from the stagnation
point. Let y represent the distance normal the surface. The
velocity components w and » in z and y directions, respectively,
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may be written as u = Kzf'(n) and v = — (»K)/*(n) where
7 = y(K/»Y"/* and v denotes the kinematic viscosity. The func-
tion f(n) satisfies Falkner and Skan equation with 8 = 1 and its
solution is well known [3]. Thus, no further consideration is
necessary for the velocity field. For the temperature field, our
analysis will center at the case when the free stream temperature
initially at 7'; is subjected to a step change to 7. The linearity
of the energy equation permits the use of a superposition tech-
nique to generalize the step function results obtained previously
to any arbitrary free stream temperature variation with time,
To(t) for t > 0. The governing energy equation for the problem
considered shall be formulated for the fluid (with the subscript f)
and the solid (with the subscript s). Introducing the dimension-
less temperature 8 = (1" — 7;)/(Tw — T';) and the dimensionless
time 7 = Ki¢/Pr into the energy equations near the stagnation
point, we have,

for fluid n > 0

o0 02 o0
or o T o (1)
for solid n < 0
2
and the initial and boundary conditions then become,
for v < 74
Or(n,0) = 0 (3a)
01Ny 7) =1 (3b)
0,0, 7) = ajfa(—?lﬂ =0 (3¢)
fort > 74
Os(n, Te) = O7:(n) (4a)
07(1ey T) = 1 (4b)
0u(n, Tix) = 0 (4c)
0s(— @, 7) =0 (4d)

and at the interface,
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transient heat transfer when a solid body initially at an uniform
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Pohlhausen type analysis for unsteady heat transfer in the
ncighborhood of a two-dimensional stagnation point of an air
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steam temperature of the air has a step change. His results
show a physically unlikely behavior that the time required for the
heat to penetrate thermal boundary layer goes to infinity as the
thermal boundary layer thickness tends to zero. This difficulty
was attributed to the integral method of solution and the asswunp-
tion that heat is added to the boundary layer by convection
alone. The main objective of the present paper is to re-investi-
gate the problem considered in [2] but for wide range of Prandt!
number Pr.

Assuming steady, incompressible flow with constant properties
and negligible dissipation, the velocity at the edge of the boundary
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may be written as u = Kzf'(n) and v = — (»K)/*(n) where
7 = y(K/»Y"/* and v denotes the kinematic viscosity. The func-
tion f(n) satisfies Falkner and Skan equation with 8 = 1 and its
solution is well known [3]. Thus, no further consideration is
necessary for the velocity field. For the temperature field, our
analysis will center at the case when the free stream temperature
initially at 7'; is subjected to a step change to 7. The linearity
of the energy equation permits the use of a superposition tech-
nique to generalize the step function results obtained previously
to any arbitrary free stream temperature variation with time,
To(t) for t > 0. The governing energy equation for the problem
considered shall be formulated for the fluid (with the subscript f)
and the solid (with the subscript s). Introducing the dimension-
less temperature 8 = (1" — 7;)/(Tw — T';) and the dimensionless
time 7 = Ki¢/Pr into the energy equations near the stagnation
point, we have,

for fluid n > 0

o0 02 o0
or o T o (1)
for solid n < 0
2
and the initial and boundary conditions then become,
for v < 74
Or(n,0) = 0 (3a)
01Ny 7) =1 (3b)
0,0, 7) = ajfa(—?lﬂ =0 (3¢)
fort > 74
Os(n, Te) = O7:(n) (4a)
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and at the interface,
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Table 1

Pr 0.01 0.1 0.7

Neo 35.72 11.44 4,95

Tor 50,122 6.224 1.089

Pr 100.0 200.0 300.0

e 0.82 0.66 0.58

Tu 0.0178 0.0112 0.0087
0,00, 7) = 6,0, 1) (5a)
20,0, T) 619 (0, 7')

by L =y (5b)
on o7

In the foregoing, U, denotes the free stream velocity, « the
thermal diffusivity, and & the thermal conductivity. Before
proceeding further, the boundary conditions (3b) and (4b) require
some explanation, Mathematically, 7., should be replaced by o,
however, we have introduced a fictitious distance,* y. (the
corresponding dimensionless coordinate will be %,,). This means
that the step change in free stream temperature will be trans-
mitted instantly to the fluid immediately outside the region
¥ = Ve, however, the redistribution of the temperature in the
region y < y» will not be instantaneous. The dimensionless
transit time 7, is defined such that it corresponds to the time
required for the thermal front to penetrate the distance 7.
Thus, for certain interval of time following a step change in the
free stream temperature, there is no change in the temperature in
the solid so that the energy equation in the boundary layer may be
decoupled from that of solid and treated separately.

Applying the Laplace transformation to (1) and (3) with
respect to 7 and assuming small 7, since 7 < 7,, we now seek
the asymptotic solution with respect to large Laplace transform
variable p. The result is

fdn} >
=0

X U 77)(47)"/2”(7fc< \/T"> (6)

Os(n, ) = GXp{

where U, s satisfy Ug(n) = 1 and
Prf’ Prife
20, () + Una"(n) — <——§£ + Tj—) Un_i(n) = Oforn > 1
(7)
with
Ui(ne) = Us(w) = ——— = Un(ne) = 0

Using the appropriate boundary conditions, a set of differential
equations generated by (7) for n = 1 to 5 are solved successively
on an IBM 360 computer by making use of the fourth order
Runge-Kutta method of numerical integration procedure. A
value has to be assigned for 5, such that the obtained solution
shows little further change for 7 larger than 7.. The values of
the dimensionless penetration thicknesses 7, were determined for
Prandtl numbers ranging from 0.01 to 1000, using the data ob-
tained for U,(n) where n varies from 1 to 5. This was accom-
plished by choosing the value of 7 at which all the values of U,
(n) for n varying from 1 to 5 become less than or equal to 0.01.
The numerical values of the dimensionless penetration thickness
have been listed in Table 1. The complete data of U.(n) are
compiled in refevence [1] and will not be given here. The transit
times are then obtained by (6) using the condition that 0,
assumes a value of 0.01 at = 0.01. These results are also in-
cluded in Table 1.

For all times greater than the transit time 7., heat will be
transferred from the fluid to the solid. It is now required to

1In this paper, we defined y. as a thermal boundary layer thick-
ness which has a different physical meaning from an ordinary thermal
boundary layer thickness.
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Values of dimensionless penetration thickness and transit time for a range of Prandtl numbers

1.0 7.0 10.0 50.0

3.76 1.79 1.64 - 0 08

0.809 0.149 0.112 0.0305
400.0 500.0 1000.0

0.54 0.50 0.39

0.0070 0.00605 0.00382

consider the interaction of fluid and solid. In order to facilitate
the analysis, we further introduce 7* = 7 — 74 into equationg

(1) to (5). The solution of (2) to satisfy (4c) and (4d) is given
by [4] as
7 ~
Os(n, 7%) = kwf 0u($)r* — )/
A 0
Qg
772
X exp §— - ” ¢ (8)
4—(t* ~{)
&y
and
00,0, 7*) _ (o Y f,(r*)
5o T\ i/ ©)
on o, (rT*)

where #,(7*) is an unknown interface temperature to be deter-

mined. Using (9), the boundary condition (5) may be rephrased
as
06,0, * Q6,(0, *
A0 _ 9050, ”
on (m7*)/2
where

ke s\
Q=" —f>
kr \as
The solution of (1) with (6) as an initial condition and (10) ag
boundary condition is then obtained by a finite-difference
numerical method. A detailed deseription is given in reference

1.

—— Present Results

0.8
. -~~Calculated from
0.6] Ret.{91]
O
0.4
0.21
01 2 L] L] T J 9'” ‘IO
0.l i 10 10 10 1o 10 10 10 10 1) 10
Fig. 1 Comparison of transient interfuce temperature for Pr = 0.7
1.0
0.81
0.6
e
0.4+
Q.2
0 T
0.0l 0.1 I 10 IO IO 10 10

Fig. 2 Transient interface temperature for Pr = 7.0, 10, and 100
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A sequence of numerical results for transient interface tem-
perature was obtained with the property ratio £ and Prandtl
pumber as parameters. They are presented graphically in
Figs. 1 and 2. For a given Prandtl number, time required to
attain steady state increases with increasing values of (1. For
example, let us consider air (Pr = 0.7) with a free stream velocity
of 200 ft/sec impinging normal to the axis of a cylindrical asbestos
rod of one foot radius. For this condition, the parameter K =

g%‘—" = 400 sec™* and £ = 51 (the properties of air and asbestos
v

have been obtained at a reference temperature of 145 deg F).
From Fig. 1 we find that the dimensionless time required for the
interface temperature 8, to attain one-half of its steady state
valueis 1.1 X 104 or the time is about 19 sec.  If one replaces the
ashestos rod by an aluminum rod with other conditions un-
changed, the time is 962 sec. (This case corresponds to £ =
4034.) On the other hand, if 2 is fixed, the dimensionless time
required for &, to attain steady state decreases with increasing
Prandtl numbers, Lyman [2] reported an equation for transient
interface temperature obtained by the integral approach. The
numerical values have been calculated by the authors using his
equation for air and have been shown in Fig. 1 for the sake of
comparison. The agreement is good for very large values of 7
but some deviation is noticed for 7 < 105,

The heat flux at the interface is

K\
(o = ——]Cf = —kf(Tm —_ Ti) ; 0/(0,7') (11)

and the corresponding Nusselt number is

LU\
G —
™\ K

Nu =~ = —(Rey)'0,/(0 2
u (T = Ties (Ren)0,(0, 7) (12)
where L is a characteristic length.
By virtue of (50) and (9), (12) may be written as
o Ou(r* ]
Nu(Rez) ™ '/2Q-1 = — ---»Ll)‘ for7*> 0 (13)
(rr*)'/:

and with the known values of 8,.(r*) presented in figures, the
value of Nu(Rez) ™'/ Q-1 may be obtained numerically. Caleu-
lation of (13) for a Prandtl number of 0.7 are made and it is of
interest to note that the dimensionless group Nu(Rer) ~'/* Q-1is
independent of & until 7* assumes a value of 102 It is expected
when 7% — o« the Nusselt number approaches zero value.
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Lateral Heat Transfer by Conduction and Radiation
Along Two Parallel Plates—an Analogy Between
Surface and Gaseous Radiation

P. S. JAGANNATHAN! and S. H. CHAN!

Introduction

LATERAL HEAT TRANFER along two long parallel plates plays an
important role in several engineering problems such as thermal
performanece of multilayer insulation systems, effectiveness of
fins, ete. [1, 2, 3].2  Since earlier investigators have analyzed this
problem only for the ease of specularly reflecting side walls [4, 5]
the present study will extend the problem to the case of diffusely
reflecting side walls. It is found that the present problem of con-
duction and radiation along two long parallel diffuse surfaces
spaced by nonparticipating medium is similar to the Viskanta’s
model of conduction and radiation [6] in an absorbing, emitting,
and scattering medium and that the Viskanta’s numerical solution
can be used as a good approximate solution to the present prob-
lem. Also found is an analogy between the diffusing surfaces
and a radiating gas.

Analysis

The physical system under investigation is shown in Fig. 1{(«)
where the two plates are separated by a nonabsorbing dielectric
of refractive index n. All boundaries are gray and diffuse and
the side walls 3 and 4 are externally insulated to represent, for
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example, one layer of an evacuated multilayer insulation system
Since the length L3> the spacing b and end temperatures uniform,
the end surface radiosities are assumed to be uniform. This
approximation makes the problem one-dimensional.

The governing equation for the dimensionless temperature dis-
tribution can be readily shown as [3, 7]

d*fdrr = N1 — p)(% — H*) 1)
where
B* —_—
H* = 2L 1 — r/V 72+ 0.25]

+ BQi[I — (T0 — T)/\/m

+ f "0 = )8+ pHA0.25/2)/10.25 + (¢ — 70} dr
0
(2)
Bi* = (L — p1) + 2o { Ba*(V 102 + 0.25 — 70)

+ fﬂ)[(l, — p)0t + pH* (1 — 7/ 12 + 0.25) dr}  (3)
0
By* = (1 — pa)fat + 292{31*(\/m — 7o)

+ f (L — )8 + pHH (1 — (70— 1)/
0

T=00=1,17=71,0=10 ®)

The nondimensional heat flux is given by

@:—Cl—gl—}—lX\I/(O) 6)
dr o 4

where
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A sequence of numerical results for transient interface tem-
perature was obtained with the property ratio £ and Prandtl
pumber as parameters. They are presented graphically in
Figs. 1 and 2. For a given Prandtl number, time required to
attain steady state increases with increasing values of (1. For
example, let us consider air (Pr = 0.7) with a free stream velocity
of 200 ft/sec impinging normal to the axis of a cylindrical asbestos
rod of one foot radius. For this condition, the parameter K =

g%‘—" = 400 sec™* and £ = 51 (the properties of air and asbestos
v

have been obtained at a reference temperature of 145 deg F).
From Fig. 1 we find that the dimensionless time required for the
interface temperature 8, to attain one-half of its steady state
valueis 1.1 X 104 or the time is about 19 sec.  If one replaces the
ashestos rod by an aluminum rod with other conditions un-
changed, the time is 962 sec. (This case corresponds to £ =
4034.) On the other hand, if 2 is fixed, the dimensionless time
required for &, to attain steady state decreases with increasing
Prandtl numbers, Lyman [2] reported an equation for transient
interface temperature obtained by the integral approach. The
numerical values have been calculated by the authors using his
equation for air and have been shown in Fig. 1 for the sake of
comparison. The agreement is good for very large values of 7
but some deviation is noticed for 7 < 105,

The heat flux at the interface is

K\
(o = ——]Cf = —kf(Tm —_ Ti) ; 0/(0,7') (11)

and the corresponding Nusselt number is

LU\
G —
™\ K

Nu =~ = —(Rey)'0,/(0 2
u (T = Ties (Ren)0,(0, 7) (12)
where L is a characteristic length.
By virtue of (50) and (9), (12) may be written as
o Ou(r* ]
Nu(Rez) ™ '/2Q-1 = — ---»Ll)‘ for7*> 0 (13)
(rr*)'/:

and with the known values of 8,.(r*) presented in figures, the
value of Nu(Rez) ™'/ Q-1 may be obtained numerically. Caleu-
lation of (13) for a Prandtl number of 0.7 are made and it is of
interest to note that the dimensionless group Nu(Rer) ~'/* Q-1is
independent of & until 7* assumes a value of 102 It is expected
when 7% — o« the Nusselt number approaches zero value.
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Lateral Heat Transfer by Conduction and Radiation
Along Two Parallel Plates—an Analogy Between
Surface and Gaseous Radiation

P. S. JAGANNATHAN! and S. H. CHAN!

Introduction

LATERAL HEAT TRANFER along two long parallel plates plays an
important role in several engineering problems such as thermal
performanece of multilayer insulation systems, effectiveness of
fins, ete. [1, 2, 3].2  Since earlier investigators have analyzed this
problem only for the ease of specularly reflecting side walls [4, 5]
the present study will extend the problem to the case of diffusely
reflecting side walls. It is found that the present problem of con-
duction and radiation along two long parallel diffuse surfaces
spaced by nonparticipating medium is similar to the Viskanta’s
model of conduction and radiation [6] in an absorbing, emitting,
and scattering medium and that the Viskanta’s numerical solution
can be used as a good approximate solution to the present prob-
lem. Also found is an analogy between the diffusing surfaces
and a radiating gas.

Analysis

The physical system under investigation is shown in Fig. 1{(«)
where the two plates are separated by a nonabsorbing dielectric
of refractive index n. All boundaries are gray and diffuse and
the side walls 3 and 4 are externally insulated to represent, for
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example, one layer of an evacuated multilayer insulation system
Since the length L3> the spacing b and end temperatures uniform,
the end surface radiosities are assumed to be uniform. This
approximation makes the problem one-dimensional.

The governing equation for the dimensionless temperature dis-
tribution can be readily shown as [3, 7]

d*fdrr = N1 — p)(% — H*) 1)
where
B* —_—
H* = 2L 1 — r/V 72+ 0.25]

+ BQi[I — (T0 — T)/\/m

+ f "0 = )8+ pHA0.25/2)/10.25 + (¢ — 70} dr
0
(2)
Bi* = (L — p1) + 2o { Ba*(V 102 + 0.25 — 70)

+ fﬂ)[(l, — p)0t + pH* (1 — 7/ 12 + 0.25) dr}  (3)
0
By* = (1 — pa)fat + 292{31*(\/m — 7o)

+ f (L — )8 + pHH (1 — (70— 1)/
0

T=00=1,17=71,0=10 ®)

The nondimensional heat flux is given by

@:—Cl—gl—}—lX\I/(O) 6)
dr o 4

where
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Fig. 2 Comparison between exponential integrals and their approxima-
tions

V() = 231*(\/m3 —7)
— 9BV (0 — 1) + 0.25 — 70 + 7)
+2flﬂ—mw+ﬂmu—h—wy
0
X \/m dr’

- zf [(1 — p)0* + pHM[L — (r' — 1)/
X V@ =1 +025]dr' (1)
In the above equations, £ Py and p; ave the reflectivities of

side walls, walls 1 and 2, respectively. 'The other dimensionless
quantities are defined as

0 =1T/T, 6, =TTy, 7 = x/2h, 70 = L/2h, N

23 i
=M, k, =k, -+ &,
k, h
Q/h Qr/2h
=D o XEED g
l&t i ”’ T
h  2h

= By/ntc Ty, By* = By/n2cT, H* = H/neT\*

where B is the radiosity, H the incident radiation, k, and k, the
thermal conductivities of the side walls and the spacer, re-
spectively, and @ and @5 the total and radiant heat fluxes, respec-
tively. The equivalent length 7o which depends on the system

422 / aucusT 1973

Downloaded 26 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

1.0 T T T T 1.0

\
N
\\ —= APPROXIMATE(VISKANTA)
N
0.8 :\ NN EXACT q09
>,
D « \\
L X €,2€,= 1,0
0.6 F ~~\\\\\ \\’ 2 40.8
H" SN \\\ C]
AR
0.4l ) oz
€=¢€,=5 .
N =10 N
We=0.5 AN
0.2 ¢ A 40.6
61=0.5 N
\\
Tox | \
0.0 ] 2 ) I 0.5
0.0 02 0.4 0.6 0.8 1.0
T

Fig. 3 Comparison hefween exact and approxfmate results for temper.
ature distribution and incident radiation

geometry is similar to the optical path length in gaseous radia-
tion, and radiation conduction parameter N determines the rela-
tive magnitude of the two modes of heat transfer.

Now, consider the problem of combined conduction and radia~
tion heat transfer through an absorbing, emitting and scattering
gas bounded by two isothermal walls maintained at two different
temperatures 71 and 7' (see Fig. 1(b)). On the assumption of a
gray medium, the temperature distribution in the gas was ob-
tained by solving the following equation [6]

20 dntely?
drt kB

(1 — wo)(6* — ) (8)
where
7(r) = Bi*Ex(r)/2 + Bo*Eao(ry — 7)/2

+ f” {[(1 — w0 + woﬂ]El(lT - T'l)/Q} dr'  (9)
0

Bi* = (1 — p1) + 201{B2*Es(ro)
+f[u—mm+mmmm (10)
0
By* = (1 — 92)924 4 sz{B1*Ea(T0 —7)

+ fm [(1 = w0)f* + wopl Balre ~ m)dr} (1)
0

with the boundary condition given by equation (5) and the
radiant flux given by

Y(r) = 2B *E3(r) — 2B:*Es(rg — T)

+ 2 fr [(1 — w)® + wenlBa(r — 7') dr!
0

-7 fﬂ (A = w0)f* + woplfix(r’ — 7)dr’ (12)

The total heat flux through such a gas is given by

{
q = m/cﬂBlel—f + n2oT14(0)

7 =70

(13)

Complete analogy between the two sets of governing equations,
i.e., equations (1)-(7) and equations (8)-(13), can be readily
shown. First consider the governing equation (1). By choosing

p = wo, k, =k, oh =B, and H* = 9 (14)

equation (1) becomes identical to equation (8). Furthermore if
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the shape factors can be approximated by the respective ex-
ponentinl integrals Ei(r), s (r), and Es(r) as

0.25/[0.25 + 7%* =~ Ey(r)
1 — 7/V712 + 0.25 ~ Eyr)
Vit 4 025 — 7 ~ By(r)

and if Q7L s set to be equal to ¢, then equations (2)-(7) are
sdentical to equations (9)-(13). The foregoing approximations
are good as illustrated in Fig. 2, especially since such approxima-
tions are better than the well established exponential kernel
approximation which approximates exponential integrals by
exponential functions [7]. Because the use of the exponential
kernel approximation generally yields an excellent temperature
distribution or heat flux etc., one can expect the same by using
the above approximations as can be seen in Fig. 3. Conse-
quently the existing solution obtained by Viskanta [6] can be
used direetly as an approximate solution to the present problem
involving lateral, combined conduction and radiation heat
transfer along diffusely reflecting side walls.

In order to show that the Viskanta’s solution can.serve as a
good approximate solution to the present problem, this approxi-
mate solution must be compared with exact solution of equations
(1)-(7). Because it involves a system of complicated, nonlinear
integro-differential equations, no analytical solution of these
equations is possible. The solutions, therefore, are obtained by
numerical procedures.

Before applying the numerical technique, equation (1) is
integrated twice to obtain an equivalent integral equation in-
cluding the boundary condition as

H(T) =1—-(01 - 02)T/To — N(l — p)

X {fTT’(l - 7/To)6* — H*) dr

0
+ fnr(l — 7' jTo)(0¢ — H*)dr’} (15)

The governing integral equations (2), (3), (4), and (15) are
converted into a set of algebraic equations by discretizing the
definite and indefinite integrals by using the Simpson’s quadrature
formulas. The resulting set of equations have two sets of un-
known H* and 8. The relations are linear in H* and highly non-
linear in . Guessing values of §, the equations are solved for
H* by Gaussian Matrix inversion. Next, the equations are
solved for @ by using direet iteration technique. The entire
process is repeated until convergence is obtained in the value of ¢
as well as H.* However, even if such an elaborate procedure is
used, it is found that the numerical solution still does not con-
verge for all possible values of the six governing parameters, N,
0o, 7o, p, p1, and ps.  Generally speaking the larger the N or 7o,
the less stable is the solution. For example, if NV is chosen as
Inrge as 10 to emphasize the radiation effect and other parameters
are taken as those shown in Fig. 3, the solution converges for
7o = lorless. Fig. 3 shows the case of 7¢ = 1 and the agreement
hetween the approximate and exact numerical solutions is re-
markably good. For larger values of 7o, the agreement could be
expected to be even better because the approximation of the shape
factors by the exponential integrals as shown in Fig. 2 works
better for larger values of 7o, just like the case of replacing the
exponential integrals by the exponential kernal approximation.
Therefore the existing Viskant’a solution for a radiation par-
ticipating medium can be used as a good approximate solution
to the present problem of nonparticipating medium.

In conclusion, the present study shows an analogy between
surface and gaseous radiations. The two long parallel diffuse sur-
faces with an reflectivity p and a spacing h are equivalent to
an absorbing, emitting and scattering medium with a scattering
albedo wy = p and an extinction coefficient 8 = 1/5h.
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The Effect of Changes in Sphere Coating
Reflectance on the Performance of
Integrating Spheres
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reflected flux of radiation
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= reflectance
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I

)

nolUw
i

Introduction

THE INTEGRATING SPHERE has been indispensable in measure-
ments of hemispherical-directional reflectance of substances [I,
2].2 Recently, it has also been used as a flux averaging device in
optical systems [3, 4]. In both applications, chopped incoming
radiation passes through one aperture of the sphere and strikes on
the interior of the sphere wall. Because of the highly reflective
and diffuse coating on the wall, this incoming radiation can
undergo a process of diffuse multi-reflections. As a result, there
are only two zones inside the sphere. The zone which is directly
illuminated by the externalirradiation appears bright to the eye,
as contrasted to the dark shadow zone where illumination is
solely a result of multi-reflections.

An examination of literature reveals that the previous theories
on integrating spheres [5, 6, 7, 8] used only total properties which
offer no perspective as to the performance of the sphere on a
spectral basis. Edwards, et al. [9] derived equations for per-
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the shape factors can be approximated by the respective ex-
ponentinl integrals Ei(r), s (r), and Es(r) as

0.25/[0.25 + 7%* =~ Ey(r)
1 — 7/V712 + 0.25 ~ Eyr)
Vit 4 025 — 7 ~ By(r)

and if Q7L s set to be equal to ¢, then equations (2)-(7) are
sdentical to equations (9)-(13). The foregoing approximations
are good as illustrated in Fig. 2, especially since such approxima-
tions are better than the well established exponential kernel
approximation which approximates exponential integrals by
exponential functions [7]. Because the use of the exponential
kernel approximation generally yields an excellent temperature
distribution or heat flux etc., one can expect the same by using
the above approximations as can be seen in Fig. 3. Conse-
quently the existing solution obtained by Viskanta [6] can be
used direetly as an approximate solution to the present problem
involving lateral, combined conduction and radiation heat
transfer along diffusely reflecting side walls.

In order to show that the Viskanta’s solution can.serve as a
good approximate solution to the present problem, this approxi-
mate solution must be compared with exact solution of equations
(1)-(7). Because it involves a system of complicated, nonlinear
integro-differential equations, no analytical solution of these
equations is possible. The solutions, therefore, are obtained by
numerical procedures.

Before applying the numerical technique, equation (1) is
integrated twice to obtain an equivalent integral equation in-
cluding the boundary condition as

H(T) =1—-(01 - 02)T/To — N(l — p)

X {fTT’(l - 7/To)6* — H*) dr

0
+ fnr(l — 7' jTo)(0¢ — H*)dr’} (15)

The governing integral equations (2), (3), (4), and (15) are
converted into a set of algebraic equations by discretizing the
definite and indefinite integrals by using the Simpson’s quadrature
formulas. The resulting set of equations have two sets of un-
known H* and 8. The relations are linear in H* and highly non-
linear in . Guessing values of §, the equations are solved for
H* by Gaussian Matrix inversion. Next, the equations are
solved for @ by using direet iteration technique. The entire
process is repeated until convergence is obtained in the value of ¢
as well as H.* However, even if such an elaborate procedure is
used, it is found that the numerical solution still does not con-
verge for all possible values of the six governing parameters, N,
0o, 7o, p, p1, and ps.  Generally speaking the larger the N or 7o,
the less stable is the solution. For example, if NV is chosen as
Inrge as 10 to emphasize the radiation effect and other parameters
are taken as those shown in Fig. 3, the solution converges for
7o = lorless. Fig. 3 shows the case of 7¢ = 1 and the agreement
hetween the approximate and exact numerical solutions is re-
markably good. For larger values of 7o, the agreement could be
expected to be even better because the approximation of the shape
factors by the exponential integrals as shown in Fig. 2 works
better for larger values of 7o, just like the case of replacing the
exponential integrals by the exponential kernal approximation.
Therefore the existing Viskant’a solution for a radiation par-
ticipating medium can be used as a good approximate solution
to the present problem of nonparticipating medium.

In conclusion, the present study shows an analogy between
surface and gaseous radiations. The two long parallel diffuse sur-
faces with an reflectivity p and a spacing h are equivalent to
an absorbing, emitting and scattering medium with a scattering
albedo wy = p and an extinction coefficient 8 = 1/5h.
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Introduction

THE INTEGRATING SPHERE has been indispensable in measure-
ments of hemispherical-directional reflectance of substances [I,
2].2 Recently, it has also been used as a flux averaging device in
optical systems [3, 4]. In both applications, chopped incoming
radiation passes through one aperture of the sphere and strikes on
the interior of the sphere wall. Because of the highly reflective
and diffuse coating on the wall, this incoming radiation can
undergo a process of diffuse multi-reflections. As a result, there
are only two zones inside the sphere. The zone which is directly
illuminated by the externalirradiation appears bright to the eye,
as contrasted to the dark shadow zone where illumination is
solely a result of multi-reflections.

An examination of literature reveals that the previous theories
on integrating spheres [5, 6, 7, 8] used only total properties which
offer no perspective as to the performance of the sphere on a
spectral basis. Edwards, et al. [9] derived equations for per-
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formance analysis of their designed integrating sphere reflectom-
eter. Ifrrors were calculated for both specular and perfectly
diffuse samples. This technical brief attempts to follow a dif-
ferent approach by studying the effects of changing of coating
reflectance on the performance of integrating spheres.

Analysis

The analysis is considerably simplified in view of the fact that
the incoming radiation is chopped. This eliminates the effect of
the emitted energy that is received by a detector and reflected
energy becomes the only concern. A model is considered that
consists of a sphere with two cireular apertures, one for incoming
pencil of ray to pass through and the other for detection; both are
considered black for reflected energies. The interior wall of the
sphere is opaque, nongray, and a diffuse emitter and reflector of
radiation. The gas medium inside the sphere is radiatively non-
participating; and diffraction, interference, and polarization ef-
fects areignored.

For any surface element d4 (6, ¢’) on a sphere wall, see Fig. 1,
the radiant flux reflected from the surface can be expressed as

', @', N)
0/
= (0, @', M) I:st(ﬂ’, @', \) sin 5T H\'(¢, ¢, M} 1)

’
where sin Y in the first term on the right emerges as a result of the

. . 1 . .
cosine of the incident ray, cos 3 (m — 6'). By invoking use of the

configuration factor and vecognizing that, for a spherical
geometry, this factor is independent of the area from which ra-
diant flux leaves a surface [10], equation (1) can be rewritten as

0/
RX(aly (nb,; >\) = p)\(el) ¢,; >\) I:HS)\(QQI; ¢”: )\) sin 5

+ 1?1 ff R)\(B”, ¢r/’ /\)dA(H”, ¢”):l (2)
0 A

As noted earlier, there are two zones inside the sphere, a bright
spot (B) and a dark shadow zone (D). Equation (2) can be used
to write, for these two regions,

A A
Ryp = pnHga sin 5 + o <ZD> BExp + pa (
[}

As

Ao)]{)\B (3a)
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Fig. 1T Spherical coordinate system for the integrating sphere
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where position dependency has been omitted for simplicity in gy.
pressions. Both equations (3¢) and (3b) should be solved simy].
taneously for Rap and Bap.  Yet, in practical applications, they
can be used to derive two equations:

A . Ag -
Bap = [(f) oH g\ sin (1/2)6/] [1 ~ o+ o ( L>] l
0 Ao

)

TRONE T
R)\D_ PA Ay (2N Ay (%)

which are more useful in analysis. Iiquation (4) is indispensab]e
in evaluating the signal level and, therefore, the signal-to-noise
ratio for the energy that reaches a detector in the optical system,
Equation (5)is useful to estimate the error that might be involved
if the bright spot on the sphere wall comes into the field of view of
a detector. The latter is particularly meaningful in view of the
fact that, in the case of an integrating sphere reflectometer,
Ryp/Rap ratio provides a means for checking the condition of
uniform irradiation on a specimen. This uniform irradiation is g
prerequisite for directional-hemispherical reflectance to be equal
to hemispherical-directional reflectance according to theory [11].

(3b)

Results and Discussion

It is noted that 4z in equations (4) and (5) is independent of
the area of the aperture for incident radiation Hgx. The sum of
the two areas of the apertures is 4z. - To facilitate comparison of
the performance of the integrating sphere over a broad spectrum,
a MgO coated sphere is considered. An attempt is made to
study the deterioration of the sphere performance due to aging
of the coating. The reflectance of MgO is taken from a paper by
Edwards, et al. [9] in which a 3 hour old coating and a 1 month
old coating are respectively identified as “fresh’” and “aged.”
The reflectance values are used to evaluate ratios Bapresn/-
Rapgeay versus wavelengths, see Fig. 2. The ratio of reflec-
tances pacresh)/Prageay 18 also plotted along the right ordinate.
Ag/A,, being fixed for a given sphere, is suitably chosen as a
parameter. The Ay in the numerator has also been used to com-~
pute a total equivalent field angle for apertures, fz defined as the
angle subtended by Ar = Ap, + Aug, at the center of the sphere,
see Fig. 1. The values of 8z are given along with the parameter
Ap/4d,in Fig. 2 to facilitate comparison and visualization.

Fig. 2 shows clearly that the performance of the integrating
sphere is strongly dependent on the surface property variation.
From 0.6 to 1um, where aging does not lower reflectance appre-
ciably (less that 0.5 percent), reflected flux ratios do not show
marked increase. Kven for small apertures (Az/4, = 0.00759),
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Fig. 2 Curves for ratios of reflected fluxes from shadow zones versus
wavelengths
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the value of this ratio remains low at about 1.2, which implies that
using a fresh coating does not offer great advantage. Toward
either shorter or longer wavelengths, using a fresh coating be-
comes highly desirable. TFor instance, at 2.3um the reflectance
of a fresh MgO coating is only 3.8 percent higher than that of an
aged one. Yet, the reflected energy in the shadow zone from the
former is 83 percent, higher than that from the latter for these
apertures. While increasing Ar/Ao decreases the flux ratio
slightly, it still reaches a high value of 1.6 for Ar/A4, = 0.03016.

An examination of equation (5) shows that the ratio Ras/Eap
can be decreased by either inereasing px or decreasing Ag if the
area of the bright spot is kept unchanged. Unlike Rap, this ratio
is independent of the incoming radiation Hsx. A plot representa-
tive of a typical sphere in working condition with Az/4, =
0.01704 and the field angle of the bright spot 85 = 4 deg is given
in I'ig. 3. The ratios of the flux reflected from the bright spot to
that from the shadow zone can be seen to be high for both fresh
and aged coatings over the entire spectrum. Toward the two
ends of the spectrum this ratio reaches extremely high values.
These are the wavelengths where excessive error might result if
one equates the directional-hemispherical reflectance to the
hemispherical-directional reflectance provided that the latter is
measured by an integrating sphere reflectometer with the bright
spot exposed toward the specimen. This ratio is nevertheless
higher for aged coating rather than for fresh in contrast with what
one might normally expect.

The analysis can also be extended to cases when upper and lower
spheres have different reflectance values. Hsieh and Lee’s work
[12] can be referred to for further information on such analysis.
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Nomenclature

g = gravitational acceleration

m = mass flow rate in film per unit depth

Ry = tube radius

% = axial velocity in film

us = velocity at liquid-vapor interface

u, = potential How velocity at liquid-vapor interface
x = axial distanee below bubble nose

= normal distance measured from tube wall

film thickness

» = potential flow film thickness

absolute viscosity of liquid

nondimensional film thickness, §/Ry
nondimensional potential flow film thickness, 8,/Ro
liquid density

= nondimensional axial distance, x/R
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Introduction

TaE sTEADY-sTATE rise of long bullet-shaped bubbles of gas
(veferred to as Taylor bubbles) in large circular tubes filled with a
liquid of low viscosity was first studied by Dumitrescu [1],5 and
Davies and Taylor [2]. Their work served as the starting point
for the studies of Griffith and Wallis [3], Moissis and Guriffith {4],
Stanley [5], Nicklin, et al. [6], Brown [7], Collins [8], Hsu and
Simon [9], and others. These studies were mainly concentrated
on the bubble rise velocity, bubble stability, pressure drop, shear
stress, and entrance effects in flows in which Taylor bubbles are
separated by slugs of liquid, i.e., two-phase slug flow. Little in-
formation, however, has been obtained on the local liquid-film
thickness around the bubbles. In some heat transfer problems
involving slug flow or single-bubble flow (e.g., reactor coolant
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Fig. 3 Curves for ratios of raidiant flux reflected from bright spot to that
dark zone versus wavelengths

the value of this ratio remains low at about 1.2, which implies that
using a fresh coating does not offer great advantage. Toward
either shorter or longer wavelengths, using a fresh coating be-
comes highly desirable. TFor instance, at 2.3um the reflectance
of a fresh MgO coating is only 3.8 percent higher than that of an
aged one. Yet, the reflected energy in the shadow zone from the
former is 83 percent, higher than that from the latter for these
apertures. While increasing Ar/Ao decreases the flux ratio
slightly, it still reaches a high value of 1.6 for Ar/A4, = 0.03016.

An examination of equation (5) shows that the ratio Ras/Eap
can be decreased by either inereasing px or decreasing Ag if the
area of the bright spot is kept unchanged. Unlike Rap, this ratio
is independent of the incoming radiation Hsx. A plot representa-
tive of a typical sphere in working condition with Az/4, =
0.01704 and the field angle of the bright spot 85 = 4 deg is given
in I'ig. 3. The ratios of the flux reflected from the bright spot to
that from the shadow zone can be seen to be high for both fresh
and aged coatings over the entire spectrum. Toward the two
ends of the spectrum this ratio reaches extremely high values.
These are the wavelengths where excessive error might result if
one equates the directional-hemispherical reflectance to the
hemispherical-directional reflectance provided that the latter is
measured by an integrating sphere reflectometer with the bright
spot exposed toward the specimen. This ratio is nevertheless
higher for aged coating rather than for fresh in contrast with what
one might normally expect.

The analysis can also be extended to cases when upper and lower
spheres have different reflectance values. Hsieh and Lee’s work
[12] can be referred to for further information on such analysis.
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m = mass flow rate in film per unit depth
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% = axial velocity in film

us = velocity at liquid-vapor interface

u, = potential How velocity at liquid-vapor interface
x = axial distanee below bubble nose

= normal distance measured from tube wall

film thickness

» = potential flow film thickness
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nondimensional film thickness, §/Ry
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TaE sTEADY-sTATE rise of long bullet-shaped bubbles of gas
(veferred to as Taylor bubbles) in large circular tubes filled with a
liquid of low viscosity was first studied by Dumitrescu [1],5 and
Davies and Taylor [2]. Their work served as the starting point
for the studies of Griffith and Wallis [3], Moissis and Guriffith {4],
Stanley [5], Nicklin, et al. [6], Brown [7], Collins [8], Hsu and
Simon [9], and others. These studies were mainly concentrated
on the bubble rise velocity, bubble stability, pressure drop, shear
stress, and entrance effects in flows in which Taylor bubbles are
separated by slugs of liquid, i.e., two-phase slug flow. Little in-
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Fig. 2 Normalized liquid film thickness

expulsion), the local film thickness is an important governing
parameter. It was the objective of this work to study the varia-
tion of the liquid-film thickness around Taylor bubbles of different
lengths.

Previous Work

By assuming potential flow conditions at the bubble nose and in
the film, and by assuming that the nose of the bubble was a
portion of a spherical surface, Davies and Taylor [2] determined
the following expression for the local film thickness around
Taylor bubbles:

Ny 1/,
Np — o = 0.165 £/~ 1)

752/2 can be neglected at large values of £ where the film is thin.
The coordinate system is shown in Fig. 1. Equation (1) is
represented by the solid line in Fig. 2. Davies and Taylor also
obtained experimental values for the film thickness in the region
of 2 < £ < 6 using a photographic technique. Their results were
30 percent higher than the predictions of equation (1) and are
shown as circles in Fig. 2. They attributed the discrepancy to
the neglect of the viscous boundary layer effects in the film and

426 / aucust 1973

also to the errors involved in their photographic measurements,
Brown (7] made experimental measurements of the loeal fily,
thickness in regions close to the bubble nose (£ < 1.2) using ph.
tography. His results are shown as rectangles in Fig. 2,

As seen from Fig. 2, these available results were insufficient, ¢,
describe local film' thicknesses over a wide range of axial positioy
(£). The potential flow theory, which neglects viscous effects,
can be expected to apply only at small values of £ (i.e, £ < 1).
The two previously published sets of experimental data togethe,
cover values of £ only up to 6, and also exhibit some disagree.
ment. The present study was undertaken to obtain additiong]
information on local film thicknesses, with emphasis on the range
1 < £ < 12, where viscous effects become important.

Present Study
(a) Theoretical Considerations. The liquid ahead of the
bubble can be assumed to have a uniform velocity profile relative
to the bubble. The flat velocity profile is deformed at the bubble
nose, and laminar boundary layer formation starts at the tube
wall. The effect of this boundary layer is small and can be
neglected for short distances below the nose of the bubble. Ag
the other limit of large distances below the nose, the acceleration
of the film under gravity ceases and the film is supported by wall
shear stress. Hence, the film thickness reaches an asymptotic
value which should approach the value predicted by falling film
theory if wave motion is disregarded. In between the nose
region and the asymptotic region there should exist a transition
region where potential flow aspects and boundary layer flow as-
pects are both important.

For this transition region, an approximate model for the
velocity distribution in the liquid film can be formulated by:

(e¢) negleeting curvature effects in view of small film thickness
compared with the tube radius;

(b) assuming that the laminar viscous wall-shear force and
gravity force balance each other, as in falling film theory;

(¢c) equating the velocity at the liquid-vapor interface to that
obtained from potential flow theory.

In (b) it is assumed that the axial convective term is small com-
pared with wall-shear and gravity forces. Neglecting the density
of the vapor in the bubble compared with the density of the
liquid, the laminar film velocity profile is:

w =25y - 1y @)
7
The mass flow rate in the film can be obtained by integrating
equation (2) as

. pyé?
m = ——

3 @)

From equation (2), the velocity at the liquid-vapor interface
is obtained as:

pgo?
= D7 4
Us o “)
Using assumption (¢)
52
w =y = (5)
24
But,
M = Uupby 6)
Combining (4) and (6)
2
= Pgoto, )
2p

Equating (3) and (7)
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Alternately, if the Blasius velocity profile were used in place of
equation (2), the ratio 7,/n would be 0.656—a difference of only
1.5 percent.

Tquation (8) is represented by the broken line in Fig. 2.

Experiments were performed to complement the analysis
deseribed in the foregoing. The experimental program and
results are presented in the following.

{b) Experimental Work and Results. Air bubbles of different
lengths were introduced into a 1 in. ID tube filled with water.
Toecal film thickness measurements were made along the bubble
using a new capacitance measurement technique. The details
of the experimental setup and capacitance technique are given in
reference [10]. In normalized coordinates of 7 versus £ the
experimentally determined bubble shapes were found to be
independent of bubble length, as expected. Due to the steep
variation of film thickness with axial position in the nose region
and the particular design of the capacitance gauge, no accurate
measurements of film thickness could be made in the region of
£ < 1.0. TFortunately, for application to heat transfer problems,
major interest is in the region of thin fitm (¢ > 1). Thus, data are
presented as solid cireles in Fig. 2 only for values of £ > 1.0.

The agreement between equation (8), the present experimental
data and the data of Davies and Taylor is very good in the region
of 1 < § < 10. Tt is seen that for £ > 1, all data lie noticeably
higher than the theoretical curve for potential flow. This con-
firms our expectation that viscous thickening of the liquid film
hecomes significant within a short distance below the nose of the
bubble. In the region £ > 1, these data are seen to agree with the
earlier results of Davies and Taylor, but do indicate a thicker
film than the results of Brown. Aside from possible uncertainties
due to different experimental techniques (photographic versus
capacitance measurement) no explanation was found for this
discrepancy.

In the region of high £, one would not expect equation (8) to be
applicable due to onset of turbulent flow and wave formation.
Tor the experimental conditions for this work, the measured film
thicknesses appeared to agree with equation (8) up to & ~ 10.

Conclusion

The results of this study indicate that liquid films around
Taylor bubbles are significantly thicker than predicted by poten-
tial flow theory. In the region 1 < & < 10, the experimentally
measured film thickness agreed well with the approximate
analysis proposed.
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Dependence of Friction Factor Upon Liquid Level in
Two-Phase One-Gomponent Stratified Flow

M. A. VAN DROMME and L. J. HELLINCKX!

Nomenclature

a = half-width of interface
b = wetted perimeter
d = tube diameter
f = friction factor
h = height of arc of wetted perimeter
x, y = cartesian coordinates
B}, = specific kinetic energy
F = frictional force acting on liquid at wall
= force acting on unit volume of liquid
rate of discharge, volumetric
= Reynolds number (4pQ/bu)
form factor
one-half arc of wetted perimeter
wetted area
= polar coordinates
integration variable
dynamic viscosity
= liquid-section area
= density of liquid
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Subsecripts
L = liquid
V' = vapor

Introduction

IN A STUDY on condensation of pure substances in horizontal
tubes, Rufer and Kezios [1]? proposed a model describing the
case of stratified two-phase flow of vapor and condensate with
annular condensation superimposed. This model resulted in an
equation giving the slope of the vapor-bulk liquid interface along
the tube, which was derived using the principles of conservation
of mass, energy, and momentum. Within this equation coefli-
cients appear that take into account the variation of friction
factors with liquid level for both vapor and liquid phase. Values,
or an expression for these so-called form factors, were not given.

In another work, Sarma and co-workers [2] studied the de-
pendence of liquid level on void fraction in the same model.
Therein the value of the ratio of the form factors for vapor and
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Alternately, if the Blasius velocity profile were used in place of
equation (2), the ratio 7,/n would be 0.656—a difference of only
1.5 percent.

Tquation (8) is represented by the broken line in Fig. 2.

Experiments were performed to complement the analysis
deseribed in the foregoing. The experimental program and
results are presented in the following.

{b) Experimental Work and Results. Air bubbles of different
lengths were introduced into a 1 in. ID tube filled with water.
Toecal film thickness measurements were made along the bubble
using a new capacitance measurement technique. The details
of the experimental setup and capacitance technique are given in
reference [10]. In normalized coordinates of 7 versus £ the
experimentally determined bubble shapes were found to be
independent of bubble length, as expected. Due to the steep
variation of film thickness with axial position in the nose region
and the particular design of the capacitance gauge, no accurate
measurements of film thickness could be made in the region of
£ < 1.0. TFortunately, for application to heat transfer problems,
major interest is in the region of thin fitm (¢ > 1). Thus, data are
presented as solid cireles in Fig. 2 only for values of £ > 1.0.

The agreement between equation (8), the present experimental
data and the data of Davies and Taylor is very good in the region
of 1 < § < 10. Tt is seen that for £ > 1, all data lie noticeably
higher than the theoretical curve for potential flow. This con-
firms our expectation that viscous thickening of the liquid film
hecomes significant within a short distance below the nose of the
bubble. In the region £ > 1, these data are seen to agree with the
earlier results of Davies and Taylor, but do indicate a thicker
film than the results of Brown. Aside from possible uncertainties
due to different experimental techniques (photographic versus
capacitance measurement) no explanation was found for this
discrepancy.

In the region of high £, one would not expect equation (8) to be
applicable due to onset of turbulent flow and wave formation.
Tor the experimental conditions for this work, the measured film
thicknesses appeared to agree with equation (8) up to & ~ 10.

Conclusion

The results of this study indicate that liquid films around
Taylor bubbles are significantly thicker than predicted by poten-
tial flow theory. In the region 1 < & < 10, the experimentally
measured film thickness agreed well with the approximate
analysis proposed.
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Dependence of Friction Factor Upon Liquid Level in
Two-Phase One-Gomponent Stratified Flow

M. A. VAN DROMME and L. J. HELLINCKX!

Nomenclature

a = half-width of interface

b = wetted perimeter

d = tube diameter

f = friction factor

h = height of arc of wetted perimeter

cartesian coordinates

B}, = specific kinetic energy

F = frictional force acting on liquid at wall
P = force acting on unit volume of liquid
@ = rate of discharge, volumetric

Re = Reynolds number (4pQ/bu)

form factor

one-half arc of wetted perimeter

wetted area

= polar coordinates

integration variable

dynamic viscosity

= liquid-section area

= density of liquid

[

It

i

I

FAY
v O >3 ™R
1

Subsecripts
L = liquid
V' = vapor

Introduction

IN A STUDY on condensation of pure substances in horizontal
tubes, Rufer and Kezios [1]? proposed a model describing the
case of stratified two-phase flow of vapor and condensate with
annular condensation superimposed. This model resulted in an
equation giving the slope of the vapor-bulk liquid interface along
the tube, which was derived using the principles of conservation
of mass, energy, and momentum. Within this equation coefli-
cients appear that take into account the variation of friction
factors with liquid level for both vapor and liquid phase. Values,
or an expression for these so-called form factors, were not given.

In another work, Sarma and co-workers [2] studied the de-
pendence of liquid level on void fraction in the same model.
Therein the value of the ratio of the form factors for vapor and
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brief.
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liquid phases was supposed, without justification, to lie between
0.8 and 1.2.

It is the aim of this note to provide information about the
variation of these form factors with liquid level and to fix the
limits of their ratio.

Analysis

In stratified two-phase flow in circular tubes, each phase

flows in a space of segmental section. If the shear stress at the
inlerface is supposed to be zero [1, 2] this interface can be seen
as o free swrface and the flow in one phase can be considered ag
open-channel flow, whether laminar or turbulent.
The same expression
for the local velocity applies for laminar flow in open eircular
channels as well as for flow in symmetrical lenticular tubes, for
by symmetry the velocity gradient at the plane dividing the
lenticular tube into two segments is zero, and identical conditions
exist at the free surface in open-channel flow.

The expressions for local velocity and for rate of discharge for
laminar flow in symmetrical lenticular tubes have been derived
by Chaudhury [3] using a bipolar coordinate system defined by
the equation

Laminar Flow in Open Circular Channels.

2z + 7y = atanh <%ﬁ> (1)

The two poles of the system are either at the intersection of the
two arcs or at the intersection of one arc and the straight line
representing the free surface. In this system the Navier-Stokes
equation of motion takes the form

— Pg2

O bj
u{cosh & + cos n)?

o5+ g = (2)

with the boundary condition » = 0forn = 8. The solution of
this equation is

cos 0

v_@[w
°= 2u | (cosh & 4 cos n)

@ tant A
~2cot,3f a,nl)\,Bcosh N

A w— cos )\Ed)\] 3)

By integrating this expression over the flow-section area, one
obtains for the rate of discharge for flow in an open circular
channel

Q*T[B—{—cotﬂ-f&ﬂcot”ﬂ—}— cot® B — 38 cott ()

) d)\] (4)

® tanh BA(sinh 268\ — Asin 208
sinh? A

— 47 cot B cosec? 8 f
0

or

Pa“

Q= 1’(5)

From the definition of the friction factor [4]

= [YEx ()
one obtains

2P

= G

(6)

Substituting the expression for € in this formula gives

643

7= et e F(B)

(7

or
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16
;= 1‘,\_6‘1 (8)
where
4
& gt F=B) (9)

Substituting for ), a, and b, which are geometrical functions o
B only, gives

. T
a = l:m/zﬁ_cgs_é] [M]Z F(f)
sin? 8 IS
This latter shows that the form factor is really independent of
flow properties and only depends on the geometry of the ch‘mnel
characterized by the value of # or by an equivalent palameter
such as the relative flow depth 2 /d.

We have calculated this factor « for different values of 8.
The integral in the denominator has been integrated through 4
combination of analytical and numerical methods. From A\ = ¢
to A = 6 the integration has been performed by means of the
trapezium rule with a step length of 0.1. For A > 6 the ex-
pression to be integrated can, without loss of accuracy, be re-
placed by the following:

tanh BA(sinh 28\ —~ A sin 26)
sinh? A

(10)

= 2exp [2A (B — 7)]

— 4A sin 268 exp (—2A7) (11)

The difference between the expressions has always been less than
10-13 for values of B upto 179 deg. The analytical integration of
this expression gives

fm 2 exp [2A(B — 7)] — 4 sin 28 exp (—2\)d\
8

exp (128 ) sin 26

= exp (~12m) [ —

The results of these calculations are represented in Fig. 1, where
the values of @ have been plotted as the ordinate versus the rela-
tive flow depth h/d as abscissa.

From this figure one can see that for A/d smaller than 0.5, the
difference between completely and partly filled tube-section flow
is rather small, while the difference is much larger for h/d > 0.5.
Here o reaches the maximum value of 1.1099 for A/d = 0.97.
The curve attains the value a = 1 for values of h/d equal to
0.26, 0.5, and 1.0.

Whereas the last two points, which were predicted by the

(127 + 1)] (12)

CX/ 112

110

1 1.1099

1.08
1.06 4
1.04 ]

1.02

1.00 r
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0.972% —
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Fig. 1
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Hagen—Poiseuille equation [4], could be fixed a priori, the limit
for h/d going to zero was more difficult to determine. TIndeed,
for B going to zero, equation (9) takes the undefined form 0/0.
The uncertainty at this point could be solved by making use of a
simplified formula for the rate of discharge derived by Buffham
(5], which is only applicable for very shallow channels:

oo P ot [y
T w2 105 \d

The assumptions made when deriving this formula entail that
the lower the value of &/d, the more reliable the calculated value
for the rate of discharge. Putting this expression in equation (5)
and substituting €, b, and h as functions of 8, the following ex-
pression is obtained:

(13)

1 105 1 (28 — sin 28)

= 14
Re 64 32 (14)

.. B
2 qind
32 sin Py

The last quotient in this equation also takes the undefined value
0/0 for B going to zero, but by means of 'Hbpital’s rule the limit
for f can be caleulated. Therefore we calculated the ninth-order
derivative of numerator and denominator, giving 1680 X 2% and
9!l X 277 vespectively. Finally, the limit of f for A/d going to
zero was found to be 15.5555 . . . /Re, giving a limiting value for
a of 0.9721. Tt is evident that the figure also applies for the
determination of friction factors for laminar flow in symmetrical
lenticular tubes, as was explained earlier.

Turbulent Flow in Open Circular Channels. As reported by several
authors, the friction factor for turbulent flow in closed [6] and
in open [7] channels does not depend upon the geometric form
of the section, provided the hydraulic radius has the same value,
This entails that for turbulent flow

a =1
and one can use one of the known relations expressing the friction

factor as a function of the Reynolds number, for instance the

Blasius equation
= 0.0791 Re~"/s (15)

Conclusion

While the form factor for turbulent flow is always close to
unity, for laminar flow a variation between 0.9721 and 1.1099 is
possible. This results in the following extreme values for the
tatio of the form factors of each phase:

laminar-laminar:

[¢3 7
0:88 < — < 1.14
Qy

liquid laminar-vapor turbulent:
o
097 < — < 111
ay

liquid turbulent—vapor laminar:

ar
090 < — < 1.03
ay

The first and the third cases, with laminar vapor flow, are
very rarely encountered. In the second case the deviation from
Unity of the ratio az/ay is considerable only when h/d > 0.75, a
condition in which the flow can hardly persist to be stratified.
This leads us to the conclusion that the assumption of

&r,

- =1
Qy

tan be justified in most cases.
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A Generalized King's Law of a Conical Hot-Film
Anemometer Sensor

C. H. GOODMAN! and H. H. SOGIN?

Introduction

THE CONSTANT-TEMPERATURE quartz-coated hot-film anemom-
efer sensor is one of the few instruments available to measure
local and instantaneous velocity of a liquid over a wide speed
range. In practice each sensor is calibrated to establish the
bridge voltage versus velocity (¥ versus V) relation. Since the
sensor performance depends upon both the sensor and
the ambient temperatures (7s and 7', respectively), as well as the
velocity, the calibration and its utilization are parametrically
complex. In order to reduce the calibrating time and to provide
an interpolating scheme, the calibrations are sometimes general-
ized in terms of a dimensionless heat transfer correlation, or a
generalized King’s law. This paper provides a fairly rational
correlation representing the heat transfer on a conical hot-film
sensor in axisymmetrieal flow (Fig. 1). i

Heat transfer correlations have been presented in quasi-
dimensionless form or in dimensionless form over limited range of
Reynolds number and overheat. A major difference between
the present and earlier works [1-6]3 is coverage of a broad Reyn-
olds number range which includes a low-speed portion where
buoyancy is manifest. By juxtaposing a few elementary guide-
lines, the heat transfer correlation on the small conical surface is
cast In a conventional dimensionless form.

Global Unit Surface Conductance

In a statistically steady calibration the bridge voltage £ =
E(V, T, Tw; ¢, ¥); ¢ denotes the heat transfer, and  the angle
between the velocity and gravitational fields. A global unit
surface conductance denoted by h is arbitrarily based on the
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Hagen—Poiseuille equation [4], could be fixed a priori, the limit
for h/d going to zero was more difficult to determine. TIndeed,
for B going to zero, equation (9) takes the undefined form 0/0.
The uncertainty at this point could be solved by making use of a
simplified formula for the rate of discharge derived by Buffham
(5], which is only applicable for very shallow channels:

oo P ot [y
T w2 105 \d

The assumptions made when deriving this formula entail that
the lower the value of &/d, the more reliable the calculated value
for the rate of discharge. Putting this expression in equation (5)
and substituting €, b, and h as functions of 8, the following ex-
pression is obtained:

(13)

1 105 1 (28 — sin 28)

= 14
Re 64 32 (14)

.. B
2 qind
32 sin Py

The last quotient in this equation also takes the undefined value
0/0 for B going to zero, but by means of 'Hbpital’s rule the limit
for f can be caleulated. Therefore we calculated the ninth-order
derivative of numerator and denominator, giving 1680 X 2% and
9!l X 277 vespectively. Finally, the limit of f for A/d going to
zero was found to be 15.5555 . . . /Re, giving a limiting value for
a of 0.9721. Tt is evident that the figure also applies for the
determination of friction factors for laminar flow in symmetrical
lenticular tubes, as was explained earlier.

Turbulent Flow in Open Circular Channels. As reported by several
authors, the friction factor for turbulent flow in closed [6] and
in open [7] channels does not depend upon the geometric form
of the section, provided the hydraulic radius has the same value,
This entails that for turbulent flow

a =1
and one can use one of the known relations expressing the friction

factor as a function of the Reynolds number, for instance the

Blasius equation
= 0.0791 Re~"/s (15)

Conclusion

While the form factor for turbulent flow is always close to
unity, for laminar flow a variation between 0.9721 and 1.1099 is
possible. This results in the following extreme values for the
tatio of the form factors of each phase:

laminar-laminar:

[¢3 7
0:88 < — < 1.14
Qy

liquid laminar-vapor turbulent:
o
097 < — < 111
ay

liquid turbulent—vapor laminar:

ar
090 < — < 1.03
ay

The first and the third cases, with laminar vapor flow, are
very rarely encountered. In the second case the deviation from
Unity of the ratio az/ay is considerable only when h/d > 0.75, a
condition in which the flow can hardly persist to be stratified.
This leads us to the conclusion that the assumption of

&r,

- =1
Qy

tan be justified in most cases.
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A Generalized King's Law of a Conical Hot-Film
Anemometer Sensor

C. H. GOODMAN! and H. H. SOGIN?

Introduction

THE CONSTANT-TEMPERATURE quartz-coated hot-film anemom-
efer sensor is one of the few instruments available to measure
local and instantaneous velocity of a liquid over a wide speed
range. In practice each sensor is calibrated to establish the
bridge voltage versus velocity (¥ versus V) relation. Since the
sensor performance depends upon both the sensor and
the ambient temperatures (7s and 7', respectively), as well as the
velocity, the calibration and its utilization are parametrically
complex. In order to reduce the calibrating time and to provide
an interpolating scheme, the calibrations are sometimes general-
ized in terms of a dimensionless heat transfer correlation, or a
generalized King’s law. This paper provides a fairly rational
correlation representing the heat transfer on a conical hot-film
sensor in axisymmetrieal flow (Fig. 1). i

Heat transfer correlations have been presented in quasi-
dimensionless form or in dimensionless form over limited range of
Reynolds number and overheat. A major difference between
the present and earlier works [1-6]3 is coverage of a broad Reyn-
olds number range which includes a low-speed portion where
buoyancy is manifest. By juxtaposing a few elementary guide-
lines, the heat transfer correlation on the small conical surface is
cast In a conventional dimensionless form.

Global Unit Surface Conductance

In a statistically steady calibration the bridge voltage £ =
E(V, T, Tw; ¢, ¥); ¢ denotes the heat transfer, and  the angle
between the velocity and gravitational fields. A global unit
surface conductance denoted by h is arbitrarily based on the

1 Southern Services, Inc., Birmingham, Ala.

2 Department of Mechanical Engineering, Tulane University,
New Orleans, La.

3 Numbers in brackets designate References at end of technical
brief,

Contributed by the Heat Transfer Division of THE AMERICAN
SocrETY 0F MECHANICAL ENGINEERS. Manuscript received by the
Heat Transfer Division Maxrch 22, 1973.

AucusT 1973 / 419

. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



GOLD_LEADS

PLATINUM FIL.M

Fig. 1 Conical sensor structure and nomenclature. Dimensions of
present sample: ¢ = 23.9 deg, Li = 0.34; Ly = 0.45;, L; = 0.08;,
L4 = 3.0 mm

surface area § of one face of the film. The steady heat balance

takes the form:

2 ]2

BRRe+ ROP 0

R,

The numerator is the square of the sensor (net) voltage, R’

being a constant bridge resistance. In the range of utilization

reported in the following, the R. versus 7' relation is found
experimentally to be linear:

Rs/Ro =1 + 60(T:; - To) (2)

The limiting conduction is approximated by supposing that the
hot film forms the surface of a spherical cavity of radius 7,
centered at the virtual vertex of the cone in an infinite domain.
The conduction through the water is assumed to ‘‘parallel”
the conduction through the quartz. If ¢ is the cone half angle
(Fig. 1) and a geometric factor (' is defined by

2rC = (1 — Ly/L)[m(1 + L;/Ls) singp — 2L3/Ls) (3)

then the film surface area § = 27CLs?% and r, = Lz\/b’72. The
limiting conduction Nusselt number

Nuk = qu2/[Skw(Ts - Tm)]
a1 — cosg kg 1 4 cos¢ ks
- /s Kq Ks
(2/0) [ et (1 + /c®>] )

The first term in brackets represents the fraction conducted
through the quartz, and the second term the fraction through
the liquid; their ratio for water is about 1:10. The character-
istic length L,, the slant height from the vertex to the trailing
edge of the hot film, is the hydrodynamic length of the boundary
layer presumed to develop at high sensor Reynolds number.

If the fluid properties were independent of temperature, the
convective part would be ptoportional to PrmRer. To allow
for the variation of fluid properties, a power of the viscosity
ratio (Me/us)” is suffixed, as for liquids through tubes {7].

In order to reduce the number of degrees of freedom in the
correlation, values of m and <y are fixed. Similarity solutions
show that m is practically !/;, and since the conjugate boundary
condition cannot alter the influence of the Prandtl number,
m = 2n/3. Asfor vy, prior experiences, particularly with water,
suggest that it equals 0.14.

Accordingly, the generalized form of the heat transfer correla-
tion under zero gravity is

Nuw = ANw, + B(Pro”"Rew ) fhe// ths ) 11 (5)

Here, Nu,, = his/k., Re, = Vii/v, and the quantities 4, B,
and » remain to be determined by experimentation.

A correction is now required to account for the buoyant effects
observed when the sensor orientation relative to the gravity field
is altered at low velocity. If the velocity and the gravity

430 / Aucust 1973

fields are parallel (sensor pointing upward) the buoyaney effec-
tively retards the on-coming fluid, reducing the heat transfer, ang
vice versa if they are anti-parallel, When the velocity ang the
gravity fields are perpendicular, the thermal plume induyceg a
vertical velocity component which is observed to increase the heat
transfer.

An approximate perturbation analysis based on point-souyeg
laminar plume theory has been used [8] to investigate the effeq
of the free convection at the heated sensor. The result i that
the magnitude of the change in the velocity of approach i
w = Pgg/(2xV pcy). Here, 3 is the volume expansivity, y the
viscosity, and c, the specific heat of the liquid. Thus, whey
the speeds are not too low, the thermal probe is presumed to
sense the velocity V' = w as though it were in a Zero-gravity
field, the minus or plus sign corresponding to the case that the
velocity and gravity fields are parallel or anti-parallel, respec.
tively.

In order to incorporate the buoyant effect into (5) it is con-
venient to introduce K, defined by

NG
w_ B NuGr, ©)
Vo 2xVie, Pto.Rew?
where the Grashof number Gro, = L®B0po™(Ts — T'w)/lhe? and
C'is given by (3).

Experimental Results

A detailed description of the calibration apparatus and its
performance has been reported elsewhere [5, 8]. All the anemo-
metric data were obtained on a Thermo-Systems, Inc., Model
1050 constant temperature anemometer system. The sensor
was of their Model 1230.

Low speed data (V < 7cm/sec) at the several sensor tempera-
tures are depicted in Figs. 2 and 3. The ordinate in Fig. 2

VELOCITY CM/S

Fig. 2 Calibration data in the mixed convection regime reduced ¥
zero-gravity conditions. T, = 25.0 deg C, four sensor temperatures
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Fig. 3 Gravilational effects in the mixed convection regime

represents the arithmetic mean value of F measured when the
Iaminar flow pipe was in the two vertical positions. The dotted
curve represents data reported earlier [5], and ‘the solid lines
show recent data. TFig. 3 shows the departures from mean E
which are ascribed to buoyancy, the three curves at each sensor
temperature corresponding to the three orientations. The
ordinates represent the amounts of voltage that must be added
to the corresponding average curve in Fig. 2 in order to recover
the original calibration data; iteration converges rapidly.
Note that the horizontal position (Y = #/2) favors the anti-
parallel orientation (¢ = ).

A zero-gravity correlation was established by averaging E* ~ ¢

Journal of Heat Transfer

at ¥ = Oand Y = w. There were 192 data points throughout
the experimentation, including [5]. Constants A4, B, and =
were determined on basis of a least square fit accomplished with a
program developed by Law [9]. The buoyant effects were then
accounted for in the manner previously suggested.

Expressed at length, the correlation of the global unit surface
conductance on the quartz-coated conical hot-film sensor at
arbitrary orientation in the gravitational field is

5 1 — cos¢ ky 1+ cosd ks }
Nu, = 1. ) — — —_—T —
! 1‘/()’ ,: 2 ke + 4 (1 + km)

4 5.5[Pra2Req (1 + 0.7C4K,,)]0-300

o \0-14
X{— , 3 < Re < 1000 (7)

3

where €, = —Co = ('0.072, and C,/, = 40.043. The standard
deviation of the deviation parameter (Nug.exp. — Nue.cale.)/
NUg.cale. Was 1.6 percent.

The result might be further generalized to include a correction
for the unheated hydrodynamic starting length L1, which varies
from sensor to sensor. An estimate based on laminar boundary-
layer heat transfer on slender cones suggests that the coefficient
5.5 ought be replaced by the factor 6.0[1 — (I/Ls)-%]*/s,
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